Скрещивание гороха желтой и зеленой

Добавил пользователь Дмитрий К.
Обновлено: 21.09.2024

Желтую горошину – в горшок, зеленую – в плетеную миску, снова желтую – в горшок. Нет, это не Золушка по заданию мачехи перебирает семена, чтобы, окончив работу, пойти на бал. Это монах и ученый Грегор Мендель в саду Августинского монастыря в чешском городе Брно собирает урожай с выращенных особым способом гороховых кустов, чтобы определить, как наследуется цвет у гороха.

Попытки скрещивать растения и изучать полученное потомство предпринимались исследователями и раньше. Но определенные выводы ученые сделать не смогли из-за большого разнообразия признаков среди потомков. И, поскольку, основы гибридологического анализа отсутствовали, а статистику для исследования наследственности никто не применял, ни один из исследователей не смог определить точные формулы наследования.

Для своих опытов Мендель выбрал горох не случайно:

  • Это неприхотливое растение легко выращивать, и в условиях теплой погоды в Чехии за один год можно получить несколько поколений.
  • Потомство одного семени довольно многочисленно: вспомните, сколько стручков на растении, выросшем из одной горошины.
  • Сорта гороха разнообразны в своих фенотипических проявлениях, а отличительные признаки наследуются.
  • Горох — самоопыляющееся растение. Это значит, что опыление происходит внутри одного цветка. Пыльца с другого растения в дикой природе попасть в другой цветок не может, поскольку органы размножения гороха защищены от проникновения пыльцы с других растений.
  • И вместе с тем, у исследователя есть возможность после удаления тычинок материнского растения искусственно перенести пыльцу с другого растения с помощью инструментов для получения растений-гибридов.
  • Гибриды, полученные в результате искусственного оплодотворения, способны давать свое потомство, что важно для прослеживания наследования признаков в поколениях.

Для того, чтобы оценить масштабы проделанной ученым работы, представьте, что на всех семеноводческих хозяйствах Чехии ученый заказал сорта выращиваемого там гороха. В результате ему прислали 34 образца, из которых для исследований он отобрал 22 варианта.

Исследуемый Менделем горох отличался по следующим признакам:

  • цвет семян (желтый или зеленый);
  • вид кожуры семян (гладкая или сморщенная);
  • высота стебля (высокое растение или низкое);
  • оттенок цветков (белые или розовые);
  • форма бобов (простые или членистые);
  • расположение цветов (верхушечные или пазушные).

Биология. Общая биология. 10-11 класс. Базовый уровень. Рабочая тетрадь. С тестовыми заданиями ЕГЭ. Вертикаль. ФГОС

Биология. Общая биология. 10-11 класс. Базовый уровень. Рабочая тетрадь. С тестовыми заданиями ЕГЭ. Вертикаль. ФГОС

Тетрадь содержит различные репродуктивные и творческие вопросы и задания, в том числе в виде лабораторных работ, познавательных задач, таблиц, схем и рисунков. В тетрадь включены также тестовые задания, которые помогут ученикам подготовиться к успешной сдаче ЕГЭ. Специальными знаками отмечены задания, направленные на формирование метапредметных умений (планировать деятельность, выделять различные признаки, сравнивать, классифицировать и др.) и личностных качеств учеников.

В своих опытах Мендель учел ошибки предшественников, которые пытались сравнивать растения одновременно по разным признакам и потерпели фиаско.

Исследователь решил начать с изучения наследования лишь одного признака — цвета горошин. Именно благодаря тому, что ученый сознательно сузил задачу, его ждал успех и он смог четко установить определенные закономерности наследования.

Мендель вручную оплодотворил растения, семена которых имели желтый цвет кожуры, пыльцой с растений с зеленой кожурой. Когда ученый собрал урожай высаженных растений, то обнаружил, что кожура у всех потомков желтая.

Повторив эксперименты с морщинистыми и гладкими горошинами, с кустами гороха разной высоты, растениями с разной окраской цветков и стручков и т.д., Мендель отметил, что все потомки в первом поколении унаследовали признак одного из родительских организмов, т.е. по фенотипу не отличаются друг от друга.

Ведущее свойство, характерное для всех семян, полученных в первом поколении, Мендель обозначил как доминантное. Свойство другого родителя, которое не проявилось у гибридов первого поколения, ученый определил как рецессивное. Закономерность получила название первого закона Менделя, или закона единообразия гибридов I-го поколения, или закона доминирования.

Все выращенные образцы нужно было собрать, сосчитать и выделить определенные закономерности. Одним из первых Мендель использовал и применил конкретные количественные методы для обработки данных. Зная о теории вероятности, он понимал необходимость исследования большого числа семян гороха, полученных в результате скрещиваний, чтобы избежать статистической ошибки из-за случайных отклонений.

Для выведения законов наследования Мендель изучил более двадцати тысяч семян — гибридов второго поколения. Согласитесь, для обычного монаха, который жил в конце XIX века, без доступа к современным исследовательским инструментам, с лупой и микроскопом, в перерывах между молитвами и проповедями — это ли не подвиг!

Горох – самоопыляющееся растение, поэтому в следующем поколении ученый предоставил работу по опылению матушке-природе, чем облегчил себе задачу исследовательскую, но не статистическую. Учитывая, что способ размножения гороха – половой, неопыленные цветки просто-напросто не дадут потомство, и случайные отклонения не искажали итоги экспериментов с растениями.

Мендель продолжил опыты с одинаково желтыми гибридами первого поколения. И для исследователя было большим сюрпризом увидеть примерно треть зеленых горошин в корзинке семян с новым урожаем.

Когда ученый проанализировал результаты экспериментов с гибридами второго поколения, он увидел следующую закономерность: гибриды разделились на два различных по внешнему виду, т.е. фенотипу, класса. Бо´льшая часть унаследовала доминантные признаки, меньшая — рецессивные.

Генетические законы Менделя

Далее ученый начал проводить опыты с растениями, у которых отличались две пары признаков, и использовал гомозиготные семена гороха, отличающиеся цветом и формой семян. Такой тип скрещивания ученый назвал дигибридным. Для определения гомозиготности растений он использовал анализирующее скрещивание

У потомков во втором поколении треть горошин имеет проявления доминантного фенотипа, однако при этом отличается по генотипу (Аа и АА). И чтобы определить генотип, Мендель использовал семена с проявлениями рецессивного признака. Поскольку рецессивные свойства проявляются только в гомозиготном состоянии генов (аа), потомки, в зависимости от генотипа исходной особи, будут иметь единый фенотип, если родительская особь гомозиготна, согласно 1 закону Менделя, либо произойдет расщепление в соотношении 1:1.

В результате искусственного опыления гладких (B) и желтых (A) растений с морщинистыми (b) и зелеными(a), в первом поколении все растения дали потомство с желтыми гладкими горошинами, что подтвердило первый закон Менделя о единообразии гибридов первого поколения при дигибридном скрещивании.

Генетические законы Менделя

Замеченные Менделем закономерности о наследовании генов подтвердились при анализе итогов экспериментов со всеми семью парами признаков. В ходе анализа результатов ученый пришел к выводу об универсальности закономерностей наследования и вывел Третий закон Менделя, или закон независимого распределения признаков.

Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары. В опытах по скрещиванию организмов с гомозиготным набором генов, при анализе по двум и более парам отличающихся качеств, у гибридов в третьем поколении (получены при скрещивании гибридов второго поколения) наблюдается независимое комбинирование свойств и кодирующих их генов разных аллельных пар.

Опыты ученого, проведенные с тысячами гороховых зерен в монастырском саду, и тщательная статистическая работа по анализу признаков, проявившихся у потомков, позволили ученому доложить на заседании Общества естествоиспытателей в г. Брно в 1865 году о своих выводах.

Мендель утверждал, что:

Из-за неудачи с другими растениями и пчелами сам Мендель разочаровался в своем открытии. А с 1868 года, после того, как получил сан аббата монастыря, биологией больше не занимался.

И только в начале XX века, благодаря пересмотру законов Менделя, генетика смогла сделать огромный шаг вперед.

Через 140 лет после опубликования классической работы Грегора Менделя, заложившей основы генетики, ученые наконец выяснили, какой именно ген определяет желтую или зеленую окраску семян у гороха. Оказалось, что зеленая окраска обусловлена мутацией в гене sgr (stay green), который кодирует белок, участвующий в процессах разрушения хлорофилла в ходе созревания семян или старения листьев.

Схема опытов Менделя по скрещиванию гороха с желтыми и зелеными семенами (оригинал рисунка — с сайта www.mun.ca)

В последние десятилетия были открыты, описаны и экспериментально изучены сотни тысяч генов самых разных организмов — от вирусов до человека. Однако, как ни удивительно, до сих пор генетики так и не удосужились выяснить, какой именно ген (в современном смысле этого слова) отвечает за цвет семян у гороха! То есть какой именно участок ДНК соответствует гену Y, что он кодирует и каковы его функции на молекулярном уровне. Безусловно, это следовало бы выяснить хотя бы из уважения к основоположнику генетики!

Нормально работающий ген sgr обеспечивает желтую окраску семян или листьев, разрушая зеленый пигмент хлорофилл, в результате чего становятся видимыми желтые пигменты каротиноиды. Мутации, выводящие ген из строя (так же как и выключение этого гена методом РНК-интерференции) приводят к тому, что при старении листьев или созревании семян хлорофилл не разрушается и они сохраняют зеленую окраску.

Менделя иногда упрекают в том, что он нарочно подобрал для своих опытов такие признаки, которые определяются одним-единственным геном, что, вообще говоря, крайне нетипично. Большинство признаков зависит от множества генов, и количественные соотношения состояний таких признаков в гибридном потомстве оказываются очень сложными и весьма далекими от классического менделевского расщепления 3:1. Более того, некоторые биологи-теоретики обращают внимание на то обстоятельство, что, строго говоря, один ген вообще никогда не может определять конкретный признак. Скажем, для того, чтобы у гороха сформировались нормальные желтые семена, наличие у растения аллеля У является необходимым, но совершенно не достаточным условием. Необходимым условием, вообще говоря, является целый нормальный генотип, ведь иначе не то что желтых — никаких семян можно не дождаться.

Продолжая эту линию рассуждений, можно прийти к тому, что каждый признак определяется всем генотипом в целом, а двигаясь еще дальше, — к тому, что и сама грань между фенотипом и генотипом довольно условна (см. А. С. Раутиан. О природе генотипа и наследственности // Журнал общей биологии, 1993. Т. 54. № 2. С. 131–148). Впрочем, такая генетическая софистика нынче не слишком популярна, хотя в ней, возможно, и есть некое здравое зерно. Но сейчас время великих открытий в молекулярной биологии, и ученый мир стремится понять основы жизни в первую очередь на молекулярном уровне. А пофилософствовать можно и потом, когда поток новых фактов начнет иссякать.

Что же до Менделя, то его пример показывает, что иногда для блага науки стоит немного поступиться объективностью и беспристрастностью: ведь если бы он взял для анализа другие, более сложно наследуемые признаки, то просто не смог бы разобраться в результатах, и законы генетики не были бы открыты.

Источник: I. Armstead et al. Cross-Species Identification of Mendel's I Locus // Science. 2007. V. 315. P. 73.

Вопрос 1.
Скрещивание двух организмов называют гибридизацией.

Вопрос 2.
Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре взаимоисключающих альтернативных признаков.

Вопрос 3.
Явление преобладания у гибридов F1 признака одного из родителей Г. Мендель назвал доминированием, а проявившийся признак — доминантным (преобладающим); противоположный признак был назван рецессивным (подавленным).

Вопрос 4.
Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, противоположный, т. е. подавляемый, признак — рецессивным. Доминантный признак принято обозначать прописной буквой, например А, рецессивный — строчной — а. Доминантный ген проявляется в виде признака как в гомозиготном (АА), так и в гетерозиготном (Аа) организмах, а рецессивный — только в гомозиготном (аа).
В зиготе всегда есть две гомологичные хромосомы с двумя аллельными генами, и генотипическую формулу по любому признаку необходимо записывать двумя буквами: АА, Аа, аа.
Гены, относящиеся к аллельной паре, обозначают одними или теми же буквами: АА, аа, или Аа. Если пара аллелей представлена двумя доминантными (АА) или двумя рецессивными (аа) генами, такой организм называют гомозиготным.
Если в одной и той же аллели один ген доминантный, а другой — рецессивный, то такой организм называют гетерозиготным - Аа.
Рецессивный ген проявляет себя только в гомозиготном состоянии — аа (зеленый горох), а доминантный ген может проявлять свое действие как в гомозиготном - АА (желтый горох), так и в гетерозиготном состоянии - Аа (желтый горох).
При образовании гамет в результате мейоза, гомологичные хромосомы (и находящиеся в них аллельные гены) расходятся в разные гаметы. Гомозиготный (АА или аа) организм имеет два одинаковых аллельных гена, и все гаметы несут этот ген. Гомозиготные особи дают один тип гамет:

Гетерозиготный организм имеет гены А и а и образует равное число гамет с доминантными и рецессивными генами. Гетерозиготная особь дает два типа гамет:

Вопрос 5.
Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре взаимоисключающих альтернативных признаков.
При таком скрещивании прослеживаются закономерности наследования только двух вариантов одного и того же признака, развитие которых обусловлено парой аллельных генов. Например, признак — цвет семян. Взаимоисключающие варианты — желтый или зеленый. Все остальные признаки, свойственные данным организмам, во внимание не принимаются. Если скрестить растения гороха с желтыми и зелеными семенами, то у всех полученных в результате этого скрещивания потомков семена будут желтыми. Если скрещивать растения, которые различаются гладкой и морщинистой формой семян, то у гибридов семена будут гладкими. Следовательно, у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один. Г. Мендель использовал в своих опытах растения, относящиеся к разным чистым линиям, потомки которых в длинном ряду поколений были сходны с родителями. Следовательно, у этих растений оба аллельных гена одинаковы и они являлись гомозиготными организмами. В проведении своих опытов Г. Мендель следовал следующим принципам:
1) выбрал асего один признак, по которому проводил свое исследование, что значительно упростило задачу;
2) работал с растениями, относящимися к чистой линии, в ряду поколений которых при самоопылении не наблюдалось расщепления по данному признаку;
3) изучал наследование альтернативных, т. е. взаимоисключающих признаков;
4) использовал в своих исследованиях точные математические методы.

Вопрос 6.
Гомозиготный организм — это организм, у которого в одних и тех же локусах гомологичных хромосом лежат одинаковые по последовательности нуклеотидов аллельные гены. Однако, учитывая избыточность генетического кода, гомозиготными могут быть названы организмы, у которых оба аллельных гена имеют одинаковое проявление в виде признака.
Гетерозиготный организм — это организм, у которого в одних и тех же локусах гомологичных хромосом лежат разные по последовательности нуклеотидов аллельные гены, имеющие к тому же различные формы проявления признака.

Вопрос 7.
Первый закон Менделя — закон единообразия первого поколения (закон доминирования).
При скрещивании двух организмов, относящихся к разным чистым линиям (т.е. двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков, все первое поколение гибридов F1 окажется единообразным и будет нести признак одного из родителей. Этот признак получил название доминантного.
Мендель проводил моногибридное скрещивание чистых линий гороха, отличающихся по одной паре альтернативных признаков, например, по цвету горошин (желтые и зеленые).
В качестве материнского растения использовали горох с желтыми семенами (доминантный признак), а отцовского - горох с зелёными семенами (рецессивный признак).
В результате мейоза каждое растение давало один сорт гамет: При мейозе из каждой гомологичной пары хромосом в гаметы отходило по одной хромосоме с одним из аллельных генов (А или а).
В результате оплодотворения парность гомологичных хромосом восстановилась и образовались гибриды. Все растения имели семена только желтого цвета (по фенотипу) и были гетерозиготными по генотипу.

Гибрид 1-го поколения Аа имел один ген - А от одного родителя, а второй ген - а от другого родителя и проявлял доминантный признак, скрывая рецессивный.
По генотипу весь горох гетерозиготен.
Первое поколение единообразно и проявило признак одного из родителей.

Вопрос 8.
Закон доминирования нельзя считать всеобщим, так как во многих случаях в природе наблюдается неполное доминирование. При неполном доминировании гибрид F1 не воспроизводит полностью ни одного из родительских признаков, то есть выраженность признака оказывается промежуточной между доминантным и рецессивным признаками. Так, например, у гибридов ночной красавицы, полученных при скрещивании растений с красными и белыми цветками, окраска цветка оказывается розовой (генотип Аа). В результате самоопыления в F2 будет получено расщепление по фенотипу в отношении 1:2:1, а не 3:1, как это было бы при полном доминировании. Таким образом, в данном случае в F2 расщепление по фенотипу совпадает с расщеплением по генотипу. Гибридность при неполном доминировании является источником изменчивости. Неполное доминирование встречается у растения львиный зев (окраска лепестков цветка), у кур (окраска оперения), у крупного рогатого скота (окраска шерсти) и др.

Вопрос 9.
Второй закон Менделя.
При скрещивании двух гетерозиготных особей — потомков первого поколения F1 между собой во втором поколении F2 будет наблюдаться расщепление по фенотипу 3:1, по генотипу 1:2:1, т. е. по фенотипу три четверти потомства будет носить доминантный признак, а одна четверть потомства окажется рецессивной. По генотипу 25% потомства будут гомозиготными по доминантному гену, 50% — гетерозиготными, а 25% - гомозиготяыми по рецессивному гену.
В результате скрещивания гибридов между собой получились особи, как с доминантными признаками, так и с рецессивными.
Такое расщепление возможно при полном доминировании.

Вопрос 11.
Закон расщепления можно объяснить гипотезой "чистоты" гамет.
Цитологической основой закона чистоты гамет служит поведение хромосом в мейозе. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, в результате чего образуются биваленты. Это решающий шаг к расхождению гомологов в анафазе I в разные клетки. Завершение первого мейотического деления приводит к образованию гаплоидных клеток. Однако их еще нельзя считать чистыми гаметами, так как их формула 1n2с. Хромосомы, хотя и в одинарном наборе являются двухроматидными и могут содержать (в результате кроссинговера, произошедшего в профазе I) разные варианты аллельных генов. Поэтому для истинной чистоты должно произойти второе мейотическое деление. В анафазе II дочерние хромосомы, несущие только по одному аллелю каждого гена, окажутся в разных клетках.
Таким образом, генетическую чистоту гамет обеспечивают три события: образование бивалентов, независимое расхождение гомологичных хромосом из бивалентов в разные клетки в первом делении мейоза и независимое расхождение дочерних хромосом (бывших сестринских хроматид) во втором мейотическом делении.

Вопрос 12.
При скрещивании гомозиготных особей, отличающихся по двум парам альтернативных признаков, во втором поколении происходит независимое комбинирование признаков и появляются гибриды с признаками, не характерными для родительских и прародительских особей.
В результате дигибридного скрещивания все первое поколение единообразно (рис. 142).
Во втором поколении происходит расщепление по генотипу 9 : 3 : 3 : 1 , т.е. 9/16 потомства будут нести оба доминантных признака, 3/16 потомства — один доминантный, а второй рецессивный, 3/16 потомства будет рецессивным по первому и доминантным по второму признакам и 1/16 должна оказаться рецессивной по обоим признакам.
Мендель скрещивал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: цвету (желтые и зеленые горошины) и форме горошин (гладкая и морщинистая). Доминантными признаками были желтый цвет горошин и гладкая их форма, рецессивными - семена зеленого цвета с морщинистой поверхностью.
Третий закон Менделя применим только к наследованию генов, находящихся в негомологичных хромосомах.

Вопрос 13.
Рецессивный признак (зеленый горох) проявляется только в гомозиготном состоянии. Гомозиготные (желтый горох) и гетерозиготные (желтый горох) особи с доминантными признаками по фенотипу не отличаются друг от друга. Для установления генотипа производят анализирующее скрещивание. Для этого необходимо особь, генотип которой неясен, скрестить с рецессивной формой, генотип которой известен. Если в результате скрещивания все потомство будет единообразным - исследуемая особь гомозиготна.
Если произойдет расщепление, то особь гетерозиготна. Потомство гетерозиготной особи дает расщепление 1:1.


Грегор Иоганн Мендель – австрийский биолог и ботаник, монах-августинец, аббат [5]. Основоположник учения о наследственности, позже названного по его имени менделизмом. Открытие им закономерностей наследования моногенных признаков (эти закономерности известны теперь как Законы Менделя [3]) стало первым шагом на пути к современной генетике [1, 2, 4].

В 1856–1863 г. Мендель провёл обширные, тщательно спланированные опыты по гибридизации растений гороха посевного, и выявил три основные закономерности наследования признаков, которые носят название трёх законов Менделя. Для скрещиваний он отбирал константные сорта (чистые линии), каждый из которых при самоопылении устойчиво воспроизводил в поколениях одни и те же признаки. Сорта различались альтернативными (взаимоисключающими) вариантами какого-либо признака, контролируемого парой аллельных генов (аллелей). Например, окраской (жёлтая или зелёная) и формой (гладкая или морщинистая) семян, длиной стебля (длинный или короткий) и т.д. Для анализа результатов скрещиваний Мендель применил математические методы, что позволило ему обнаружить ряд закономерностей в распределении родительских признаков у потомков. Традиционно в генетике принимают три закона Менделя, хотя сам он формулировал лишь закон независимого комбинирования.

Первые два закона Менделя касаются моногибридного скрещивания (когда берут родительские формы, отличающиеся только по одному признаку), третий закон был выявлен при дигибридном скрещивании (родительские формы исследуются по двум разным признакам).

Методы и ход работы Менделя состояли в следующем.

Мендель изучал, как наследуются отдельные признаки, выбрал из всех признаков только альтернативные – такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования.

Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Первый закон Менделя,

или закон единообразия гибридов первого поколения,

утверждает, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку (например, по окраске семян). Одни имели желтые семена, другие – зелёные. После перекрёстного опыления получаются гибриды первого поколения (F1). При скрещивании гомозиготных (чистых) сортов гороха с жёлтой и зелёной окраской семян у всех гибридов первого поколения окраска была жёлтой, т. е. они были единообразны. Фенотипический признак, определяющий зелёный цвет семян, исчез. Фенотип – это все признаки биологического индивида в конкретный момент его жизни.

Вскоре было обнаружено его нарушение – промежуточное проявление обоих признаков, или неполное доминирование, при котором, однако, сохраняется единообразие гибридов. Поэтому современное название закона более точное.

Второй закон Менделя,

или закон расщепления

гласит, что при скрещивании между собой двух гибридов первого поколения (или при их самоопылении) во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм.

В случае жёлтой и зелёной окраски семян их соотношение было 3:1, т.е. расщепление по фенотипу происходит так, что у 75 % растений окраска семян доминантная жёлтая, у 25 % – рецессивная зелёная. В основе такого расщепления лежит образование гетерозиготными гибридами первого поколения в равном отношении гаплоидных гамет с доминантными и рецессивными аллелями. При слиянии гамет у гибридов 2-го поколения образуется 4 генотипа – два гомозиготных, несущих только доминантные и только рецессивные аллели, и два гетерозиготных, как у гибридов 1-го поколения. Поэтому расщепление по генотипу 1:2:1 даёт расщепление по фенотипу 3:1 (жёлтую окраску обеспечивает одна доминантная гомозигота и две гетерозиготы, зелёную – одна рецессивная гомозигота).

Мендель посадил гибриды первого поколения гороха (которые все были жёлтыми) и позволил им самоопыляться. В итоге были получены семена, представляющие собой гибриды второго поколения (F2). Среди них уже встречались не только желтые, но и зелёные семена, т.е. произошло расщепление. При этом отношение жёлтых к зелёным семенам было 3 : 1.

Появление зелёных семян во втором поколении доказывало то, что этот признак не исчезал или растворялся у гибридов первого поколения, а существовал в дискретном состоянии, но просто был подавлен. В науку были введены понятия о доминантном и рецессивном аллеле гена (Мендель называл их по-другому). Доминантный аллель подавляет рецессивный.

У чистой линии жёлтого гороха два доминантных аллеля – AA. У чистой линии зелёного гороха два рецессивных аллеля – aa. При мейозе в каждую гамету попадает только один аллель. Таким образом, горох с жёлтыми семенами образует только гаметы, содержащие аллель A. Горох с зелёными семенами образует гаметы, содержащие аллель a. При скрещивании они дают гибриды Aa (первое поколение). Поскольку доминантный аллель в данном случае полностью подавляет рецессивный, то и наблюдался жёлтый цвет семян у всех гибридов первого поколения.

Гибриды первого поколения уже дают гаметы A и a. При самоопылении, случайно комбинируясь между собой, они образуют генотипы AA, Aa, aa. Причём гетерозиготный генотип Aa будет встречаться в два раза чаще (так как Aa и aA), чем каждый гомозиготный (AA и aa). Таким образом получаем 1AA : 2Aa : 1aa. Поскольку Aa дает жёлтый цвет семян как и AA, то выходит, что на 3 жёлтых приходится 1 зелёный.

Третий закон Менделя,

закон независимого наследования (комбинирования) разных признаков,

утверждает, что при скрещивании гомозиготных особей, отличающихся по двум и более парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т.е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях. Он основан на законе расщепления и выполняется в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах.

Мендель провел дигибридное скрещивание, т.е. взял для скрещивания растения гороха, отличающиеся по двум признакам (например, по цвету и морщинистости семян). Одна чистая линия гороха имела желтые и гладкие семена, а вторая – зеленые и морщинистые. Все их гибриды первого поколения имели желтые и гладкие семена.

Во втором поколении ожидаемо произошло расщепление (у части семян проявился зелёный цвет и морщинистость). Однако при этом наблюдались растения не только с жёлтыми гладкими и зелёными морщинистыми семенами, но и с жёлтыми морщинистыми, а также зелёными гладкими. Другими словами, произошла перекомбинация признаков, говорящая о том, что наследование цвета и формы семян происходит независимо друг от друга.

Действительно, если гены цвета семян находится в одной паре гомологичных хромосом, а гены, определяющие форму, – в другой, то при мейозе они могут независимо друг от друга комбинироваться. В результате гаметы могут содержать как аллели жёлтого цвета и гладкой формы (AB), так и жёлтого цвета и морщинистой формы (Ab), а также зелёной гладкой (aB) и зелёной морщинистой (ab). При комбинации гамет между собой с разной вероятностью образуется девять типов гибридов второго поколения: AABB, AABb, AaBB, AaBb, AAbb, Aabb, aaBB, aaBb, aabb. При этом по фенотипу будет наблюдаться расщепление на четыре типа в отношении 9 (желтых гладких) : 3 (желтых морщинистых) : 3 (зеленых гладких) : 1 (зелёных морщинистых). Для наглядности и подробного анализа строят решётку Пеннета [6] в качестве инструмента, представляющего собой графическую запись для определения сочетаемости аллелей из родительских генотипов

Часто как один из законов Менделя приводится и закон чистоты гамет, утверждающий, что в каждую половую клетку попадает только один аллельный ген. Но этот закон был сформулирован не Менделем.

Основные положения теории наследственности Менделя в современной интерпретации можно сформулировать следующим образом.

Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой – от матери.

Список использованных источников

1. Гайсинович А.Е. Зарождение и развитие генетики. – М.: Наука, 1988. – 424 с.

2. Дубинин Н.П. Общая генетика. – М.: Наука, 1986. – 560 с.

4. Иванов, В.И. Генетика / В.И. Иванов, Н.В. Барышникова, Дж. С. Билева; Под ред. В.И. Иванова. – М.: Академкнига, 2007. – 638 с.

Читайте также: