Влияние свинца на растения

Добавил пользователь Alex
Обновлено: 19.09.2024

Глава 1. ТЯЖЕЛЫЕ МЕТАЛЛЫ: БИОЛОГИЧЕСКАЯ РОЛЬ,

СОДЕРЖАНИЕ В ПОЧВАХ И РАСТЕНИЯХ (агроэкологический аспект)

Функции живого организма нераздельно связаны с химизмом земной коры и должны изучаться в тесной связи с последним (Виноградов, 1957; Вернадский, 1960; Авцын и др., 1991; Добровольский, 1997). По мнению А.П. Виноградова (1957), количественное содержание того или иного элемента в организме определяется его содержанием во внешней среде, а также свойствами самого элемента, с учетом растворимости его соединений. Впервые научные основы учения о микроэлементах в нашей стране обосновал В. И. Вернадский (1960). Фундаментальные исследования были проведены А.П. Виноградовым (1957) – основоположником учения о биогеохимических провинциях и их роли в возникновении эндемических заболеваний человека и животных и В.В. Ковальским (1974) – основоположником геохимической экологии и биогеографии химических элементов, впервые осуществившим биогеохимическое районирование СССР.

В настоящее время из 92 встречающихся в природе элементов 81 обнаружен в организме человека. При этом 15 из них ( Fe , I , Cu , Zn , Co , Cr , Mo , Ni , V , Se , Mn , As , F , Si , Li ) признаны жизненно необходимыми. Однако они могут оказывать отрицательное влияние на растения, животных и человека, если концентрация их доступных форм превышает определенные пределы. Cd , Pb , Sn и Rb считаются условно необходимыми, т.к. они, по всей видимости, не очень важны для растений и животных и опасны для здоровья человека даже при относительно низких концентрациях (Добровольский, 1980; Рэуце, Кырстя, 1986; Ягодин и др., 1989; Авцын и др., 1991; Давыдова, 1991; Вронский, 1996; Панин, 2000; Пронина, 2000).

1.1. Биологическая роль и токсикологическое влияние тяжелых металлов

В последние годы все сильнее подтверждается важная биологическая роль большинства металлов. Многочисленными исследованиями установлено, что влияние металлов весьма разнообразно и зависит от содержания в окружающей среде и степени нуждаемости в них микроорганизмов, растений, животных и человека.

Фитотоксичное действие ТМ проявляется, как правило, при высоком уровне техногенного загрязнения ими почв и во многом зависит от свойств и особенностей поведения конкретного металла. Однако в природе ионы металлов редко встречаются изолированно друг от друга. Поэтому разнообразные комбинативные сочетания и концентрации разных металлов в среде приводят к изменениям свойств отдельных элементов в результате их синергического или антагонистического воздействия на живые организмы. Например, смесь цинка и меди в пять раз токсичнее, чем арифметически полученная сумма их токсичности, что обусловлено синергизмом при совместном влиянии этих элементов. Подобным образом действует и смесь цинка с никелем. Однако существуют наборы металлов, совместное действие которых проявляется аддитивно. Ярким примером этого являются цинк и кадмий, проявляющие взаимный физиологический антагонизм (Химия…,1985). Очевидны проявления синергизма и антагонизма металлов и в их многокомпонентых смесях. Поэтому суммарный токсикологический эффект от загрязнения среды ТМ зависит не только от набора и уровня содержания конкретных элементов, но и особенностей их взаимного воздействия на биоту.

Таким образом, влияние ТМ на живые организмы весьма разнообразно Это обусловлено, во-первых, химическими особенностями металлов, во-вторых, отношением к ним организмов и, в-третьих, условиями окружающей среды. Ниже, согласно имеющимся в литературе данным (Химия…,1985; Кеннет, Фальчук, 1993; Кадмий: экологические …, 1994; Strawn , Sparks , 2000 и др.), приводим краткую характеристику влияния ТМ на живые организмы.

Свинец. Биологическая роль свинца изучена весьма слабо, однако в литературе встречаются данные (Авцын и др., 1991), подтверждающие, что металл жизненно необходим для животных организмов на примере крыс. Животные испытывают недостаток этого элемента при концентрации его в корме менее 0,05-0,5 мг/кг (Ильин, 1985; Кальницкий, 1985). В небольших количествах он необходим и растениям. Дефицит свинца в растениях возможен при его содержании в надземной части от 2 до 6 мкг/кг сухого вещества (Кальницкий, 1985; Кабата-Пендиас, Пендиас, 1989).

Повышенный интерес к свинцу вызван его приоритетным положением в ряду основных загрязнителей окружающей природной среды (Ковальский, 1974; Сает, 1987; Доклад…, 1997; Снакин, 1998; Макаров, 2002). Металл токсичен для микроорганизмов, растений, животных и людей.

Избыток свинца в растениях, связанный с высокой его концентрацией в почве, ингибирует дыхание и подавляет процесс фотосинтеза, иногда приводит к увеличению содержания кадмия и снижению поступления цинка, кальция, фосфора, серы. Вследствие этого снижается урожайность растений и резко ухудшается качество производимой продукции. Внешние симптомы негативного действия свинца – появление темно-зеленых листьев, скручивание старых листьев, чахлая листва. Устойчивость растений к его избытку неодинаковая: менее ус­тойчивы злаки, более устойчивы бобовые. Поэтому симптомы токсичности у различных культур могут возникнуть при разном валовом содержании свинца в почве - от 100 до 500 мг/кг (Кабата-Пендиас, Пендиас, 1989; Ильин, Сысо, 2001). Концентрация металла выше 10 мг/кг сух. в-ва явля­ется токсичной для большинства культурных растений (Рэуце, Кырстя, 1986).

В организм человека свинец в основном поступает через пищеварительный тракт. При токсичных дозах элемент накапливается в почках, печени, селезенке и костных тканях. При свинцовом токсикозе поражаются в первую очередь органы кроветворения (анемия), нервная система (энцефалопатия и нейропатия) и почки (нефропатия). Наиболее восприимчива к свинцу гематопоэтическая система, особенно у детей.

Кадмий хорошо известен, как токсичный элемент, но он же относится к группе "новых" микроэлементов (кадмий, ванадий, кремний, олово, фтор) и в низких концентрациях способен стимулировать их рост некоторых животных (Авцын и др., 1991). Для выс­ших растений значение кадмия достоверно не установлено.

Основные проблемы, связанные у человечества с этим элемен­том, обусловлены техногенным загрязнением окружающей среды и его токсичностью для живых организмов уже при низких концен­трациях (Ильин, Сысо, 2001).

Токсичность кадмия для растений проявляется в нарушении активности ферментов, тормо­жении фотосинтеза, нарушении транспирации, а также ингибировании восстановления N О2 до N О. Кроме того, в метаболизме растений он является антагонистом ряда элементов питания ( Zn , Cu , Mn , Ni , Se , Ca , Mg , P ). При токсичном воздействии металла у растений наблюдаются задержка роста, повреждение корневой системы и хлороз листьев. Кадмий достаточно легко поступает из почвы и атмосферы в растения. По фитотоксичности и способности накапливаться в растениях в ряду ТМ он занимает первое место ( Cd > Cu > Zn > Pb ) (Овчаренко и др., 1998).

Кадмий способен накапливаться в организме человека и животных, т.к. сравнительно легко усваивается из пищи и воды и проникает в раз­личные органы и ткани. Токсичное действие металла проявляется уже при очень низких концентрациях. Его избыток ингибирует синтез ДНК, белков и нуклеиновых кислот, влияет на активность ферментов, нарушает усвоение и обмен других микроэлементов ( Zn , Cu , Se , Fe ), что может вызывать их дефицит.

Обмен кадмия в организме характеризуется следующими основными особенностями (Авцын и др., 1991): отсутствием эффективного механизма гомеостатического контроля; длительным удержанием (кумуляцией) в организме с очень долгим периодом полувыведения (в среднем 25 лет); преимущественным накоплением в печени и почках; интенсивным взаимодействием с другими двухвалентными металлами как в процессе всасывания, так и на тканевом уровне.

Хроническое воздействие кадмия на человека приводит к нарушениям почечной функции, легочной недостаточности, остеомаляции, анемии и потере обоняния. Существуют данные о возможном канцерогенном эффекте кадмия и о вероятном участии его в развитии сердечно-сосудистых заболеваний. Наиболее тяжелой формой хронического отравления кадмием является болезнь итай-итай, характеризующаяся деформацией скелета с заметным уменьшением роста, поясничными болями, болезненными явлениями в мышцах ног, утиной походкой. Кроме того, отмечаются частые переломы размягченных костей даже при кашле, а также нарушение функции поджелудочной железы, изменения в желудочно-кишечном тракте, гипохромная анемия, дисфункция почек и др. (Авцын и др., 1991).

Цинк. Особый интерес к цинку связан с открытием его роли в нуклеиновом обмене, процессах транскрипции, стабилизации нуклеиновых кислот, белков и особенно компонентов биологических мембран (Пейве, 1961), а также в обмене витамина А. Ему принадлежит важная роль в синтезе нуклеиновых кислот и белка. Цинк присутствует во всех 20-ти нуклеотидилтрансферазах, а его открытие в обратных транскриптазах позволило установить тесную взаимосвязь с процессами канцерогенеза. Элемент необходим для стабилизации структуры ДНК, РНК, рибосом, играет важную роль в процессе трансляции и незаменим на многих ключевых этапах экспрессии гена. Цинк обнаружен в составе более 200 ферментов, относящихся ко всем шести классам, включая гидролазы, трансферазы, оксидоредуктазы, лиазы, лигазы и изомеразы (Авцын и др., 1991). Уникальность цинка заключается в том, что ни один элемент не входит в состав такого количества ферментов и не выполняет таких разнообразных физиологических функций (Кашин, 1999).

Повышенные концентрации цинка оказывают токсическое влияние на живые организмы. У человека они вызывают тошноту, рвоту, дыхательную недостаточность, фиброз легких, является канцерогеном (Кеннет, Фальчук, 1993). Избыток цинка в растениях возникает в зонах промышленного загрязнения почв, а также при неправильном применении цинксодержащих удобрений. Большинство видов растений обладают высокой толерантностью к его избытку в почвах. Однако при очень высоком содержании этого металла в почвах обычным симптомом цинкового токсикоза является хлороз молодых листьев. При избыточном его посту­плении в растения и возникающим при этом антагонизме с другими элементами снижается усвоение меди и железа и проявляются симптомы их недостаточности.

Медь – является одним из важнейших незаменимых элементов, необходимых для живых организмов. В растениях она активно участвует в процессах фотосинтеза, дыхания, восстановления и фиксации азота. Медь входит в состав целого ряда ферментов-оксидаз – цитохромоксидазы, церулоплазмина, супероксидадисмутазы, уратоксидазы и других (Школьник, 1974; Авцын и др., 1991) и участвует в биохимических процессах как составная часть ферментов, осуществляющих реакции окисления субстратов молекулярным кислородом. Данные по токсичности элемента для растений немногочисленны. В настоящее время основной проблемой считается недостаток меди в почвах или ее дисбаланс с кобальтом. Основные признаки дефицита меди для растений – замедление, а затем и пре­кращение формирования репродуктивных органов, появление щуп­лого зерна, пустозернистых колосьев, снижение устойчивости к неблагоприятным факторам внешней среды. Наиболее чувствительны к ее недостатку пшеница, овес, ячмень, люцерна, столовая свекла, лук и подсолнечник (Ильин, Сысо 2001; Adriano ,1986).

В организме взрослого человека половина от общего количества меди содержится в мышцах и костях и 10% - в печени. Основные процессы всасывания этого элемента происходят в желудке и тонкой кишке. Ее усвоение и обмен тесно связаны с содержанием в пище других макро- и микроэлементов и органических соединений. Существует физиологический антагонизм меди с молибденом и сульфатной серой, а также марганцем, цинком, свинцом, стронцием, кадмием, кальцием, серебром. Избыток данных элементов, наряду с низким содержанием меди в кормах и продуктах питания, может обусловить значительный дефицит последней в организмах человека и животных, что в свою очередь приводит к анемии, снижению интенсивности роста, потере живой массы, а при острой нехватке металла (менее 2-3 мг в сутки) возможно возник­новение ревматического артрита и эндемического зоба. Чрезмерное поглощение меди человеком приводит к болезни Вильсона, при которой избыток элемента откладывается в мозговой ткани, коже, печени, поджелудочной железе и миокарде.

Никель. Биологическая роль никеля заключается в участии в структурной организации и функционировании основных клеточных компонентов – ДНК, РНК и белка. Наряду с этим он присутствует и в гормональной регуляции организма. По своим биохимическим свойствам никель весьма схож с железом и кобальтом. Недостаточность металла у жвачных сельскохозяйственных животных проявляется в снижении активности ферментов и возможности ле­тального исхода.

До настоящего времени в литературе не встречаются данные о дефиците никеля для растений, однако в ряде экспериментов установлено положительное влияние внесения никеля в почвы на урожайность сельскохозяйственных культур, которое, возможно, связано с тем, что он стимулиру­ет микробиологические процессы нитрификации и минерализации соединений азота в почвах (Кашин, 1998; Ильин, Сысо, 2001; Brown , Wilch , 1987). Токсичность никеля для растений проявляется в подавлении процессов фотосинтеза и транспирации, появлении признаков хлороза листьев. Для животных организмов токсический эффект элемента сопровождается снижением активности ряда металлоферментов, нарушением синтеза белка, РНК и ДНК, развитием выраженных повреждений во многих органах и тканях. Экспериментально установлена эмбриотоксичность никеля (Строчкова и др., 1987; Ягодин и др., 1991). Избыточное поступление металла в организм животных и человека может быть связано с интенсивным техногенным загрязнением почв и растений этим элементом.

Хром. Хром относится к числу элементов, жизненно необходи­мых животным организмам. Основные его функции - взаимодействие с инсулином в процессах углеводного обмена, участие в структуре и функции нуклеиновых кислот и, вероятно, щитовидной железы (Авцын и др., 1991). Растительные организмы положительно реагируют на внесение хрома при низком содержании в почве доступной формы, однако вопрос о незаменимости элемента для растительных организмов продолжает изучаться.

Токсичное действие металла зависит от валентности: шестивалентный катион гораздо токсичнее трехвалентного. Симптомы токсичности хрома внешне проявляются в снижении темпов роста и развития растений, увядании надземной части, повреждении кор­невой системы и хлорозе молодых листьев. Избыток металла в растениях приводит к резкому снижению концентраций многих физиологически важных элементов, в первую очередь К, Р, Fe , Mn , Cu , B . В организме человека и животных общетоксикологическое, нефротоксическое и гепатотоксическое действие оказывает Cr 6+ . Токсичность хрома выражается в изменении иммунологической ре­акции организма, снижении репаративных процессов в клетках, ингибировании ферментов, поражении печени, нарушении процессов биологического окисления, в частности цикла трикарбоновых кислот. Кроме того, избыток металла вызывает специфические поражения кожи (дерматиты, язвы), изъявления слизистой оболочки носа, пневмосклероз, гастриты, язву желудка и двенадцатиперстной кишки, хромовый гепатоз, нарушения регуляции сосудистого тонуса и сердечной деятельности. Соединения Cr 6+ , наряду с общетоксикологическим действием, способны вызывать мутагенный и канцерогенный эффекты. Хром, помимо легочной ткани, накапливается в печени, почках, селезенке, костях и костном мозге (Краснокутская и др., 1990).

Влияние токсичных концентраций ТМ на растения приведено в таблице 1.1, а на здоровье человека и животных – в таблице 1.2.

Среди различных программ, направленных на улучшение экологической ситуации в России, особое место занимает мониторинг окружающей среды, призванный, в частности, следить за изменением в экосистемах концентрации тяжелых металлов и ионов водорода. Без оценки уровней закисленности и загрязнения почв, растительности и воды тяжелыми металлами невозможно получить общую картину техногенной нагрузки этих веществ на окружающую среду. Загрязнение окружающей среды тяжелыми металлами вызывает тревогу, еще и потому, что оно многопланово снижает продуктивность растений , ухудшается качество среды обитания человека, включая качество продукции и продуктов питания.

Поэтому изучение воздействия химических соединений, содержащих ионы водорода и тяжелые металлы, представляет собой актуальную проблему.

В работе осуществлено исследование по выявлению влияния ионов Pb 2+ , Cu 2+ и Н + :

- на всхожесть семян пшеницы и фасоли,

- на развитие корневой системы пшеницы и фасоли,

- на развитие стеблей пшеницы и фасоли.

Сделаны выводы о металло- и кислотоустойчивости исследуемых объектов.

ВложениеРазмер
vliyanie_ionov_svintsa_medi_i_vodoroda_na_rost_i_razvitie_rasteniy.doc 118.5 КБ

Предварительный просмотр:

Работу выполнила ученица 10 класса МОУ лицей № 9 Маликова Патина.

Среди различных программ, направленных на улучшение экологической ситуации в России, особое место занимает мониторинг окружающей среды, призванный, в частности, следить за изменением в экосистемах концентрации тяжелых металлов. Без оценки уровней загрязнения почв, растительности и воды тяжелыми металлами невозможно получить общую картину техногенной нагрузки этих веществ на окружающую среду. Загрязнение окружающей среды тяжелыми металлами вызывает тревогу, потому, что оно многопланово снижает продуктивность растений , ухудшается качество среды обитания человека, включая качество продукции и продуктов питания.

Поэтому цель моей работы – определить влияние ионов Pb 2+ , Cu 2+ и Н + на рост и развитие растений.

Мною были поставлены следующие задачи:

  1. Выяснить биогенную роль меди, свинца и их соединений, степень их токсичности.
  2. Определить влияние кислотных дождей на живую природу.
  3. Установить источники попадания исследуемых элементов в окружающую среду.
  4. Экспериментальным путем определить степень влияния данных ионов на рост и развитие растений.

Объект исследования : ионы Pb 2+ , Cu 2+ и Н + .

Предмет исследования: проростки пшеницы и фасоли.

Решая поставленные задачи, я изучила литературу о составе живого вещества и влиянии отдельных макро- и микроэлементов на живую природу.

По своему содержанию в живом веществе химические элементы можно разделить на макро- и микроэлементы. К макроэлементам относятся 4 элемента: С, О, Н, N. На их долю приходится 96 % массы живого организма. К микроэлементам относят Са, Р, К, S (3% массы живого вещества) и I, Cl, Fe, Na, Mo, Сu, Со, Zn (1 % массы). Содержание макроэлементов в организме достаточно постоянно, но сравнительно большие отклонения от нормы совместимы с жизнедеятельностью организма. Напротив, уже незначительные отклонения содержания микроэлементов от нормы вызывают тяжелые заболевания.

Из литературных источников мне стало известно, что при медной интоксикации изменяется окраска листьев до красной и буро-коричневой, что свидетельствует о разрушении хлорофилла. Кроме того, при избытке ионов меди и свинца, происходит угнетение роста, задержка развития растений.

Не менее значимо наличие ионов водорода.

Источники поступления тяжелых металлов и ионов водорода в окружающую среду условно можно разделить на две группы – природные и техногенные. Из природных наибольшее значение имеют выветривание горных пород и минералов, эрозии, вулканическая деятельность. Главный природный источник микроэлементов – магматические и осадочные породы.

К техногенным источникам поступления тяжелых металлов относят:

  • промышленные выбросы;
  • отходы металлообрабатывающей промышленности;
  • добыча и переработка полезных ископаемых;
  • продукты сгорания топлива;
  • выхлопные газы автотранспорта;
  • коммунально-бытовые отходы;
  • средства химизации сельского хозяйства.

Наиболее токсичными среди них считаются свинец, кадмий, ртуть, медь. Во всех международных документах, посвященных проблемам биосферы и окружающей среды, эти металла неизменно называются особо опасными загрязнителями. Несмотря на то, что они нужны растениям лишь в очень малых концентрациях , эти металлы активно поглощаются растениями. Их опасность усугубляется тем, что они сохраняют свои токсические свойства в течение продолжительного времени и обладают кумулятивным действием. В связи с этим, изучение реакции растений на присутствие повышенных концентраций тяжелых металлов в окружающей среде вызывает большой научный и практический интерес.

Исследование проводилось по следующим направлениям:

- влияние ионов свинца, меди и водорода на всхожесть семян пшеницы и фасоли;

- влияние ионов свинца, меди и водорода на развитие корневой системы пшеницы и фасоли;

- влияние ионов свинца, меди и водорода на развитие стеблей пшеницы и фасоли.

Методика проведения эксперимента.

1. Приготовили растворы для исследования:

1) Взяли 5 емкостей объемом 1 литр.

2) В каждую из них поместили:

- 243 мг NH 4 NO 3 ,

- 23 мг MgSO 4 · 7Н 2 О,

- 25 мг FеС1 3 · 6Н 2 0,

- 344 мг CaSO 4 · 2H 2 O

Данный набор солей соответствует полной питательной смеси Прянишникова — ППСП.

3) Во 2-ю и 4-ю емкости добавили по 10 мг сульфата меди (II).

4) В 3-ю и 5-ю емкости — по 8 мг ацетата свинца (П).

5) В емкости налили отстоянную водопроводную воду, содержащую микроэлементы, доведя объемы растворов до 1 л.

6) Растворы, находящиеся в 4-й и 5-й банках, подкислили.

2. Подготовили материала для исследования.

1) Замочили по 25 семян пшеницы и фасоли в каждом из приготовленных растворов.

2) Прорастили пшеницу и фасоль до ювенального состояния проростков.

3 Проведение эксперимента.

1) Поместили проростки в исследуемые растворы.

1 - ППСП (контроль);

2 - ППСП + избыток ионов меди;

3 - ППСП + избыток ионов свинца;

4 - подкисленная ППСП + избыток ионов меди;

5 - подкисленная ППСП + избыток ионов свинца.

2) Провели фенологические наблюдения и измерения длины корней и надземной части растений (через каждые четверо суток).

3) Результаты зафиксировали и проанализировали.

4) Сделали выводы по проведенному исследованию.

1-ый эксперимент имел цель определить характер воздействия ионов Pb 2+ ,Cu 2+ и Н + на всхожесть семян пшеницы и фасоли.


В работе описаны загрязнение окружающей среды тяжелыми металлами, распространение и аккумуляция металлов в природной среде и их негативные воздействия на растения.

The pollution plumbum producing plant is influence on heavy metals accumulation processing of plants. Theheavymetalswillbechangedofplantsgename.

Основными источниками антропогенного поступления тяжелых металлов в окружающую среду являются металлургические предприятия, тепловые электростанции, карьеры и шахты по добыче полиметаллических руд, транспорт, химические средства защиты сельскохозяйственных культур от болезней и вредителей, сжигание нефти и различных отходов и пр. Наиболее мощные ореолы тяжелых металлов возникают вокруг предприятий черной и особенно цветной металлургии в результате атмосферных выбросов. Действие загрязняющих веществ распространяется на десятки километров от источника поступления элементов в атмосферу. По приведенным ниже данным можно судить о размерах антропогенной деятельности человека: вклад техногенного свинца составляет 94–97 %(остальное природные источники)., кадмия-84–89 %процентов, меди-56–87 %, никеля-66–75 %, ртути -58 % [1,2].

Заметное загрязнение атмосферного воздуха и почвы происходит за счет транспорта, в том числе авиационного. Большинство тяжелых металлов, содержащихся в пылегазовых выбросах промышленных предприятий, как правило, более растворимы, чем природные соединения [3].

Фитотоксичное действие тяжелых металлов проявляется, как правило, при высоком уровне техногенного загрязнения ими почв и во многом зависит от свойсв и особенностей поведения конкретного металла. Однако в природе ионы металлов редко встречаются изолированно друг от друга. Поэтому разнообразные комбинативные сочетания и концентрации разных металлов в среде приводят к изменениям свойств отдельных элементов в результате их антогонического воздействия на живые организмы [4].

Растительная пища является основным источником поступления ТМ организм человека и животных. По данным с ней поступают 40–80 % тяжелых металлов, и только 20–40 %. — с воздухом и водой. Поэтому от уровня накопления тяжелых металлов в растениях, используемых в пищу, в значительной степени зависит здоровье населения. Химический состав растений, как известно, отражает элементный состав почв. Поэтому избыточное накопление тяжелых металлов растениями обусловлено, прежде всего, их высокими концентрациями в почвах.

Несмотря на существенную изменчивость различных растений к накоплению тяжелых металлов, биоаккумуляция элементов имеет определенную тенденцию, позволяющую упорядочить их в несколько групп: 1) Cd,Cs, Rb — элементы интенсивного поглощения; 2) Zn, Mo, Cu, Pb, Co, As –средней степени поглощения; 3) Mn, Ni, Cr –слабого поглощения; 4) Se, Fe, Ba, Te — элементы труднодоступные растениям.

Другой путь поступления тяжелых металлов в растения — некорневое поглощение из воздушных потоков. Поступление элементов в растения через листья (или фолиярное поглощение) происходит, главным образом, путем неметаболического проникновения через кутикулу. Тяжелые металлы, поглощенные листьями могут переносится в другие органы и ткани и включаться в обмен веществ.

Свинец и кадмий относятся высокотоксичным металлам. В придорожных растениях количество свинца резко повышено, оно в 10–100 раз выше по сравнению с растениями, растущими вдали от дорог. Между содержанием свинца в растениях и расстоянием дерева от дороги существует доказуемая обратная зависимость. Свинец в достаточно высокой концентрации тормозит прорастание семян растений, замедляет рост корней в длину, а также образование корневых волосков. Листья отравленных свинцом растений становятся хлоротичными в межжилковых зонах. Особенно сильно поражаются молодые листья. Высокое содержание свинца в растениях негативно влияет на рост и развитие:

- снижается активность фотосистемы І и ІІ, причем фотосистема-ІІ более чувствительная к действию этого фитотоксиканта.

- оказывает ингибирующее влияние на реакцию Хилла, т. е. на способность изолированных хлоропластов на свету выделять кислород.

- в хлорпластах растений наблюдается подавление образования АТФ;

- вызывает потерю тургора клетками растений;

- прекращается деление клеток корня;

- подавляется образования корнеплодов, урожайность культурных растений;

- снижается количество каротина и аскорбиновой кислоты;

Некоторые травянистые растения, чувствительны по отношению к свинцу: ячмень, овес, пшеница, картофель. Среди дикорастущих следует отметить смолевку, которая от высокого содержания свинца приобретает карликовую форму, листья и стебли становятся темно-красными, а цветки мелкими и невзрачными [5].

Главным загрязнителем окружающей среды кадмием является цветная металлургия и обработка цветных металлов. Кроме того кадмий поступает в атмосферу при сгорании мусора и отходов. Большое количество кадмия обнаруживается в растения, произрастающих поблизости от автодорог. Так, например в хвое ели обыкновенной, растущей поблизости автодорог количество кадмия возрастает в 11–17 раз. Симптомы избыточного поступления в растения кадмия проявляются в постепенном изменении окраски кончиков листьев и черешков до красновато-бурой и пурпурной. При этом листья скручиваются и опадают. Кадмий замедляет темпы роста растений. При внесении его в количестве 20 мг на 1 кг почвы урожай растения снижался на 50 %. По силе своего действия кадмий превосходит многие другие тяжелые металлы. Гибель растений отмечается при концентрации кадмия в почве в количестве 30 мг/кг и выше. Большое количество кадмия поступает в почву при разработке и добыче цинковых руд. На таких почвах нельзя выращивать растения, ибо этот токсикант аккумулируется в тканях растений и может затем поступать в организм человека. Накопления кадмия происходит главным организм человека. Одна из причин торможения роста растений, произрастающих в присутствии кадмия — резкое ослабление интенсивности фотосинтеза. Присутствие в 1 кг листьев 96 мг этого элемента снижает интенсивность фотосинтеза на 50 % [6].

Поступление тяжелых металлов в растения может происходить непосредственно из воздуха с оседающей на листья и хвою пылью и транслокации из почвы: доля тяжелых металлов в составе пыли на поверхности листьев вблизи источника составляет в среднем 30 проц. от общего содержания в них тяжелых металлов. В понижениях и с наветренной стороны это доля может доходить до 60 %. По мере удаления от источника роль атмосферного загрязнения заметно уменьшается.

Главным загрязнителем атмосферы кадмием является цветная металлургия и обработка цветных металлов. Кроме того, кадмий поступает в окружающую среду при сгорании некоторых видов топлива и особенно при сжигании мусора и отходов. Из атмосферы кадмий поступает в почву. Загрязнение ее этим элементом носит устойчивый характер, поскольку из почвы он вымывается медленно. Большое количество кадмия обнаруживается в растения, произрастающих поблизости от автомобильных дорог. Так, например в хвое ели обыкновенной, растущей поблизости от автострад, количество кадмия возрастает в 11–17 раз. Симптомы избыточного поступления в растения кадмия проявляются в постепенном изменении окраски кончиков листьев и черешков до красновато-бурой и пурпурной. При этом листья скручиваются и становятся хлоратичными и опадают. По силе своего действия на растения кадмий превосходит многие другие тяжелые металлы. Гибель растений отмечается при концентрации этого элемента в почве в количестве 30 мг/кг. Вблизи предприятий, выбрасывающих в атмосферу кадмий наблюдается резкое снижение урожайности и даже гибель культурных растений. Накопление кадмия происходит главным образом в корнях растений (риса, пшеницы), однако часть его достигает органов. Одна из причин торможения роста растений, произрастающих в присутствии кадмия, резкое ослабление интенсивности фотосинтеза. Присутствие в 1 кг листьев 96 мг этого элемента снижает интенсивность фотосинтеза на 50 %. Существует прямая зависимость между содержанием кадмия в почве и поступлением его в растения.

Токсическое влияние оказывают на растения и другие металлы, загрязняющие природную среду, например бериллий, марганец, медь, хром, ванадий, цинк и др.

1. Кузнецов А. В. Контроль техногенного загрязнения почв и растений // Агрохимический вестник. –1997г. -№ 5, -С. 7–9

2. Минеев В. Г. Проблема тяжелых металлов в современном земледелии // Тяжелые металлы и радионуклиды. –М., 1994г. –С. 42–48

3. Бутовский Р. О. Тяжелые металлы как техногенные химические загрязнители и их токсичность для почвенных беспозвоночных животных //Агрохимия.-2005 г. -№ 4, -С 73–91.

4. Алексеев Ю. В. Тяжелые металлы в почвах и растениях. –Ленинград, 1987 г. –С. 141–144.

5. Зырин Н. Г. Тяжелые металлы в почвах и растениях в районе медеплавильного завода. –м., 1986г. –С. 81

6. Артомонов В. И. Растения и чистота природной среды. –М., 1986 г. –С. 27–31.

Основные термины (генерируются автоматически): металл, растение, кадмий, окружающая среда, почва, лист, организм человека, цветная металлургия, элемент, главный образ.

1. Большаков В.А., Гальпер Н.Я. и др. Загрязнение почв и растительности тяжелыми металлами. М.: 1978, С. 38.

5. Фомин Г.С., Фомин А.Г. Почва. Контроль качества и экологической безопасности по международным стандартам. М.: Протектор, 2001. 304 с.

6. Остроумов С.А., Соломонова Е.А. Инновационная разработка экотехнологического подхода к очищению почв. 2008. № 3. С. 48–56. 5 Государственный доклад о состоянии и об охране окружающей среды Российской Федерации в 2001 году. Москва. Министерство природных ресурсов РФ. 2002.

7. Семенова И.Н., Биктимерова Г.Я., Ильбулова Г.Р. Содержание тяжелых металлов в почве // Современные проблемы науки и образования 2015г. № 2–1.

В последние годы ученые исследуют влияния тяжелых металлов (далее – ТМ) на процессы роста и жизнедеятельности растений. Многие из ТМ относятся к химическим элементам, которые в небольших количествах необходимы для роста и развития растений, являясь составной частью различных ферментов. Они активно участвуют в метаболизме, но при избытке в среде могут проявлять сильное токсическое действие.

В частности, медь (Cu), являясь наиболее токсичным ТМ, в растениях участвующего в фотосинтезе. Высокие концентрации этого металла приводят к развитию металлотоксикозов (хлорозы, некрозы, ингибирование роста корней и побегов), вплоть до полной гибели растений.

Токсичное действие свинца (Pb) на растения связано, главным образом, с нарушением фотосинтеза, а также роста растений. В основном свинец накапливается в корнях растений [1, 4, 5]. Однако следует отметить, что фитотоксичность этого металла менее выражена по сравнению с многими другими ТМ.

Актуальность исследования: возможность использования бархатцев, как фиторемедиантов в озеленении городской среды.

Целью данного исследования является изучение влияния тяжелых металлов (Pb и Cu) в почвах на рост и развитие бархатцев.

Для достижения поставленной цели были сформулированы следующие задачи:

1. Изучение материалов, литературы по влиянию ТМ на растения.

2. Постановка вегетационного опыта с декоративными растениями бархатцев.

3. Оценкавлияния тяжелых металлов (ТМ) на процессы роста растений.

4. Изучить возможность использования бархатцев в озеленении города Тосно.

Этапы работы над проектом:

1. Изучение материалов, литературы по влиянию ТМ на растения (июнь – август 2018);

2. Постановка вегетационного опыта с бархатцами.

3. Оценкавлияния тяжелых металлов (ТМ) на процессы роста бархатцев.

4. Изучить возможность использования бархатцев в озеленении города Тосно.

5. Представить исследовательский проект для рассмотрения в Комитет по жилищно-коммунальному хозяйству и благоустройству администрации муниципального образования Тосненский район Ленинградской области.

Социальная значимость: возможность использования полученных результатов исследования для озеленения и благоустройства города Тосно.

Методы исследования:

1. Выбор и анализ информации из печатных и медийных источников.

2. Постановка эксперимента с бархатцами

3. Наблюдение за результатами эксперимента с бархатцами

4. Анализ полученных результатов.

5. Выводы и рекомендации.

Загрязняющие почву химические вещества способны к миграции, т.е. горизонтальному и (или) вертикальному перемещению в почве и (или) из нее в другие объекты природной среды (растения, атмосферу, природные воды и др.) и обратно. Разновидностью миграции является транслокация, или переход загрязняющего почву химического вещества в растения.

При увеличении содержания металлов в почве, снижается её общая биологическая активность, и это резко отражается на росте и развитии растений, причём разные растения реагируют на избыток металлов по-разному. Металлы распределяются по органам растений неравномерно. Однако в одной и той же части растения концентрация химических элементов существенно изменяется в зависимости от фазы его развития и возраста. Это может быть связано с видом культуры или зависеть от конкретного металла. Отношение концентраций в корнях, стеблях и листьях всегда одинаково и не зависит от концентрации металлов в почве. [1] Поэтому для работы на анализы были отобраны побеги растений.

Содержание тяжелых металлов в растениях зависит не только от концентрации конкретного экотоксиканта в почве, но и от сочетаний и соотношения между ними.

Так же стоит отметить, для более полного изучения механизмов совместной миграции тяжелых металлов в системе почва-растение необходим ряд дополнительных экспериментов, учитывающих количественный и качественный характер загрязнения почвы тяжелыми металлами. Поэтому данная работа мною будет продолжаться.

Кроме того, неодинаковы уровни накопления тяжелых металлов одним и тем же растением в природной среде и в лабораторных условиях. Это связано с тем, что более низкая влажность почвы в природных условиях снижает мобильность металлов, и это не позволяет их токсическому эффекту проявиться в полной мере. С другой стороны, это может быть связано с уменьшением токсичности почвы, обусловленной деятельностью почвенных микроорганизмов в результате снижения их численности при загрязнении почвы металлами. Условия лабораторного выращивания растений в данной работе считаются идеальными.

1) способностью аккумулировать металл(ы) преимущественно в надземных органах;

2) устойчивостью к накапливаемому металлу;

3) быстрыми темпами роста и большой биомассой;

4) высокой способностью к отрастанию после скашивания.

При этом гипераккумуляция и металлоустойчивость являются наиболее важными свойствами растений, используемых для фиторемедиации.

Фиторемедиация включает в себя следующие этапы:

1. Высадку растений тех видов, которые способны аккумулировать соответствующие металлы;

2. Обеспечение возможности роста культур;

3. Сбор зеленой массы с последующим сжиганием или компостированием для переработки металлов.

Эта процедура может по мере необходимости повторяться несколько лет, до тех пор, пока уровень загрязнения в почве не снизится до допустимых пределов. При сжигании растений золу необходимо размещать в специальные места для опасных отходов.

Материал и методы исследования

На латыни цветок называется Tagetestenuifolia.

Стебли – прямостоячие, разветвленные, образуют компактный или раскидистый куст высотой от 20 до 120 см.

Корневая система мочковатая.

Листья – перисто-рассеченные или перисто-раздельные, редко цельные, зубчатые, от светло – до темно-зеленых, расположенные супротивно или в очередном порядке, с просвечивающими железками.

Соцветия корзинки, простые или махровые, желтые, оранжевые или коричневые. Головки у представителей этого рода средней величины, с цилиндрическим покрывалом, состоящим из одного ряда сросшихся между собой листочков; краевые женские цветки – язычковые; семянки линейные, к основанию суженные. Цветут обильно с июня до заморозков.

Плод – чёрная или черно-коричневая сильно сплюснутая семянка. Семена сохраняют всхожесть 3-4 года. В 1 г от 280 до 700 семян.

Разные растения обладают неодинаковыми способностями поглощать из почвы тяжелые металлы, а также обладают избирательной способностью к тому или иному элементу. Данные виды растений были выбраны на основе эксперимента, проведенного Куриленко В.В. и Осмоловской Н.Г. [3].

Исследования проводились в домашних условиях. Опыт закладывался в двухкратнойповторности в следующих вариантах: (рис. 1)

1) контроль (без внесения в почву ТМ)

2) внесение Cu в количестве 5 ПДК

3) внесение Pb в количестве 5 ПДК

4) совместное внесение Cu и Pb в количестве 5 ПДК.

tim1.tif

После все бархатцы были извлечены из почвы. Пробы, тщательно просушены и измельчены (рис. 2), были проанализированы на содержание тяжелых металлов.

tim2a.tif
tim2b.tif

Рис. 2. Извлеченные растения из почвы

Выращенные растения анализировались на содержание Cu, Pb. Данные виды металлов были выбраны в связи с их классом опасности (1 класс – чрезвычайно опасные и 2 класс – опасные (Cu)).

Данная работа проводилась в СПбГУ на кафедре экологической геологии.

Как показали исследования, степень воздействия ТМ на бархатцы определяется их свойствами и содержанием в почве, а также зависит от вегетационного периода растения.

По литературным данным и инструкции на упаковке, всходы появляются через 7 – 10 дней, но в нашем случае значительная часть семян взошла уже через четыре дня (рис. 3).

tim3a.tif
tim3b.tif

Рис. 3. Всходы бархатцев

Всхожесть растений была примерно одинаковой во всех пробах, как загрязненных металлами, так и в чистом грунте, что может свидетельствовать об отсутствии выраженного негативного воздействия на изучаемые растения на данном этапе со стороны внесенных в почву ТМ (рис. 3).

По истечению 10 дней в пробе № 1 (чистый грунт)– 6 шт., в пробе № 2 (загрязнено Cu) – 1 шт., в пробе № 3 (загрязнено Pb) – 1 шт., в пробе № 4 (загрязнено Си и Pb) – 1 шт.

На начальном этапе выращивания все растения находились примерно в равном состоянии. Явных признаков болезненности и угнетения либо наоборот – активного роста, замечено не было (рис. № 4).

tim4.tif

Рис. 4. Рассада бархатцев (10 дней)

После 10 дней наблюдений появления новых побегов отмечено не было. Начался, активный рос.

Через некоторое время стало заметно усиление роста при загрязнении почвы свинцом и при загрязнении меди (рис. № 5). Рост контрольных образцов и образцов с совместным внесением свинца и меди был значительно медленнее, а в некоторых случаях наблюдалось нарушение анатомического строения растений (сухость листьев, скручивание).

tim5.tif

Рис. 5. Рассада бархатцев (20 дней)

Спустя 10 дней были отмечены первые бутоны в контрольном образце (рис. № 6)

tim6.tif

Рис. 6. Первый бутон проба № 1 (30 дней)

В течение 10 дней мы наблюдаем, следующее. В пробе № 1 (чистый грунт) – 5 бут, в пробе № 2 (загрязнено Cu) – 2 бут., в пробе № 3(загрязнено Pb) – 4бут., в пробе № 4 (загрязнено Си и Pb) – 2бут. Раскрытие бутонов не происходит.

К концу вегетационного периода высота растений, произрастающих на почве, содержание меди в которой превышало ПДК в 5 раз, практически сравнялась с контрольными показателями. Смена токсического эффекта на стимулирующее действие меди, по всей видимости, связано с адаптационными механизмами растений, с помощью которых они инактивировали избыточное количество ионов ТМ.

Как было отмечено выше, свинец по сравнению с медью обладал более выраженным токсическим действием. Растения загрязненныеPb, оказались наиболее слабыми и низкорослыми, обладали признаками хлороза. Их рост на 45день вегетации практически прекратился.

Совместное внесение Cu и Pb также отрицательно сказалось на увеличении длины растений. При этом высота растений во всех пробных вазонах была приблизительно одинаковой при каждом измерении.

Периодические измерения длины наиболее крупных листьев показали, что раздельное загрязнение почв медью и свинцом, так же как и их совместное внесение, отрицательно влияет на этот показатель.

На 45 день в пробе № 2 произошло первое раскрытие бутона (рис. 7).

tim7.tif

Рис. 7. Первый цветок проба № 2 (45 дней)

В течение 10 дней раскрытие происходило во всех пробах, кроме пробы№ 1 (рис. 7).

tim8.tif

Рис. 8. Первые цветы

Спустя 15 дней раскрытие произошло и в пробе № 1.

В конце вегетационного периода было подсчитано количество листьев на каждом растении. Внесение в почву Cu в количестве 5 ПДК привело к небольшому повышению этого показателя. В опытах со свинцом, а также при совместном внесении Cu и Pb наблюдалось снижение количества листьев.

После сбора растений я измерил длину их осевого корня (рис. 9).

tim9.tif

Рис. 9. Измерение длины корня

В результате сравнения длины осевого корня, я сделал вывод, что искусственное загрязнение почв ТМ угнетало рост осевого корня растений в длину. Свинец в данном случае также оказался более токсичным. В меньшей степени пострадали растения прорастающие в вазонах загрязненных одновременно Cu и Pb. Так, при 5 ПДКCu + Pb длина корней ничем не отличалась от контрольного варианта (рис. 10).

Все растения были извлечены из почвы. Пробы, тщательно просушенные и измельченные, были проанализированы на содержание тяжелых металлов. Так как концентрации в стеблях и корнях могут отличаться, было принято решение отдельно проанализировать эти части.

tim10.tif

Рис. 10. Сравнение длины корня

tim11.wmf

Рис. 11. Гистограмма соотношения концентраций свинца в почве, корнях и листьях бархатцев

tim12.wmf

Рис. 12. Гистограмма зависимости распределения меди в почве, корнях и наземной частибархатцев

На основании данных анализа на содержание тяжелых металлов в выращенных растениях и почве получены следующие результаты (Приложение 1)

Рекомендации по озеленению и благоустройству г. Тосно и пришкольного участка

В результате моего исследования я сделал вывод, что бархатцы являются хорошими фиторемедиантами, эти растения хорошо произрастают в климате Северо-Запада, на кислых подзолистых почвах, и могут быть широко использованы для озеленения городов.

Получив такие результаты, я решил обратиться в Комитет по жилищно-коммунальному хозяйству и благоустройству администрации муниципального образования Тосненский район Ленинградской области и к директору своей школы с рекомендательными письмами о возможности использования бархатцев в озеленении территории города и школы с целью очищения почвы от ТМ, обогащения воздуха кислородом, что будет способствовать сохранению здоровья жителей города.

Заключение

Я познакомился с материалом об особенностях бархатцев и узнал о влияние ТМ на рост и развитие растений. Проведенные нами исследования доказывают негативное влияние высоких концентраций меди и, в особенности, свинца в почвах на рост и развитие растений. Действие ТМ на растение может отличаться на разных стадиях его развития. При этом могут наблюдаться морфологические изменения, которые проявляется в укороченности стеблей, листьев и корней, уменьшении количества листьев. При этом присутствие одного металла может снижать фитотоксичность другого. Данные опыта подтверждают факты о накоплении бархатцами тяжелые металлы. И показывают возможность использовать растения в качестве очистителей почв от этих металлов, с другой стороны, они тем самым позволяют тяжёлым металлам двигаться вверх по пищевой цепи, а, значит, влиять на здоровье человека.

Высадка или подсадка этих растений на территории Тосненского района поможет в рекультивации почв, загрязненных тяжелыми металлами. Метод фиторемедиации является экономически выгодным в связи с тем, что его можно применять совместно с программами озеленения и благоустройства (Фиторемедиация – комплекс методов очистки сточных вод, грунтов и атмосферного воздуха с использованием зеленых растений).

Читайте также: