Спорогенез у покрытосеменных растений

Добавил пользователь Алексей Ф.
Обновлено: 19.09.2024

Процесс формирования половых клеток растений, который рассмотрим на примере покрытосеменных , состоит из двух этапов: спорогенеза и гаметогенеза . При формировании мужских половых клеток они носят название микроспорогенеза и микрогаметогенеза; при образовании женских половых клеток соответственно - макро- или мега спорогенеза и макро- или -мегагаметогенеза. В основе спорогенеза лежит мейоз - процесс образования гаплоидных клеток. Мейозу, так же как и у животных, предшествует размножение клеток путем митотических делений. Микророспорогенез происходит в специальной ткани пыльника, называемой археспориальной (греч. arche - начало и спора), где в результате митозов возникают многочисленные клетки - материнские клетки пыльцы, которые вступают в мейоз. После двух мейотических делений возникают четыре гаплоидные микроспоры, которые некоторое время лежат рядом, образуя тетрады микроспор, затем тетрады распадаются на отдельные микроспоры - пыльцевые зерна . Каждое пыльцевое зерно покрывается двумя оболочками - внутренней (интина) и внешней (экзина). Затем в нем начинается микрогаметогенез. Он. заключается в двух последовательных митотических делениях. В результате первого образуются две клетки: вегетативная и генеративная. Позднее генеративная клетка претерпевает еще один митоз. Образуются две собственно половые клетки - спермии. Макроспорогенез или мегаспорогенез происходит в тканях семяпочки. В ней обособляется одна или несколько археспориальных клеток. Они усиленно растут и, как следствие, становятся значительно крупнее окружающих их клеток семяпочки. Каждая археспориальная клетка один-два или несколько раз делится митозом, а может и сразу превратиться в материнскую клетку макроспоры. В ней происходит мейоз, образуются четыре гаплоидные клетки. Одна из них (обычно самая крупная) развивается в зародышевый мешок, а три постепенно дегенерируют (вспомните редукционные тельца в оогенезе животных).

На этом макроспорогенез заканчивается, начинается макрогаметогенез или мегагаметогенез . Во время гаметогенеза происходит несколько митотических делений (у большинства покрытосеменных растений их три). Митозы не сопровождаются цитокинезом. После трех делений образуется восьмиядерный зародышевый мешок . В дальнейшем ядра обособляются в самостоятельные клетки, которые распределяются в зародышевом мешке следующим образом. Одна из них, являющаяся собственно яйцеклеткой, вместе с двумя клетками - синергидами располагается у микропиле в месте, где происходит проникновение спермиев. При этом проникновении синергиды играют существенную роль, так как содержат ферменты, способствующие растворению оболочек пыльцевых трубок. Три клетки располагаются в противоположной части зародышевого мешка, их называют антиподами . Антиподы выполняют функцию передатчика питательных веществ из семяпочки в зародышевый мешок. Две оставшиеся клетки занимают центральное место в зародышевом мешке и очень часто сливаются, образуя диплоидную центральную клетку. Когда в завязь проникнут два спермия, один из них сольется с яйцеклеткой, дав начало диплоидному зародышу. Другой соединится с центральной диплоидной клеткой. Образуется триплоидная клетка, из которой очень быстро возникнет эндосперм - питательный материал для развивающегося зародыша . Этот процесс, характерный для всех покрытосеменных, открыт в конце прошлого века С.Г. Навашиным и получил название двойного оплодотворения . Значение двойного оплодотворения, по- видимому, заключается в том, что обеспечивается активное развитие питательной ткани уже после оплодотворения. Поэтому семяпочка у покрытосеменных не запасает питательных веществ впрок и, следовательно, развивается гораздо быстрее, чем у многих других растений, например у голосеменных.

У Покрытосеменных растений спорогенез, гаметогенез и оплодотворение представляют собой непрерывную последовательность репродуктивных процессов, происходящих в цветках. В типичных цветках репродуктивные органы представлены гинецеем (совокупностью плодолистиков, образующих женскую репродуктивную сферу) и андроцеем (совокупностью тычинок, образующих мужскую репродуктивную сферу).

Мегаспорогенез, образование зародышевого мешка и яйцеклетки

Мегаспорогенез протекает в женской репродуктивной сфере – в гинецее. Морфологически гинецей представлен пестиком (или несколькими пестиками). В состав отдельного пестика входят: завязь, столбик и рыльце. Внутри завязи находятся семязачатки (один или несколько). Внутреннее содержимое семязачатка называется нуцеллус; снаружи семязачаток окружен покровами (одиночным или двойным интегументом). В нуцеллусе семязачатка (2n) содержится одна археспориальная клетка, способная делиться путем мейоза (у некоторых растений археспорий многоклеточный). В результате мейоза из археспориальной клетки (материнской клетки мегаспор) образуется четыре мегаспоры. Вскоре три из них отмирают, а одна увеличивается в размерах и трижды делится путем митозов. В результате образуется восьмиядерный зародышевый мешок (женский гаметофит). Три ядра вместе с прилегающей цитоплазмой образуют клетки-антиподы, два ядра – одно центральное диплоидное ядро; два ядра – две клетки-синергиды; одно ядро становится ядром яйцеклетки.

Микроспорогенез и образование пыльцевых зерен

Микроспорогенез протекает в мужской репродуктивной сфере – в андроцее. Каждый элемент андроцея – тычинка – состоит из тычиночной нити и пыльника. Внутри пыльника имеются пыльцевые гнезда, содержащие археспориальную ткань. В археспориальной ткани пыльников из каждой диплоидной материнской клетки микроспор в результате мейоза образуется четыре микроспоры. Каждая микроспора делится путем митоза и образуется двухклеточное пыльцевое зерно: одна клетка называется генеративной (в дальнейшем на ее основе образуются спермии), вторая – вегетативной (это остаток вегетативных клеток мужского гаметофита). Зрелое пыльцевое зерно покрыто двойной оболочкой: экзиной (внешней) и интиной (внутренней).

Опыление – это процесс переноса пыльцы из пыльников на рыльце пестика. Существует два основных типа опыления: самоопыление и перекрестное опыление. При самоопылении происходит перенос пыльцы в пределах одного цветка, а при перекрестном опылении пыльца из пыльников одного цветка переносится на рыльце пестика другого цветка.

Для более точной характеристики опыления с точки зрения генетики используются специальные термины: клейстогамия (самоопыление в нераскрывшемся цветке), автогамия (самоопыление в раскрывшемся цветке), гейтоногамия (перенос пыльцы из пыльника одного цветка на рыльце пестика другого цветка в пределах одного растения), аллогамия (перенос пыльцы из пыльника цветка одного растения на рыльце пестика цветка другого растения). Таким образом, лишь аллогамия является собственно перекрестным опылением, а остальные типы опыления тождественны самоопылению.

Образование пыльцевой трубки и спермиев

В результате опыления пыльцевое зерно попадает на рыльце пестика и прорастает в пыльцевую трубку (мужской гаметофит). В пыльцевой трубке ядро генеративной клетки делится путем митоза, образуя два генеративных ядра. (У ряда растений деление генеративной клетки происходит еще в пыльниках). Каждое генеративное ядро с прилежащим слоем цитоплазмы называется спермием.

Двойное оплодотворение, образование зародыша и семени

Пыльцевая трубка внедряется в ткани столбика и растет в направлении завязи, при этом на вершине пыльцевой трубки находится вегетативное ядро, а за ним движутся оба спермия. Затем пыльцевая трубка проникает в семязачаток через пыльцевход – микропиле (у некоторых растений существует халазогамия – проникновение пыльцевой трубки в семязачаток через его ножку – халазу). Далее пыльцевая трубка лопается, ее содержимое изливается в зародышевый мешок, и происходит двойное оплодотворение. Один спермий сливается с ядром яйцеклетки, и образуется диплоидная зигота. Другой спермий сливается с центральным диплоидным ядром зародышевого мешка, и образуется триплоидное ядро эндосперма. Все остальные ядра зародышевого мешка и вегетативное ядро пыльцевого зерна – разрушаются.

Из диплоидной зиготы развивается зародыш, а из триплоидного центрального ядра – эндосперм. Происходит формирование семени, включающего зародыш, эндосперм и семенную кожуру, которая образуется из покровов семязачатка.

Домашние и дикие растения, их описание и выращивание; болезни и вредители. Интересные сведения из ботаники и других областей науки. Доклады для школьников. Природа Приморского края (растения и животные). История, культура, достопримечательности Владивостока и России в целом.

Вечерний Владивосток / улица Адмирала Фокина

Вечерний Владивосток / улица Адмирала Фокина

  • Главная страница
  • Всё о бегониях
  • Всё о бегониях - 2
  • Список бегоний - 1
  • Список бегоний - 2
  • Список бегоний - 3
  • Список бегоний - 4
  • Список бегоний - 5
  • Список бегоний - 6
  • Список бегоний - 7
  • Список бегоний - 8
  • Список бегоний - 9
  • Мои растения
  • Доклады
  • В помощь цветоводам, садоводам и огородникам
  • Опознавалка бегоний и других растений
  • Дизайн в саду и дома
  • Комнатные растения
  • Садовые растения
  • Растения по алфавиту
  • Растения по алфавиту (2)
  • Приморский край
  • Приморский край - 2
  • Латынь в ботанике
  • Биология
  • Ботаники
  • История и культура
  • Интересное
  • Вопрос-ответ

воскресенье, 10 мая 2020 г.

Споры растений, спорогенез, спорангий, спорофит


Спора (греч. spora - "семя", "сев") - обычно одноклеточное образование, служащее для бесполого размножения и способное развиваться во взрослую особь, то есть из спор без слияния их друг с другом могут развиваться самостоятельные организмы.

Споры в том или ином виде образуют все растения. Процесс их образования называется спорогенезом , а клетка или орган, в котором они формируются, носит название спорангия .

Спорофит - бесполое поколение у растений, представленное диплоидной фазой и развивающееся из зиготы. Процесс его формирования неодинаков у различных групп растительных организмов. У водорослей и багрянок зигота чаще всего без периода покоя начинает превращаться во взрослую особь. Однако у высших растений, большинство из которых ведёт наземный образ жизни, зигота вначале превращается в зародыш.

Как правило, спорофит имеет диплоидное число хромосом и только у водорослей и некоторых грибов споры могут образовываться и гаплоидными особями.

Очень часто споры окружены специальной оболочкой и способны длительно переносить неблагоприятные условия, например зиму или период засухи.

Поскольку споры очень легки, они свободно переносятся по воздуху ветром или другими агентами и служат для расселения растений.

Споры прорастают немедленно при поступлении в клетку влаги.

Споры водных растений обычно имеют ундулиподии и способны активно перемещаться.

Двигательные приспособления подвижных эукариотических клеток получили название ундулиподиев , закрепляющихся в клетке с помощью особых телец кинетосом .

Электронная микроскопия выявила структурное сходство всех ундулиподиев эукариотических организмов и резкие их отличия от жгутиков прокариот.


1. Спорангии и спорогенез у низших растений:

Споры могут образовываться без редукционного деления на спорофите , реже на гаметофите и тогда имеют то же число хромосом, что и материнское растение.

Либо, претерпевая спорическую редукцию, споры образуются путем мейоза . В этом случае на диплоидном спорофите образуются гаплоидные споры .

Образование спор без редукционного деления на спорофите или гаметофите встречается у примитивных организмов довольно часто. Для целого ряда грибов характерно бесполое размножение спорами , образующимися на гаплоидном мицелии. Такие споры развиваются либо в спорангиях ( спорангиоспоры ), либо, называясь конидиями , отпочковываются верхушкой приподнимающейся специализированной гифы, так называемым конидиеносцем .

А - конидии у несовершенных грибов пенициллина , Б - споры у зигомицетов мукора , В - гаплоидные зооспоры у бурых водорослей .

1 - конидии, 2 - конидиеносец, 3 - вскрывшийся спорангий, 4 - спорангиеносец, 5 - споры, 6 - гаплоидный таллом (гаметоспорофит), 7 - спорангии, 8 - гаплоидные зооспоры, дающие начало новым гаплоидным талломам; гаметофит - n.

Нередко гаметофиты бурых , а иногда и других водорослей образуют гаплоидные зооспоры , развивающиеся в аналогичные гаметофиты .

Гаметофиты , образующие споры , в таких случаях называют гаметоспорофитами . Их спорангии представляют обычно одну клетку, в которой развивается один зооспорангий . В определённых условиях зооспоры , образованные гаметоспорофитами , могут попарно сливаться и образовывать зиготу , представляя изогамный половой процесс.

Образование спор у диплодных организмов, происходящее без редукции числа хромосом, также встречается довольно широко. Такое спороношение очень характерно, например, для определённых стадий жизненного цикла некоторых паразитических грибов . Многие из таких грибов , имеющих на протяжение большей части своей жизни диплоидный мицелий, размножаются преимущественно диплоидными спорами .

Диплоидные споры могут иметь плотную оболочку и распространяться в воздушной среде, а у водных организмов они чаще имеют ундулиподии и называются зооспорами . Диплоидные зооспоры образуются иногда и на спорофите бурых и некоторых других водорослей . Из них тогда развиваются новые особи спорофитов .

Развиваются диплоидные споры у низших растений либо в клетках, не отличающихся по форме от других клеток организма, либо в спорангиях , которые более или менее сильно отличаются от вегетативных клеток по форме и размеру.

Спорангии обычно развиваются из одной клетки, однако у бурых водорослей они изредка образуются и несколькими клетками. Это так называемые многогнёздные спорангии. Все их клетки при созревании превращаются в споры .

А - диплоидные зооспоры в одноклеточном спорангии у оомицеты - водной плесени сапролегнии , Б - диплоидные споры у бурой водоросли в многоклеточном спорангии, В - гаплоидные зооспоры у бурой водоросли .

1 - диплоидный мицелий, 2 - стенка спорангия, 3 - выходящие из спорангия зооспоры, 4 - диплоидный таллом, 5 - многоклеточные (многогнёздные) спорангии на разных стадиях развития, 6 - клетки диплоидного таллома, 7 - одноклеточный спорангий, 8 - гаплоидные зооспоры, выходящие из спорангия, 9 - слизь; гаметофит - n, спорофит - 2n.

У большинства водорослей при образовании спор на диплоидном слоевище происходит редукция числа хромосом вследствие мейоза . Такие гаплоидные споры дают начало гаметофиту , на котором образуются половые органы.

Очень редко, например у некоторых бурых водорослей , гаплоидные споры , образуемые спорофитом , функционируют как гаметы .

Гаплоидные, как и диплоидные, споры образуются в одноклеточных спорангиях и обычно снабжены ундулиподиями . Как и подвижные жгутиковые диплоидные споры , они называются зооспорами .

Гаплоидные споры , образовавшиеся на спорофите и дающие начало гаметофиту , могут быть одинаковыми, или диморфными.

Гаметофиты равноспоровых организмов обычно развивают и мужские, и женские половые органы на одном растении.

Гаметофиты разноспоровых организмов, развиваемые микроспорами, образуют, как правило, только мужские гаметы , а гаметофит , развивающийся из мегаспоры , образует женские половые клетки - яйцеклетки .

У низших растений спорофит и гаметофит в жизненном цикле сосуществуют в разной степени доминирования, а у высших растений, за исключением мхов , гаметофит всё более и более редуцируется.

Презентация на тему: " Пименов А.В. Размножение цветковых растений Задачи: 1.Изучить особенности строения цветка; 2.Определить основные этапы спорогенеза и гаметогенеза цветковых." — Транскрипт:

1 Пименов А.В. Размножение цветковых растений Задачи: 1.Изучить особенности строения цветка; 2.Определить основные этапы спорогенеза и гаметогенеза цветковых растений.

2 У цветковых спорофит – листостебельное растение.(2 n). Спорофит образует споры (n). Споры морфологически различные, в тычинках образуются микроспоры, в пестиках – мегаспоры, значит цветковые – разноспоровые растения. Что же образуется из микро- и мегаспор? Половое размножение связано с образованием и слиянием гамет. Где образуются гаметы? В цветке. Где образуются мужские, а где женские гаметы? В пестике, в семязачатке – женские, в пыльцевых зернах – мужские. При слиянии гамет образуется зигота, из которой развивается диплоидный спорофит. Половое размножение цветковых

3 Микроспоры более мелкие споры, формирующиеся в микроспорангиях, из них вырастают мужские гаметофиты; мегаспоры более крупные споры, формирующиеся в мегаспорангиях, из них вырастают женские гаметофиты. Половое размножение цветковых

6 Строение цветка: 1. Цветоножка 2. Цветоложе 3. Чашечка из чашелистиков 4. Венчик из лепестков 5. Пестик 6. Тычинки 3+4. Двойной околоцветник Главные части цветка: Андроцей – совокупность тычинок (дом для мужчин). Гинецей – совокупность пестиков (дом для женщин). Цветок – видоизмененный побег, предназначенный для образования спор и полового размножения, заканчивающегося образованием семян и плодов. Морфология цветка

7 Гинецей образован плодолистиками, образующими один или несколько пестиков. В пестике различают: рыльце, столбик, завязь. Функции? Морфология цветка

8 Олимпиадникам В настоящее время разделяют три вида гинецеев: 1) Монокарпный гинецей состоит из единственного пестика с краевой плацентацией. 2) Апокарпный гинецей состоит из множества самостоятельных пестиков, отличается краевой плацентацией. 3) Ценокарпный гинецей состоит из нескольких сросшихся пестиков. Выделяют три разновидности ценокарпного геницея: синкарпный несколько сросшихся стенками пестиков, плацентация центрально-угловая; паракарпный то же, но стенки пестиков не сохранились, плацентация постенная; лизикарпный отличается от паракарпного колончатой (центральной) плацентацией.

9 Мегагаметогенез. Ядро споры претерпевает три митотических деления и образуется восьмиядерная клетка. 3 ядра отходят к одному полюсу и образуется яйцеклетка (n) и две синергиды (n), 3 ядра – к другому полюсу – антиподы (n), два ядра в центре сливаются – образуется центральная клетка (2n). Образуется женский гаметофит – зародышевый мешок (7 клеток). В завязи пестика –семязачаток (семяпочка). Может быть несколько – сколько семян, столько и семяпочек. Мегаспорогенез. Центральная часть семязачатка – нуцеллус, окруженный интегументами. Одна из его клеток (2n) претерпевает мейоз и образуется 4 споры (n), из которых 3 отмирают, так образуется мегаспора (n). Морфология цветка

11 Микрогаметогенез – процесс превращения микроспор в мужские гаметофиты. Ядро споры делится митотически, образуется двуядерная клетка с вегетативным и генеративным ядром. Из генеративной позже образуются два спермия. Оболочка пыльцевого зерна представлена двумя оболочками – экзиной и интиной. Микроспорогенез. На каждой тычиночной нити находится пыльник, состоит из 2 половинок, в каждой два пыльцевых гнезда – микро-спорангия. В них из микроспороцитов (2n) в результате мейоза образуются микроспоры (n). Микроспорогенез, микрогаметогенез

12 Попав на рыльце пестика, под воздействием веществ, выделяемых пестиком, пыльца начинает прорастать. Она набухает, и ее содержимое, одетое интиной, начинает выпячиваться через поры экзины. В результате вегетативная клетка образует пыльцевую трубку, внедряющаяся в ткань рыльца. Кончик пыльцевой трубки растворяет ткани рыльца и столбика. Микроспорогенез, микрогаметогенез

13 Один из спермиев сливается с яйцеклеткой, образуя диплоидную зиготу из который развивается зародыш семени; Второй с центральным ядром зародышевого мешка, образуя триплоидное ядро, из которого формируется эндосперм. Синергиды и антиподы дегенерируют. Этот процесс получил название двойного оплодотворения. Двойное оплодотворение

15 Из интегументов образуется семенная кожура. Из всего семязачатка – семя. Из стенок завязи – околоплодник. В целом из завязи пестика – плод с семенами. Открыто двойное оплодотворение в 1898 году русским ботаником С.Г.Навашиным. Двойное оплодотворение

16 Подведем итоги: Строение цветка: 1. Цветоножка 2. Цветоложе 3. Чашечка из чашелистиков 4. Венчик из лепестков 5. Пестик 6. Тычинки 3+4. Двойной околоцветник Главные части цветка: Андроцей – совокупность тычинок (дом для мужчин). Гинецей – совокупность пестиков (дом для женщин).

18 Подведем итоги: Мужской гаметофит цветковых растений представлен: Пыльцевым зерном. Генеративная клетка пыльцевого зерна делится и образует : Два спермия. Семязачаток снаружи защищен: Интегументами. Женский гаметофит цветковых растений представлен: Зародышевым мешком. Двойное оплодотворение было открыто русским ученым: С.Г.Навашиным. Зародыш семени развивается: Из оплодотворенной яйцеклетки. Эндосперм образуется из: Триплоидного центрального ядра. Кожура семени образуется из: Интегументов. Околоплодник формируется из: Стенок завязи. Спорофит цветковых растений: Листостебельное растение. Мейоз у цветковых и всех высших растений происходит: При образовании спор.

У растений и животных пути образования гамет различаются. У растений половые клетки возникают путем деления соматических клеток, по-другому митозом. У животных же помимо митоза есть и мейоз.

Гаметогенез растений

Перед самим процессом образования гамет в пыльниках тычинок образуются микроспоры. Образование мужских половых клеток непосредственно связано с делением материнской клетки путем митоза. Так, из одной клетки получаются четыре микроспоры, каждая из которых имеет гаплоидный набор хромосом. После этого происходит деление одной из получившихся спор с образованием мужского гаметофита. Он, в свою очередь, состоит из большой вегетативной и маленькой генеративной клетки. После деления гаметофит покрывается плотной оболочкой и образует пыльцевое зерно. Иногда, в процессе созревания пыльцы или же после переноса её на рыльце пестика, маленькая генеративная клетка делится митозом, в результате которого образуется две неподвижные мужские половые клетки, называемые спермиями. Из вегетативной же клетки, после опыления, образуется пыльцевая трубка, способствующая проникновению спермиев в завязь пестика для оплодотворения.

Образование мужских половых клеток

Рис. 1 Образование мужского гаметофита

Образование женских половых клеток у растений называется мегагаметогенезом. Этот процесс происходит в завязи пестика, предшествующий процесс – мегаспорогенез, вследствие которого из мегаспоры материнской клетки путём двух последовательных мейотических делений образуется четыре мегаспоры. Одна из этих мегаспор три раза делится митозом, при этом получается зародышевый мешок с восемью ядрами, называющийся женским гаметофитом. После, цитоплазмы дочерних клеток обособляются, и одна из образовавшихся клеток становится яйцеклеткой, по бокам которой расположены синергиды, на противоположном конце зародышевого мешка образуются три антипода, в центре же формируется диплоидная центральная клетка, возникшая в результате слияния двух гаплоидных ядер.

Образование женского гаметофита

Рис. 2 Образование женского гаметофита

Развитие половых клеток у животных

Существуют два процесса образования половых клеток у животных, сперматогенез (образование мужских половых клеток) и овогенез (образование женских половых клеток).

У человека сперматогенез осуществляется в семенниках (по-другому яичках) и подразделяется на четыре следующих друг за другом периода: размножение, рост, созревание и окончательное формирование.

Период размножения характеризуется тем, что первичные половые клетки делятся путём митоза, в результате чего, вначале образуется диплоидные сперматогонии. Во время роста сперматогонии накапливают в цитоплазме питательные вещества, размеры их увеличиваются и они преобразуются в первичные сперматоциты, которые также называют сперматоциты первого порядка. После этого, начинается период созревания, в котором они вступают в мейоз. Результатом произошедшего мейоза является образование сначала двух вторичных сперматоцитов, или сперматоцитов второго порядка, с последующим образованием четырёх гаплоидных клеток с большим количеством цитоплазмы – сперматид. В период формирования сперматиды формируют жгутик, превращаясь в сперматозоиды, утрачивая при этом почти всю цитоплазму.

Сперматозоиды – это очень мелкие подвижные мужские половые клетки, они состоят из головки, шейки и хвостика.

В головке имеется ядро и акросома, представляющая собой видоизменённый комплекс Гольджи, который обеспечивает в процессе оплодотворения растворение оболочки яйцеклетки. Шейка сперматозоида является местонахождением центриолей клеточного центра. Основа хвостика образована микротрубочками, которые и обеспечивают движение сперматозоида, также в нём находятся митохондрии, синтезирующие энергию АТФ для движения сперматозоида.

Образование женских половых клеток. Овогенез.

У человека процесс образования яйцеклеток (овогенез) происходит в яичниках.

Яйцеклетка – крупная половая клетка, содержащая гаплоидный набор хромосом и большое количество запасных питательных веществ, необходимых для последующего развития зародыша. Она покрыта четырьмя оболочками для предотвращения повреждения её различными факторами.

Овогенез проходит в три стадии, или периода, которые соответственно называются: размножения, роста и созревания. Периоды размножения и роста происходят ещё во внутриутробном состоянии организма человека. Из первичных половых клеток формируются диплоидные оогонии, превращающиеся затем в диплоидные ооциты первого порядка, или первичные ооциты. Далее следует период созревания, с протекающими в нём процессами митоза и цитокинеза. Этот период характеризуется неравномерным делением цитоплазмы материнской клетки, поэтому, вначале формируется один ооцит второго порядка, или вторичный ооцит, после чего из вторичного ооцита образуется яйцеклетка. Яйцеклетка имеет большой запас питательных веществ и сохраняет второе полярное тельце. Первое же полярное тельце делится на две части. Образовавшиеся полярные тельца забирают избыток наследственного материала.

Сперматогенез и овогенез

Рис. 3 Сперматогенез и овогенез

Деление клетки как основа размножения, индивидуального развития организмов. Роль митоза и мейоза

Деление клеток – это основной процесс, который лежит в основе размножения, роста и развития всех живых организмов. В результате деления из одной материнской клетки образуется две дочерних идентичных материнскому организму клетки. Рост различных органов и тканей растений и животных возможен только благодаря процессу деления.

Роль митоза. Основным способом деления клетки является митоз. Его биологическое значение в том, что этот процесс лежит в основе роста и вегетативного размножения всех организмов, которые имеют в составе клетки ядро (эукариоты). Благодаря митозу, число хромосом в клеточных поколениях остаётся постоянным, таким образом, дочерний организм получает точно такой же набор хромосом, следовательно, такой же генетический материал, который содержался в ядре материнской клетки.

Роль мейоза. Биологическое значение мейоза заключается в том, что этот процесс поддерживает постоянное число хромосом при наличии полового процесса. Важным является то, что в процессе мейоза происходит кроссинговер, в результате которого происходит обмен генетической информацией и появление в хромосомах новых наследственных признаков. Таким образом, мейоз обеспечивает свойства комбинативной изменчивости, результатом которой служат новые сочетания признаков при дальнейшем оплодотворении.

Эти два процессы играют важнейшую роль в жизнедеятельности каждого организма. Именно они лежат в основе онтогенетического и филогенетического развития живых организмов.

Читайте также: