Влияние света на животных и растения

Добавил пользователь Skiper
Обновлено: 18.09.2024

Субстрат (буквально) — это место прикрепления. Например, для древесных и травянистых форм растений, для почвенных микроорганизмов это почва. В ряде случаев субстрат можно считать синонимом среды обитания (например, почва — это эдафическая среда обитания). Субстрат характеризуется определенным химическим составом, который оказывает влияние на организмы. Если субстрат понимается как среда обитания, то он в этом случае представляет собой комплекс характерных для него биотических и абиотических факторов, к которым приспосабливается тот или иной организм.

Характеристика температуры как абиотического фактора среды

Температура — это экологический фактор, связанный со средней кинетической энергией движения частиц и выражающийся в градусах различных шкал. Наиболее распространенной является шкала в градусах Цельсия (°С), в основу которой положена величина расширения воды (температура кипения воды составляет 100°С). В СИ принята абсолютная шкала температур, для которой температура кипения воды Т кип. воды = 373 К.

Очень часто температура является лимитирующим фактором, определяющим возможность (невозможность) обитания организмов в той или иной среде обитания.

По характеру температуры тел а все организмы разделяют на две группы: пойкилотермные (температура их тела зависит от температуры окружающей среды и является практически такой же, как и температура среды) и гомойотермные (температура их тела не зависит от температуры внешней среды и является более или менее постоянной: если и колеблется, то в небольших пределах — доли градуса).

К пойкилотермным относятся растительные организмы, бактерии, вирусы, грибы, одноклеточные животные, а также животные с относительно низким уровнем организации (рыбы, членистоногие и т. д.).

К гомойотермным относятся птицы и млекопитающие, включая человека. Постоянная температура тела уменьшает зависимость организмов от температуры внешней среды, дает возможность расселения по большему числу экологических ниш как в широтном, так и в вертикальном расселении по планете Земля. Однако и помимо гомойотермности организмы вырабатывают приспособления для преодоления воздействия низких температур.

По характеру перенесения низких температур растения разделяют на теплолюбивые и холодостойкие. К теплолюбивым относят растения юга (бананы, пальмы, южные сорта яблонь, груш, персики, виноград и др.). К холодостойким относят растения средних и северных широт, а также растения, произрастающие высоко в горах (например, мхи, лишайники, сосна, ель, пихта, рожь и т. д.). В средней полосе России выращивают сорта морозостойких фруктовых деревьев, которые специально выводят селекционеры. Первые большие успехи в этой области были достигнуты И. В. Мичуриным и другими народными селекционерами.

Роль температуры как экологического фактора сводится к тому, что она влияет на обмен веществ: при низких температурах скорость биоорганических реакций сильно замедляется, а при высоких — значительно увеличивается, что приводит к нарушению равновесия в протекании биохимических процессов, а это вызывает различные заболевания, а иногда и летальный исход.

Влияние температуры, на растительные организмы

Для перенесения воздействия низких температур растения имеют различные приспособления.

2. Переход растений в стадию (фазу), устойчивую к воздействию низких температур — стадия спор, семян, клубней, луковиц, корневищ, корнеплодов и т. д. Древесные и кустарниковые формы растений сбрасывают листья, стебли покрываются пробкой, обладающей высокими теплоизоляционными свойствами, а в живых клетках накапливаются вещества-антифризы.

Влияние температуры на животные организмы

Температура по-разному влияет на пойкилотермных и гомойотермных животных.

Пойкилотермные животные активны только в период оптимальных для их жизнедеятельности температур. В период низких температур они впадают в спячку (земноводные, пресмыкающиеся, членистоногие и др.). Некоторые насекомые перезимовывают или в виде яиц, или в виде куколок. Нахождение организма в спячке характеризуется состоянием анабиоза, при котором процессы обмена очень сильно заторможены и организм может длительное время обходиться без пищи. В спячку пойкилотермные животные могут впадать и под воздействием высоких температур. Так, животные пустынь в нижних широтах в жаркое время дня находятся в норах, а период их активной жизнедеятельности приходится на раннее утро или поздний вечер (либо они ведут ночной образ жизни).

В спячку животные организмы впадают не только за счет воздействия температуры, но и за счет других факторов. Так, медведь (гомойотермное животное) впадает в спячку зимой из-за недостатка пищи.

Гомойотермные животные в меньшей степени в своей жизнедеятельности зависят от температуры, но температура влияет на них с точки зрения наличия (отсутствия) кормовой базы. Эти животные имеют следующие приспособления к преодолению воздействия низких температур:

1) животные перемещаются из более холодных областей в более теплые (перелеты птиц, миграции млекопитающих);

2) изменяют характер покрова (летний мех или оперение заменяются на более густой зимний; накапливают большой слой жира — дикие свиньи, тюлени и др.);

3) впадают в спячку (например, медведь).

Гомойотермные животные имеют приспособления для снижения воздействия температур (как повышенных, так и пониженных). Так, у человека имеются потовые железы, которые изменяют характер секреции при повышенных температурах (количество секрета увеличивается), изменяется просвет кровеносных сосудов в коже (при низких температурах он уменьшается, а при высоких — увеличивается) и т. д.

Излучения как абиотический фактор

И в жизни растений, и в жизни животных огромную роль играют различные излучения, которые или попадают на планету извне (солнечные лучи), или выделяются из недр Земли. Здесь рассмотрим в основном солнечные излучения.

Солнечные излучения неоднородны и состоят из электромагнитных волн разной длины, а следовательно, обладают и различной энергией. Поверхности Земли достигают лучи как видимого, так и невидимого спектра. К лучам невидимого спектра относятся инфракрасные и ультрафиолетовые лучи, а лучи видимого спектра имеют семь наиболее различимых лучей (от красного до фиолетового). Энергия квантов излучений увеличивается от инфракрасного до ультрафиолетового (т. е. ультрафиолетовые лучи содержат кванты наиболее коротких волн и наибольшей энергии).

Солнечные лучи имеют несколько экологически важных функций:

1) благодаря солнечным лучам на поверхности Земли реализуется определенный температурный режим, имеющий широтный и вертикальный зональный характер;

2) солнечная энергия — источник энергии для всех организмов, живущих на Земле (исключая небольшую группу организмов-хемосинтетиков). Энергия Солнца является и источником энергии для гетеротрофных организмов (животных, бактерий, грибов и др.), так как эти организмы используют энергию химических связей веществ, синтезированных фотосинтетиками (т. е. растениями);

3) солнечная энергия является регулятором циклов жизни различных организмов.

Рассмотрим роль отдельных излучений в природных экологических процессах.

Инфракрасные излучения несут большой запас тепловой энергии и обеспечивают тепловой режим планеты.

Растения, реализуя автотрофный способ питания, усваивают энергию оранжево-красного спектра (правда, отдельные водоросли — красные и бурые — могут усваивать энергию синего и даже фиолетового спектра). Зеленые лучи полностью отражаются растениями (отсюда и цвет растений).

Растения (в среднем) усваивают 1% солнечной энергии, доходящей до поверхности Земли. Водоросль хлорелла может усваивать 3% этой энергии, что представляет определенный интерес для хозяйственной деятельности человека и ее интенсификации.

Роль солнечного света в жизни растений

Роль света в жизни растений трудно переоценить, так как солнечная энергия является основой для реализации всех процессов жизнедеятельности, начиная от питания и заканчивая отправлением отдельных физиологических функций.

По отношению к свету различают несколько групп растений.

1. Светолюбивые — растения открытых пространств, на которые падает прямой свет. К ним относят растения степей, пустынь, полупустынь (ковыли, полыни, различные виды злаковых, например пшеница и др.), а также растения верхних ярусов лесов (сосна, береза и др.).

2. Теневыносливые — растения, которые могут произрастать в условиях некоторого затенения, например бук, дуб, граб, ель и др.

3. Тенелюбивые — растения, которые не могут существовать в условиях попадания на них прямого света. К ним относятся растения, живущие под пологом леса, например, папоротники, звездчатка, ландыши и др.

Кроме того, что солнечный свет для растений является источником энергии, он регулирует процессы их жизнедеятельности. Это явление называется фотопериодизмом. Итак, фотопериодизм — регуляция биоритма живых существ при помощи света. Различают суточный и сезонный фотопериодизм, а также периодизм процессов, протекающих на Солнце. Наиболее изучены суточный и сезонный фотопериодизм.

У растений днем реализуются процессы световой фазы фотосинтеза и, частично, темновой фазы, а ночью — темновая фаза фотосинтеза. С фотопериодизмом у растений связано явление фототропизм — движение отдельных органов растения к свету, например, движение головки подсолнуха в течение дня по ходу движения Солнца, раскрытие соцветий одуванчика утром и закрытие их вечером, рост комнатных растений в освещенную сторону и т. д. (суточный фотопериодизм).

Роль солнечного света в жизни животных

Солнечная энергия непосредственно животными не усваивается, и, тем не менее, она является источником их жизнедеятельности (почему?). Кроме того, что солнечная энергия — источник жизни животных, она играет огромную роль в их жизни за счет следующих процессов.

2. Солнечный свет позволяет животным легко ориентироваться в окружающей среде; свет эволюционно способствовал развитию органов зрения.

Влажность как абиотический фактор

Влажность — содержание воды в окружающей среде. Она зависит от климата, т.е. от количества осадков и их распределения по временам года, и местонахождения данной среды обитания на планете. В ряде случаев влажность может являться лимитирующим фактором в развитии той или иной общности организмов. Недостаток влаги приводит к резкому снижению продуктивности живого вещества. Часто от влажности на данной территории зависит характер органического мира, проживающего на ней. Так, флору и фауну пустынь и полупустынь определяет большой дефицит влаги, а органический мир болот — избыточное ее количество. С влажностью связана географическая зональность органического мира — тундра, лесотундра, тайга, лесостепь, степь, полупустыни, пустыни (от одной зоны к другой количество влаги закономерно понижается). Эти зоны связаны с одновременным изменением влажностного и температурного фактора (тундра и тайга).

Влияние влажности на экологические особенности растений

Строение и функции растений в значительной степени зависят от наличия влаги в среде обитания. По отношению к влажности растения разделяют на группы:

1. Ксерофиты — растения, которые живут в условиях недостаточной увлажненности. Это растения степей, полупустынь и пустынь. Они могут выдерживать недостаток влаги за счет того, что в их составе содержатся соединения, способные удерживать большое количество связанной воды. Для ксерофитов характерны узкие длинные листья, покрытые толстым слоем кутикулы, восковым налетом и сильной опушенностью. Листья этих растений имеют сероватый тусклый оттенок, листовые пластинки мелкие, а в ряде случаев листья подверглись редукции (их или совсем нет, или они превратились в колючки или чешуйки, а функции листьев выполняет стебель).

Вышеуказанные приспособления в значительной степени уменьшают транспирацию (испарение воды растением). У ксерофитов очень сильно развита корневая система, которая у растения размером несколько десятков сантиметров может достигать 10 м и более. К ксерофитам относят различные виды полыней, ковыль, саксаул и др.

2. Суккуленты — группа растений, близких к ксерофитам, но в отличие от них обладающих сильно утолщенным мясистым стеблем, содержащим большое количество воды. У суккулентов практически нет листьев или эти листья также сильно утолщены. Биологические особенности суккулентов сходны с таковыми для ксерофитов, так как они произрастают в тех же условиях, что и данная группа растений. К суккулентам относят кактусы, молодило, столетник и т. д.

3. Мезофиты — растения, произрастающие в условиях среднего увлажнения, что означает достаточное количество осадков для реализации процессов жизнедеятельности растений, в том числе и для транспирации. У мезофитов поверхность листьев достаточно крупная, растения испаряют довольно много воды, но устьица, как правило, располагаются на нижней поверхности листа, за счет чего в период недостаточного увлажнения транспирация ослабляется, что позволяет успешно пережить неблагоприятное для растений время. К мезофитам относят тополь, березу, айву, грушу, травянистые растения лугов и т. д.

4. Гигрофиты — растения, живущие в условиях повышенной влажности, произрастающие на болотистых почвах и требующие для нормальной жизнедеятельности большого количества воды (осока, камыш, растения влажных джунглей и т. д.).

5. Гидрофиты — водные растения, живущие либо полностью погруженными в воду, либо на ее поверхности находятся листовые пластинки, а остальная часть растения расположена в воде. Примером гидрофитов являются кувшинки, элодея, водоросли.

Экологическая роль воды в жизни животных

Относительно воздействия воды на животных их разделяют на сухопутных, водных и земноводных. Сухопутных животных можно разделить на животных лесов, степей и пустынь, так как эти зоны отличаются увлажненностью.

К сухопутным животным относят многих млекопитающих, различных пресмыкающихся и других животных.

К водным животным относятся рыбы, водные млекопитающие (киты), водные членистоногие, головоногие и другие моллюски и т. д.

К земноводным относят класс земноводных (лягушки, жабы и т.д.), класс млекопитающих (например, тюлени, гиппопотам и др.).

Необходимость в воде сухопутные животные восполняют за счет поглощения воды либо в водоемах (питье), либо с пищей. Наибольший дефицит воды испытывают животные степей, пустынь и полупустынь. Они по-разному приспособлены к перенесению недостатка влаги. Так, лошади способны преодолевать большие расстояния в поисках воды и пищи. Верблюды могут длительное время обходиться без воды, накапливая ее в форме жира в горбах (а курдючные овцы — в особых расширениях хвоста — курдюках); при окислении жиров образуется большое количество воды, которую организм использует для своей жизнедеятельности. При недостатке воды некоторые животные впадают в спячку. Приспособлением к преодолению недостатка воды у животных является переход к ночному образу жизни.

Характеристика воздуха, климата и микроклимата как абиотических факторов

Одним из важных абиотических факторов является воздух.

Воздух — это природная смесь газов, имеющая относительно постоянный состав. В норме он содержит, % по объему: молекулярного азота — 78, молекулярного кислорода — 21, углекислого газа — 0,03, инертных газов — 1, небольшое количество паров воды.

Постоянство состава природного воздуха может нарушаться как за счет природных явлений (например, извержения вулканов, землетрясения, лесные пожары), так и в результате деятельности человека. Воздух необходим для любых аэробных организмов (и для растений, и для животных), так как обеспечивает процесс дыхания (газообмен), а для растений является источником газового минерального питания (без углекислого газа невозможен фотосинтез).

При отсутствии воздействия человека состав воздуха, тем не менее, может различаться в зависимости от высоты над уровнем моря (с высотой содержание кислорода и углекислого газа уменьшается, так как эти газы тяжелее азота). Воздух приморских районов обогащен парами воды, в которых содержатся морские соли в растворенном состоянии. Воздух леса отличается от воздуха полей примесями соединений, выделяемых различными растениями (так, воздух соснового бора содержит большое количество смолистых веществ и эфиров, убивающих болезнетворные микроорганизмы, поэтому этот воздух является целебным для больных туберкулезом).

Важнейшим комплексным абиотическим фактором является климат.

Климат — это совокупный абиотический фактор, включающий в себя определенный состав и уровень солнечной радиации, связанный с ним уровень температурного и влажностного воздействия и определенный режим ветров. Климат зависит также от характера растительности, произрастающей на данной территории, и от рельефа местности.

На Земле наблюдается определенная широтная и вертикальная климатическая зональность. Различают влажный тропический, субтропический, резко континентальный и другие разновидности климата.

Повторите сведения о различных видах климата по учебнику физической географии. Рассмотрите особенности климата той территории, на которой вы живете.

Климат как совокупный фактор формирует тот или иной тип растительности (флоры) и тесно связанный с ним тип фауны. Большое влияние на климат оказывают поселения людей. Климат больших городов отличается от климата пригородных зон.

Сравните температурный режим города, в котором вы живете, и режим температур области, где находится город.

Как правило, температура в черте города (особенно в центре) всегда выше, чем в области.

С климатом тесно связан микроклимат. Причиной возникновения микроклимата являются различия в рельефе на данной территории, наличие водоемов, что приводит к изменению условий на разных территориях данной климатической зоны. Даже на относительно небольшой территории дачного участка на отдельных его частях могут возникать различные условия для произрастания растений из-за разных условий освещения.

А.С. Степановских
Экология. Учебник для вузов
М.: ЮНИТИ-ДАНА, 2001. — 703 с.

4.1. Излучение: свет


Рис. 4.1. Баланс солнечной радиации на земной поверхности

в дневное время (из Т. К. Горышиной, 1979)

Как видно на рис. 4.1, 42% всей падающей радиации (33 + 9%) отражается атмосферой в мировое пространство, 15% поглощается толщей атмосферы и идет на ее нагревание и только 43% достигает земной поверхности. Эта доля радиации состоит из прямой радиации (27%) — почти параллельных лучей, идущих непосредственно от Солнца и несущих наибольшую энергетическую нагрузку, и рассеянной (диффузной) радиации (16%) — лучей, поступающих к Земле со всех точек небосвода, рассеянных молекулами газов воздуха, капельками водяных паров, кристалликами льда, частицами пыли, а также отраженных вниз от облаков. Общую сумму прямой и рассеянной радиации называют суммарной радиацией.

Среди солнечной энергии, проникающей в атмосферу Земли, на видимый свет приходится около 50% энергии, остальные 50% составляют тепловые инфракрасные лучи и около 1 % — ультрафиолетовые лучи (рис. 4.2).

Рис. 4.2. Факторы космического воздействия на Землю

Спектр солнечного света

В жизни организмов важны не только видимые лучи, но и другие виды лучистой энергии, достигающие земной поверхности: ультрафиолетовые, инфракрасные лучи, электромагнитные (особенно радиоволны) и некоторые другие излучения. Так, ультрафиолетовые лучи с длиной 0,25—0,30 мкм способствуют образованию витамина D в животных организмах, при длине волны 0,326 мкм в коже человека образуется защитный пигмент, а лучи с длиной волны 0,38—0,40 мкм обладают большей фотосинтетической активностью. Эти лучи в умеренных дозах стимулируют рост и размножение клеток, способствуют синтезу высокоактивных биологических соединений, повышая в растениях содержание витаминов, антибиотиков, увеличивают устойчивость к болезням.

Инфракрасное излучение воспринимается всеми организмами, например, воздействуя на тепловые центры нервной системы животных организмов, осуществляет тем самым у них регуляцию окислительных процессов и двигательные реакции как в сторону предпочитаемых температур, так и от них.

Особое значение в жизни всех организмов имеет видимый свет. С участием света у растений и животных протекают важнейшие процессы: фотосинтез, транспирация, фотопериодизм, движение, зрение у животных, прочие процессы (табл. 4.2).

Важнейшие процессы, протекающие у растений

и животных с участием света

На свету происходит образование хлорофилла и осуществляется важнейший в биосфере процесс фотосинтеза. Фотосинтезирующая деятельность зеленых растений обеспечивает планету органическим веществом и аккумулированной в нем солнечной энергией — источником возникновения и фактором развития жизни на Земле. Основная реакция фотосинтеза может быть записана следующим образом:

Среди всех лучей солнечного света обычно выделяют лучи, которые так или иначе оказывают влияние на растительные организмы, особенно на процесс фотосинтеза, ускоряя или замедляя его протекание. Эти лучи принято называть физиологически активной радиацией (сокращенно ФАР). Наиболее активными среди ФАР являются оранжево-красные (0,65—0,68 мкм), сине-фиолетовые (0,40—0,50 мкм) и близкие ультрафиолетовые (0,38—0,40 мкм). Меньше поглощаются желто-зеленые (0,50—0,58 мкм) лучи и практически не поглощаются инфракрасные. Лишь далекие инфракрасные принимают участие в теплообмене растений, оказывая некоторое положительное воздействие, особенно в местах с низкими температурами.

Интенсивность фотосинтеза несколько варьирует с изменением длины волны света. В наземных средах жизни качественные характеристики солнечного света не настолько изменчивы, чтобы это сильно влияло на интенсивность фотосинтеза, при прохождении же света через воду красная и синяя области спектра отфильтровываются, и получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако живущие в море красные водоросли (Rhodophyta) имеют дополнительные пигменты (фикозритрины), которые позволяют им использовать эту энергию и жить на большей глубине, чем зеленые водоросли.

Лучи разной окраски различаются животными. Например, бабочки при посещении цветков растений предпочитают красные или желтые, двукрылые насекомые выбирают белые и голубые. Пчелы проявляют повышенную активность к желто-зеленым, сине-фиолетовым и фиолетовым лучам, не реагируют на красный, воспринимая его как темноту. Гремучие змеи видят инфракрасную часть спектра. Для человека область видимых лучей — от фиолетовых до темно-красных.

Каждое местообитание характеризуется определенным световым режимом, соотношением интенсивности (силы), количества и качества света.

Интенсивность, или сила, света измеряется количеством калорий или джоулей, приходящихся на 1 см 2 горизонтальной поверхности в минуту. Для прямых солнечных лучей этот показатель практически не изменяется в зависимости от географической широты. Существенное же на него влияние оказывают особенности рельефа. Так, на южных склонах интенсивность света всегда больше, чем на северных.

Количество света, определяемое суммарной радиацией, от полюсов к экватору увеличивается.

Для определения светового режима необходимо учитывать и количество отражаемого света—альбедо. Оно выражается в процентах от общей радиации и зависит от угла падения лучей и свойств отражающей поверхности.

Например, снег отражает 85% солнечной энергии, альбедо зеленых листьев клена составляет 10%, а осенних пожелтевших — 28%.

По отношению к свету различают следующие экологические группы растений: световые (светолюбы), теневые (тенелюбы) и теневыносливые. Световые виды (гелиофиты) обитают на открытых местах с хорошей освещенностью, в лесной зоне встречаются редко.

Они образуют обычно разреженный и невысокий растительный покров, чтобы не затенять друг друга. Свет оказывает влияние на рост растений. Так, рост двухлетних дубов в зависимости от относительной освещенности в летний период показан на рис. 4.3.

Рис. 4.3. Модифицирующее действие освещенности на рост

и морфогенез растений (по В. Лархеру, 1978):

А — рост двухлетних дубов Quercus robus в зависимости от относительной освещенности летом;

Б — развитие листьев у Ranunculus ficaria в зависимости от освещенности

При световом довольствии до 13,5% преобладает стимулирующее действие света (рис. 4.3А, кривая 1), при большем освещении (А, кривая 2) — наоборот. Листья Ranunculus ficaria (рис. 4.3Б) развивают меньшую поверхность при большем освещении.

Теневые растения (сциофиты) не выносят сильного освещения, живут в постоянной тени под пологом леса. Это главным образом лесные травы. При резком освещении, например на вырубках, они проявляют явные признаки угнетения и часто погибают.

Рис. 4.4. Листорасположение у подроста липы мелколистной в разных условиях освещения (вид сверху):

А — под пологом леса, Б — на открытом месте (по Т. К. Горышиной, 1979)

Мелкие листья располагаются между крупными. Такая мозаика характерна как для древесной, так и травянистой растительности сильно затененных лесов.

Оптический аппарат гелиофитов развит лучше, чем у сциофитов, имеет большую фотоактивную поверхность и приспособлен к более полному поглощению света. На сухую массу в листьях гелиофитов приходится меньше хлорофилла, однако в них больше содержится пигментов I пигментной системы и хлорофилла П700. Отношение хлорофилла d к хлорофиллу b равно примерно 5:1. Отсюда высокая фотосинтетическая способность гелиофитов. Интенсивность фотосинтеза достигает максимума при полном солнечном освещении.

У особой группы растений — гелиофктов, у которых фиксация СО2 идет путем С-4-дикарбоновых кислот, световое насыщение фотосинтеза не достигается даже при самой сильной освещенности. Это растения из засушливых областей (пустынь, саванн), принадлежащие к 13 семействам цветковых растений (например, мятликовые, осоковые, амарантовые, маревые, гвоздичные и др.). Они способны к вторичной фиксации и реутилизации СО2 , освобождающегося при световом дыхании, и могут фотосинтезировать при высоких температурах и при закрытых устьицах, что нередко наблюдается в жаркие часы дня.

Обычно С-4-растения отличаются высокой продуктивностью, особенно кукуруза и сахарный тростник.

Освещение вызывает у растений ростовые движения, которые проявляются в том, что из-за неравномерного роста стебля или корня происходит их искривление. Это явление носит название фототропизма.

Одностороннее освещение смещает в затененную сторону поток ростового гормона ауксина, направленного, как правило, строго вниз. Обеднение ауксином освещенной стороны побега приводит здесь к торможению роста, а обогащение ауксином затененной стороны — к стимуляции роста, что и вызывает искривление.

Движение Земли вокруг Солнца вызывает закономерные изменения длины дня и ночи по сезонам года. Сезонная ритмичность в жизнедеятельности организмов определяется в первую очередь сокращением световой части суток осенью и увеличением — весной. В действиях организмов выработались особые механизмы, реагирующие на продолжительность дня. Так, определенные птицы и млекопитающие поселяются в высоких широтах с длинным полярным днем. Осенью, при сокращении дня, они мигрируют на юг. Летом в тундре скапливается большое количество животных, и, несмотря на общую суровость климата, они при обилии света успевают закончить размножение. Однако в тундру практически не проникают ночные хищники. За короткую летнюю ночь они не могут прокормить ни себя, ни потомство.

Уменьшение светового дня в конце лета ведет к прекращению роста, стимулирует отложение запасных питательных веществ организмов, вызывает у животных осенью линьку, определяет сроки группирования в стаи, миграции, переход в состояние покоя и спячки. Увеличение длины светового дня стимулирует половую функцию у птиц, млекопитающих, определяет сроки цветения растений (ольха, мать-и-мачеха и др.).

Растения, развитие которых нормально происходит при длинном дне, называют длиннодневными. Это растения наших северных зон и средней полосы (рожь, пшеница, луговые злаки, клевер, фиалки и др.). Другие растения нормально развиваются при сокращенном световом дне. Их называют короткодневными. К ним относятся выходцы из южных районов (гречиха, просо, подсолнечник, астры и др.).

Доказана способность птиц к навигации. При дальних перелетах они с поразительной точностью выбирают направление полета, преодолевая иногда многие тысячи километров от гнездовий до мест зимовок (рис. 4.5), ориентируясь по солнцу и звездам, т. е. астрономическим источникам света. Днем птицы учитывают не только положение Солнца, но и смещение его в связи с широтой местности и временем суток

Рис. 4.5. Главнейшие пути пролетных путей птиц

(по Н. О. Реймерсу, 1990)

Опыты показали, что ориентация птиц меняется при изменении картины здездного неба в соответствии с направлением предполагаемого перелета. Навигационная способность птиц врожденная, создается естественным отбором, как система инстинктов. Способность к ориентации свойственна и другим животным. Так, пчелы, нашедшие нектар, передают другим информацию о том, куда лететь за взятком. Ориентиром служит положение солнца. Пчела-разведчица, открывшая источник корма, возвращаясь в улей, начинает на сотах танец, описывая фигуру в виде восьмерки, с наклоном поперечной оси по отношению к вертикали, соответствующим углу между направлениями на солнце и на источник корма (рис. 4.6). Угол наклона восьмерки постепенно смещается в соответствии с движением солнца по небу, хотя пчелы в темном улье и не видят его.

При облачной погоде пчелы ориентируются на поляризованный свет свободного участка неба. Плоскость поляризации света зависит от положения солнца. Определенное сигнальное значение в жизни животных имеет биолюминесценция, или способность животных организмов светиться в результате окисления сложных органических соединений люциферинов с участием катализаторов люцифераз, как правило, в ответ на раздражения, поступающие из внешней среды (рис. 4.7).

Рис. 4.7. Светящиеся животные:

1 — медуза; 2 — рыба-дракон, нападающая на светящихся анчоусов; 3 — глубоководный кальмар; 4 — глубоководная креветка, защищаясь, выбрасывает светящееся облако: 5 — глубоководный удильщик, приманивающий жертву.

Световые сигналы, испускаемые животными, зачастую служат для привлечения особей противоположного пола, приманивания добычи, отпугивания хищников, для ориентации в стае и т. д. (рыбы, головоногие моллюски, жуки семейства светляков и др.). Следовательно, растениям свет необходим в первую очередь для осуществления фотосинтеза — важнейшего процесса в биосфере по накоплению энергии и созданию органического вещества. Для животных он имеет главным образом информационное значение.

В отличие от зеленых растений животные не способны к фотосинтезу и для процессов жизнедеятельности используют не солнечную энергию, а энергию, содержащуюся в органических веществах. Тем не менее свет для подавляющего большинства видов наземных животных является жизненно необходимым фактором.

Свет как источник тепла для животных

Освещение неразрывно связано с нагреванием тела животных. Одни из них, способные поддерживать постоянную температуру тела, избегая света, предотвращают излишнее его нагревание. У других, наоборот, колебания температуры тела находятся в прямой зависимости от солнечной энергии, как и жизненные процессы в организме. Именно эти животные активно используют солнечную энергию для поддержания температуры тела. С этой целью они выбирают наиболее освещенные места и принимают позы, благоприятные для максимального освещения тела.

Значение света для ориентации животных в пространстве

Видимое солнечное излучение необходимо животным для зрительной ориентации в среде обитания. Именно лучи солнечного света способствовали развитию зрения у многих организмов. Рассеянные, отраженные от окружающих предметов лучи, воспринимаемые органами зрения животных, дают им значительную часть информации о внешнем мире. Однако способность к объемному видению зависит от угла расположения глаз и от степени перекрывания их полей зрения. Объемное зрение характерно для человека, приматов, некоторых птиц — сов, соколов, орлов, грифов. Животные, у которых глаза расположены по бокам головы, имеют плоскостное зрение.

Для подавляющего большинства наземных и водных животных с дневной, сумеречной или ночной активностью зрение является основным приспособлением для ориентации при разных условиях освещенности. Летучие мыши вылетают на охоту после заката солнца, а днем спят. Ежи охотятся в сумерки и ночью. Лемуры и совы, если их разбудить днем, совершенно беспомощны. Сумеречный или ночной образ жизни часто приводит к гипертрофии (чрезмерному увеличению) глаз. Большие глаза, способные улавливать ничтожные доли света, свойственны лемурам, долгопятам, совам, большинству представителей семейства кошачьих.


Ночной или дневной образ жизни являются совокупностью врожденных рефлексов, которые срабатывают даже при случайном изменении чередования света и темноты. Например, во время солнечного затмения все животные начинают вести себя, как ночью: ночные насекомые (тараканы, сверчки, комары) проявляют свою обычную активность, а дневные (бабочки, мухи, пчелы), наоборот, приостанавливают свою деятельность на время затмения, а после него возобновляют.

Понятие видимого света в некоторой мере условно по отношению к животным, так как их виды сильно различаются по способности воспринимать лучи солнечного спектра разной длины волны. Для человека область восприятия видимых лучей располагается от фиолетовых до темно-красных. Некоторые змеи могут видеть в инфракрасном (тепловом) диапазоне и охотиться на теплокровных животных ночью, когда разница температуры поверхности тела животных и окружающей среды максимальна. В результате эти виды змей способны воспринимать окружающий мир в двух диапазонах электромагнитных волн: в видимом свете (как и большинство животных) и в инфракрасном. Среди рыб способностью видеть под водой в инфракрасном диапазоне обладают пираньи, охотящиеся на зашедших в воду теплокровных животных. Среди насекомых инфракрасным зрением обладают комары, что позволяет им с большой точностью находить наиболее насыщенные кровеносными сосудами участки тела добычи.

Для пчел видимая часть спектра сдвинута в более коротковолновую область. Они воспринимают как цветовые значительную часть ультрафиолетовых лучей, но не различают красных. Возникновение яркоокрашенных цветков покрытосеменных растений также связано с особенностями зрительного аппарата опылителей и, в конечном счете, со световым режимом среды.

Животные ориентируются с помощью зрения во время дальних перелетов и миграций. Птицы с поразительной точностью выбирают направление полета, преодолевая иногда тысячи километров от гнездовий до мест зимовок. Материалами опытов и наблюдений доказано, что при таких дальних перелетах птицы частично ориентируются по солнцу и звездам, то есть астрономическим источникам света.

У животных пещер и обитателей почв, живущих во мраке, глаза либо редуцированы (пещерные рыбы и амфибии, кроты, слепыши), либо совсем отсутствуют (большинство планарий, дождевые черви), что возмещается более сильным развитием органов осязания. Пещерные животные слабо окрашены или вовсе лишены пигмента. Они обычно бесцветны, прозрачны или молочно-белого цвета.

Роль света в жизни человека

Солнечный свет в жизни человека имеет как прямое, так и косвенное значение. Благодаря ему мы можем ориентироваться в пространстве, используя зрение. Свет дает нам возможность познавать окружающий мир, контролировать и координировать движения.

Как вам уже известно, солнечный свет способствует синтезу в организме витамина D, который отвечает за усвоение кальция и фосфора. При недостатке этого витамина нарушается рост и развитие человека. В детском возрасте дефицит витамина D приводит к развитию рахита.

Солнечный свет (особенно ультрафиолетовые лучи) оказывает губительное действие на многие болезнетворные бактерии и грибки, расположенные на коже или на слизистых оболочках, поэтому считается естественным антисептиком. Он помогает избавиться от ряда инфекционных заболеваний — это защитная функция.

Самочувствие и душевное состояние человека также зависят от солнечных лучей. Сравните свои ощущения в пасмурную и солнечную погоду. Недостаток света приводит к ухудшению настроения, апатии и депрессии. Жизнь без света или с его минимальным количеством может привести к D-авитаминозу, снижению иммунитета и ослаблению организма, в результате чего понижается сопротивляемость простудным и иным заболеваниям. Кроме того, уменьшается работоспособность и ухудшается общее состояние. В то же время чересчур яркий свет вреден, так как может вызывать неврозы и проблемы со зрением.

Солнечная энергия используется человеком как в повседневной жизни, так и в промышленности. В быту многие люди используют солнечную энергию для того, чтобы подогреть воду, отопить дом.

В промышленности используют солнечные батареи, которые собраны из фотоэлементов. Преобразование световой энергии в электрическую в фотоэлементах основано на фотоэлектрическом эффекте, возникающем при воздействии на них солнечного излучения. Транспорт также способен приходить в движение при помощи солнечных батарей — некоторые электромобили заряжаются при помощи света.


Повторим главное. Животные, не способные поддерживать постоянную температуру тела, используют солнечный свет как источник тепла. Для большинства животных видимый солнечный свет необходим для зрительной ориентации в пространстве. Некоторые животные способны видеть инфракрасные и ультрафиолетовые лучи. В качестве приспособления к различным условиям освещения у животных появились глаза разной степени сложности. Для активного образа жизни в условиях недостаточного освещения сформировались большие глаза. У животных, обитающих в пещерах или в почве при полном отсутствии света, глаза развиты слабо либо совсем отсутствуют. Для человека свет имеет большое значение: он влияет на физическое и психологическое состояние, солнечный свет используется как источник энергии в хозяйственной деятельности.

Проверим знания

Ключевые вопросы

1. Объясните энергетическую роль света в жизни животных.
2. Назовите характерные адаптации животных, ведущих ночной или сумеречный образ жизни.
3. Какова роль света в жизни человека?

Сложные вопросы

1. Из приведенного перечня животных выберите представителей, имеющих неразвитые или слабо развитые глаза: лемур, крот, долгопят, сова, червь дождевой, слепыш, лягушка, планария. Укажите среду их обитания.

2. Чем объясняется способность ночных животных видеть добычу и неспособность пчел видеть красный цвет?
3. У морских рыб, обитающих на разных глубинах, строение глаз не одинаковое. У большинства рыб толщи воды глаза очень крупные. У глубоководных рыб глаза маленькие или совсем отсутствуют. Объясните причину таких различий.

Индивидуальное домашнее задание. Проведите наблюдения за реакцией животных, обитающих в вашей местности, на смену дня и ночи. Сравните их по периодам активности и распределите на группы по образу жизни.

Нажмите, чтобы узнать подробности

На прошлом занятии вы ознакомились с особенностями Наземно-воздушной среды обитания.

А)А какие среды обитания вы еще знаете?(почвенная,водная,организменная)

Б)А что же такое-Среда обитания?

Среда обитания —условия в которых обитает организм, часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное воздействие.

Б)Экологические факторы?

Экологи́ческие фа́кторы — свойства среды обитания, которые влияют на организм

В)Давайте вспомним:Какие есть экологические факторы живой и не живой природы?

Факторы живой природы- все формы влияния на организм со стороны окружающих живых существ (микроорганизмов, влияние животных на растения и наоборот, влияние человека на окружающую среду).

Факторы неживой природы, имеющие важное значение для растений – это свет, температура, обеспеченность водой, газовый состав воздуха, почва.

Г)Как вы думаете какой главный фактор в жизни растений?-свет

А сегодня мы с вами выясним, какую же роль свет играет в жизни организмов

2.3Изучение нового материала

Открываем тетради записываем число ,Классная работа и тему нашего урока: Свет в жизни растений и животных.

Как мы уже выяснили,свет нужен растениям для многих жизненных процессов. Но важнее всего, что

благодаря свету растения создают органические вещества, которые потом служат пищей не только самим растениям и животным ,а даже бактериям и грибам.

Кто помнит: как называется процесс,когда на свету из неорганических веществ образуются органические?

Мы с вами уже знаем, что по отношению к свету растения делят на 3 группы.

Открывайте учебник на страничке 24 и найдите на какие же 3 группы делят растения по отношению к свету.

Итак берем наши тетради и Записываем:

По отношению к свету растения делят на:

1 Светолюбивые приспособленные к жизни на хорошо освещаемых солнцем местах(плохо переносящие длительное затенение )( сосна, берёза,яблоня,виноград)

2 Теневыносливые растения- терпимые к затенению (т.е те которые не любят но могут расти в тени)( сирень, дуб,ландыш)

3 Тенелюбивые-растущие ТОЛЬКО в затемнённых условиях.( мхи, лишайники, плауны, папоротники)

А сейчас давайте все встанем и представим,что каждый из нас красивая яблоня( яблоня-любит свет?)ну-ка потянулись все к свету , рассправили веточки,подул ветерок и наши листики зашевелились)

А теперь представим,что мы важные папоротники(-раскинули листья,но папоторники тенелюбивые,они боятся света,так ,что мы прячемся и садимся на свои места)

Как вы думаете свет важен только для растений?

А теперь отложите ручки и послушайте как же важен свет для человека.

Кроме органических веществ во время фотосинтеза выделяется кислород,который просто необходим не только нам и животным но и самим растениям для дыхания,а значит мы с вами дышим благодаря нашим растениям и свету.

Как вы думаете а для животных свет важен?

потому что при свете животные ищут пищу,убегают от хищников и очень активно себя ведут,но есть и такие которые не любят свет.

давайте запишем:

животные которые активны днем:куры, воробьи,ласточки,стрижи,зайцы

2.4.Закрепление

Давайте с вами поиграем,я вам называю 3 вида животных,а вы говорите какое из них лишнее и почему.

1 заец,воробей и СОВА

2 ЛАСТОЧКА,летучая мышь и ежик

3 куры,ФИЛИНЫ и стрижи

А сейчас открываем тетради и записываем:

Практическая работа №1

Влияние света на рост и развитие растений

Цель: выяснить влияние света на рост и развитие растений на примере клубня картофеля

И на стр.25 прочтите подробное описание опыта.

2.6.Рефлексия

Итак,подведем итоги,что нового мы сегодня узнали?

Приведите примеры светолюбивых,теневыносливых и тенелюбивых растений.

А теперь дневных и ночных животных.

А теперь открываем дневники и записываем домашнее задание:

§7 стр 22-25.начать оформлять пр.работу №1

Раздаточный материал

Классная работа

Свет в жизни растений и животных

По отношению к свету растения делят на:

1 Светолюбивые( сосна, берёза,яблоня,виноград)

2 Теневыносливые( сирень, дуб,ландыш)

3 Тенелюбивые( мхи, лишайники, плауны, папоротники)

По отношению к свету животных делят на:

1 Дневные животные:куры, воробьи,ласточки,стрижи,зайцы

2 Ночные животные: совы,летучие мыши,ежи,филины,волки

Практическая работа №1

Влияние света на рост и развитие растений

Цель: выяснить влияние света на рост и развитие растений на примере клубня картофеля

Читайте также: