Посадка патрона на шпиндель

Добавил пользователь Валентин П.
Обновлено: 18.09.2024

Шпиндельная оснастка фрезерных станков. Особенности и сравнительный анализ.

Если сравнивать отдельные системы инструментальных оправок , их технические характеристики и их сопряжение со шпинделем станка, становится ясным, что оптимальной системы инструментальной оправки для всех случаев применения не существует. Выбор системы ― это всегда уникальное решение, которое зависит от множества параметров. Инструментальная оправка не может рассматриваться как изолированная часть, ее необходимо рассматривать во взаимодействии со всей системой, состоящей из зажима заготовки, инструмента, инструментальной оправки, шпинделя и станка. В качестве крайнего сопряжения с обрабатываемой деталью, инструментальная оправка играет важную роль не в последнюю очередь потому, что способна хотя бы частично компенсировать слабые стороны всей системы.

Выбор идеальной системы инструментальной оправки должен происходить в несколько этапов. Во-первых, очень важно определить основные критерии, существенно влияющие на общую стабильность процесса. Сюда входят требуемое усилие зажатия, радиальная жесткость, выступающий контур и, если учитывается, стабильность в высокоскоростных применениях. На втором этапе центр внимания сосредотачивается на критериях качества, влияющих на качество, точность и производительность технологического процесса. Сюда входят точность обработки и повторяемость, качество балансировки, поглощение вибраций, подача охлаждения и возможность настройки длины. И наконец, на третьем этапе, рекомендуется рассмотреть экономические критерии в рамках анализа экономической эффективности инвестиций, критерии "затраты-выгоды" (то есть оценку затрат, срока службы, гибкости и возможности повторного использования, а также затрат на выполнение предстоящих операций).

Базовые критерии жизненно важны для стабильности процесса
Зажимное усилие инструментальной оправки определяет, до какой степени момент на сопряжении оправки и инструмента будет контролируемым. Если зажимное усилие достаточно по величине, то зацепление режущей кромки инструмента с материалом будет равномерным. Если усилие недостаточно, инструмент начнет проворачиваться в оправке, и рез будет нестабильным. В крайних случаях инструмент может быть полностью выброшен из оправки. Последние технологические разработки позволяют увеличить усилия зажатия гидравлических зажимных патронов до такого уровня, что стала возможной даже силовая механическая обработка деталей. Имея диаметр 20 мм, современные гидравлические зажимные оправки способны передавать моменты величиной до 900 Нм.

Высокая радиальная жесткость обеспечивает значительные усилия резания (например, большие величины и высокие скорости подачи инструмента). Поэтому она является важным критерием в случае силовой обработки, поскольку оказывает решающее влияние на время обработки и, тем самым, на производительность, а также на возможный вылет инструмента. Радиальная жесткость зависит от свойств материала инструментальной оправки (модуля Е) и его обработки, от геометрической формы оправки и от способа ее встраивания в общую систему станка, в частности, от сопряжения со шпинделем станка. Проще говоря: чем короче инструментальная оправка, чем больше ее диаметр, тем более однородной является система, состоящая из инструмента и его крепления, тем прочнее крепление инструмента и тем шире опора для держателя на шпинделе, и, следовательно, больше радиальная жесткость.



Если заготовки обрабатываются на современных 5-осевых станках всего за два шага зажатия, доступ к заготовке играет существенную роль. Для этого необходимы тонкие инструментальные оправки, способные передавать достаточно высокий момент, обеспечивая при этом высокую точность обработки детали. В случае необходимости, в особо узких местах, в качестве альтернативы, используются удлинительные вставки, устанавливаемые между инструментом и оправкой. В отличие от инструментальных оправок, оптимально сопрягаемых с интерфейсом шпинделя, удлинители инструмента могут использоваться достаточно гибко. Они доступны с различными технологиями зажатия.

Если во время высокоскоростной резки скорости вращения шпинделя достигают 80 000 об/мин и более, инструментальные оправки должны соответствовать особым условиям с точки зрения геометрии, концентричности, качества балансировки, а также с точки зрения надежности при смене инструмента. Чем меньше диаметр зажатия, тем быстрее не только механические универсальные, но и терморазжимные и гидравлические инструментальные оправки достигают пределов своих возможностей, будь то потому, что доступное пространство недостаточно для соответствующего зажимного механизма или потому, что инструменты таких небольших размеров невозможно надежно заменять или точно регулировать. Другие технологии зажатия, такие как технология полигонального зажатия, которая не содержит подвижных частей, также добиваются признания.



Высокопроизводительные гидравлические зажимные оправки, такие как SCHUNK TENDO E compact, имеют высокие зажимные усилия и могут надежно передавать моменты до 900 Нм, в зависимости от зажимаемого диаметра.

Критерии качества определяют точность и производительность.
Точность выбега: в случае прецизионной обработки точность выбега инструментов и всей приводной системы имеет решающее значение. Они определяют, соответствуют ли требованиям размеры и допуски. Кроме того, точность выбега существенно влияет на износ режущей кромки инструмента и на срок службы шпинделя станка. Если зажимаемый инструмент не вращается соосно к инструментальной оправке, существует опасность возникновения погрешностей, и требуемые размеры заготовки получены не будут. Более того, во время обработки может начаться биение инструмента, что приведет к образованию микроскопических повреждений лезвия и ускорит его износ.

Повторяемая точность: Точность повторения инструментальной оправки показывает, насколько хорошо крепление инструмента может воспроизводить определенные параметры при нескольких последовательных попытках. Для современной прецизионной обработки важна не столько абсолютная точность, сколько точность повторения операций станка, и, следовательно, инструментальной оправки. В современных станках с ЧПУ систематические ошибки могут сравнительно легко компенсироваться с помощью алгоритмов управления станком. Однако это возможно только в том случае, если обеспечивается высокая степень повторяемости, т. е. если все соответствующие отклонения будут в большой степени идентичны. Таким образом, точность повторения инструментальной оправки является решающей при определении того, какая точность в конечном итоге будет достигнута на заготовке.

Качество балансировки: Говоря проще, дисбаланс возникает в том случае, когда масса вращающегося тела распределена неравномерно, то есть либо центр тяжести не находится на оси вращения (статический дисбаланс), либо главная ось инерции не параллельна оси вращения (динамический дисбаланс). Инструментальные оправки часто сочетают в себе статический и динамический дисбаланс. Причинами могут быть: технические особенности конструкции инструментальной оправки или самого инструмента (например, односторонние инструменты); асимметричный дизайн инструментальной оправки (например, расположение установочных канавок или зажимных винтов); асимметричное распределение массы вследствие погрешностей изготовления; несоосность или ошибки при монтаже вращающегося тела. Инструментальные оправки с большой разбалансировкой имеют отрицательные воздействия в нескольких аспектах: более низкое качество поверхности вследствие вибраций на инструментальной оправке; ограниченные скорости резания; снижение точности обработки; более короткий срок службы инструмента; повреждение подшипника станка.

Поглощение вибраций: В зависимости от частотной характеристики отклика всей системы, включающей станок, инструментальную оправку, инструмент, зажим заготовки и заготовку, вибрации возникают во время любого процесса обработки. Они могут оказать значительное влияние на результат обработки и привести к увеличению износа инструмента, поломке инструмента или повреждению станка. Подобно автомобильному амортизатору, инструментальные оправки способны подавлять вибрации и поддерживать плавное и ровное резание, в зависимости от технологии зажатия. Это позволяет снизить уровень шума, улучшить качество поверхности заготовки, продлить срок службы инструмента и защитить шпиндель.

Подача охлаждающей жидкости: охлаждающая смазка выполняет множество функций в процессе механической обработки. Она удаляет стружку, уменьшает тепло и трение, обеспечивает равномерную температуру инструмента и заготовки и соблюдение заданных допусков. В зависимости от типа подачи охлаждающей жидкости, можно различать внешнее, периферийное и внутреннее охлаждение. Внутреннее охлаждение обладает особыми преимуществами: СОЖ поступает точно на режущую кромку, не требуя совмещения сопла подачи охлаждающей жидкости вручную; стружка при этом надежно удаляется из узких и глубоких пазов: даже при сверлении глубоких отверстий режущая кромка будет охлаждаться эффективно. В результате продлевается срок службы инструмента, а показатели процесса тоже значительно увеличиваются.

Производитель SCHUNK представляет интеллектуальный держатель инструмента гидравлического расширения iTENDO, который контролирует процесс обработки непосредственно на инструменте и позволяет в режиме реального времени контролировать параметры резки. Держатель инструмента обеспечивает полное документирование стабильности процесса, мониторинг предельных значений без участия оператора, обнаружение поломки инструмента и контроль скорости вращения и скорости подачи в режиме реального времени. Во время обработки интеллектуальный держатель инструмента постоянно анализирует процесс обработки. Если процесс становится нестабильным, он может быть остановлен в режиме реального времени и без вмешательства оператора, уменьшен до ранее определенных базовых параметров или адаптирован до тех пор, пока срез не вернется к стабильному диапазону.

Экономические критерии влияют на эффективность обработки.
Хотя основные производственные показатели и критерии качества непосредственно определяют процесс обработки и всегда считаются приоритетными, экономические критерии помогают прийти к окончательному решению с экономической точки зрения. Дополнительно к затратам на приобретение инструментальной оправки, необходимо учитывать прямые затраты: срок службы, инвестиции в периферийные устройства, эксплуатационные расходы (смена инструмента, очистка, предварительная настройка длины и обслуживание), гибкость, потребление энергии при смене инструмента и повторное использование креплений. С другой стороны, косвенные затраты играют особенно важную роль. К ним относятся, прежде всего, затраты на инструмент (поскольку срок службы инструмента может значительно отличаться в зависимости от используемой зажимной системы), а также затраты/экономия, связанные с уменьшением или увеличением производительности. В течение срока службы косвенные затраты на инструментальную оправку могут привести к экономии, выражаемой пятизначным числом. Кроме того, в последнее время приобретает быстро растущее значение предотвращение несчастных случаев.

Рассмотрим особенности различной зажимной оснастки (патронов) для обрабатывающих центров.
В литературе (каталогах) можно встретить вот такой сравнительный анализ преимуществ свойств различной шпиндельной оснастки (страница из каталога Schunk)

Токарный патрон — это зажимное устройство, предназначенное для фиксации и центрирования детали в зоне обработки токарного станка.

Они бывают различных типов и модификаций, ниже, мы подробно рассмотрим все возможные варианты патрона.

patron-tokarn

Общая конструкция и устройство токарного патрона для станка по металлу

Вместе с патроном поставляются комплекты:

  • прямых кулачков;
  • обратных кулачков;
  • вне комплекта поставляться кулачковые рейки.

Наиболее распространен трехкулачковый патрон, состоящий из:

  • монолитного или составного корпуса с тремя радиальными пазами для кулачков;
  • кулачки (прямые и обратные) выполнены из качественной твердой, закаленной стали высокой прочности, связаны с торцевой резьбой спирального диска;
  • спирального диска, с большим зубчатым колесом на его обратной стороне. Связан с зубчатой передачей конической шестерни;
  • конических шестерен, вращением ключа, вставленного в квадратное отверстие этой шестерни, спиральному диску сообщается вращательное движение.

Простота технологических приёмов базирования деталей стало причиной популярности и распространения трехкулачкового патрона на станках, применяемых в производстве

Металлический стержень, на одном конце которого перпендикулярно его оси просверлено отверстие с установленным в нем металлическим рычагом. Превышение длины рычага на 35–40 % относительно высоты ключа, является оптимальной.

На нижнем конце стержня выполнен четырехгранный наконечник, соразмерный с отверстием внутри конической шестерни. Служит ручным приводом кулачков посредством вращения спирального диска во время закрепления заготовки в рабочей зоне станка.

patron-tokarn-1

Пружина

Устанавливается на наконечник ключа. По завершении операции, нагрузка от усилий руки на ключ снимается и пружина, распрямляясь, удаляет ключ из гнезда патрона. Если станочник по невнимательности сам не извлекает ключ, то за него это делает пружина.

Втулка

Полый цилиндр, в верхней части которого прорезаны пазы для сухарей-полуколец. Обеспечивает фиксирование конической шестерни в рабочем теле патрона. Во внутренний диаметр втулки устанавливается верхняя часть конической шестерни с канавкой для сухарей-полуколец.

Стопор

Винтовые стопоры фиксируют конические шестерни в корпусе токарного патрона.

Шестерня

Коническая (или малая) шестерня вставлена в малое отверстие корпуса патрона. Её верхняя часть сопряжена с пазами втулки посредством сухарей-полуколец.

Малая шестерня постоянно зацеплена с зубьями большой шестерни и предназначено для передачи вращательного движения спиральному диску патрона.

Фланец

Переходной фланец, планшайба. Предназначен для прочного и точного соединения патрона с рабочим концом шпинделя станка. К примеру, на шпинделе ТВ-4 нарезана резьба, на неё устанавливается переходной фланец (планшайба для токарного патрона), на который крепится токарный патрон.

Спиральный диск

Спираль Архимеда, улитка, планетарка. Металлический диск, на одной стороне исполнены зубья большой шестерни, постоянно зацепленные с зубчатой передачей конической шестерни.

На другой стороне данного диска вырезан профиль спирали, которая в постоянно контактирует с пазами (рейками или гребёнками) кулачков. Последние, синхронно перемещаясь, работают на зажим, центрирование и фиксацию детали в зоне обработки станка.

Извлечение зажатой кулачками детали происходит обратным вращением ключа патрона.

Обратный кулачок

Применяется для зажима деталей больших диаметров. У каждого кулачка имеются две ступени для крепления деталей на разжим и по одной призме, работающие на сжим.

Ступени кулачков используются для устранения торцевого биения детали. Кроме этого, станочники самостоятельно создают на обратных кулачках дополнительную крепящую базу, работающую на разжим.

Прямой кулачок

Для зажима деталей меньшего диаметра используются прямые кулачки

Корпус

В зависимости от конструкции и способов крепления к шпинделю условно можно разделить на монолитный (корпус – одна базовая деталь) и составной, в котором корпус разделён на две базовые детали:

  1. Монолитный с цилиндрическим пояском. Крепится на шпиндель через промежуточный фланец по специальным ГОСТ. Выполняется из качественной стали и реже из чугуна.
  2. Составной корпус. Базовая деталь разделена на две составные части:
  • передняя часть или корпус (иногда – передний полукорпус), в нем размещен спиральный диск и прорезаны пазы для кулачков;
  • задняя часть или фланец (часто – задний полукорпус), в нем размещены конические шестерни.

Накладные кулачки

Основные варианты конструкции

Есть несколько вариантов конструкции патрона для токарного станка, ниже мы коротенько их рассмотрим.

Рычажный

До недавнего времени были популярными типами креплений в токарных станках. Действия основаны на смещении кулачков посредством двуплечего рычага.

patron-tokarn-rich

Основная характеристика этого типа патронов определяется количеством фиксирующих кулачков и степенью их смещения на рабочем диске. Положение заготовки в рабочей зоне настраивается сложно, особенно при нестандартной обработке.

Клиновой

Внутри патрона вместо спирального диска установлено клинореечное устройство, посредством которого происходит смещение кулачков и крепление обрабатываемой детали.

Исполняется из особо прочных сталей, способных обеспечить неизменность фиксирующих параметров патрона, его бесперебойную и безопасную работу при высоких оборотах тел вращения.

patron-tokarn-rkin

Мембранный

Мембранный патрон. Шток пневмо- или гидропривода давит на мембрану патрона и прогибает её. Прогиб мембраны разжимает губки патрона на доли миллиметра, и заготовка устанавливается до упора в штифты. При отключении привода мембрана возвращается в исходное положение и губки сжимаются, закрепляя заготовку.

Во время обработки заготовка удерживается упругостью мембраны, а большое число кулачков центрируют заготовку с точностью до сотых долей миллиметра. Применяется при чистовой обработке на низких оборотах с мелким сечением снимаемой стружки.

patron-tokarn-memb

Классификации

Условно делятся на две группы:

  1. Кулачковые. Подвижные сегменты (кулачки), производят фиксацию детали. Отличаются друг от друга конструкцией и назначением.
  2. Цанговые. В зависимости от принятия рабочего положения цанговый патрон для токарного станка, закрепляющей деталь в нужном положении, токарные патроны этого типа различают:
  • с выдвижной цангой;
  • неподвижной цангой;
  • втягиваемой цангой.

Двухкулачковый

Самоцентрирующиеся двухкулачковые патроны. Все детали изделия производятся из стали, подвижные части подвергаются термообработке, что увеличивает их прочностные характеристики и износостойкость.

patron-tokarn-2h

Обеспечивают самоцентрирование и фиксацию необработанных поверхностей заготовок. Размеры рабочего диаметра патрона стандартизированы и варьируются от 125 до 400 мм.

Применяется патрон для крепления:

  • сложных фасонных деталей;
  • нецилиндрических и несимметричных заготовок.

Трехкулачковый

Механизм фиксации 3-кулачкового патрона производится:

  • с реечным механизмом;
  • со спиральным диском.

patron-tokarn-3h

Реечный

Точнее, патрона со спиральным диском, имеет более мощный зажим заготовки. Может применяться в мелкосерийном или штучном производстве.

Четырехкулачковый

Четырехкулачковый патрон применяется при обработке несимметричных заготовок. Позволяет проточить деталь вне центра или при расточке отверстий по разным осям.

Изделие крепится двумя парами независимых держателей во взаимоперпендикулярных плоскостях и обеспечивает полное совпадение оси шпинделя с обрабатываемой поверхностью.

Кулачок может быть цельным или сборным. Патрон со сборным кулачком имеет основание и насадной кулачок. Сборный кулачок размещен в пазе основного элемента и имеет свободное радиальное перемещение без потери устойчивости.

patron-tokarn-4h

Этим обеспечивается двойное шпоночное крепление. Преимущество конструкции в жесткости фиксации и простоте применения.

Шестикулачковый

Усилие фиксации распределяется между шестью кулачками, что позволяет крепить тонкостенную деталь без опасений её разрушения или деформирования.

patron-tokarn-6h

Классы точности

Классификация станков по степени точности. Станки разделены на 5 классов:

  • Н – станки нормальной точности;
  • П – станки повышенной точности;
  • В – станки высокой точности;
  • А ̶ станки особо высокой точности;
  • С – сверхвысокая точность.

В обозначение модели может входить буква, характеризующая точность станка: 16К20П — токарно-винторезный станок повышенной точности.

Материалы изготовления

Корпус токарного патрона изготавливается из чугуна или из закаленной стали. Патрон со стальным корпусом позволяет работать на увеличенных оборотах.

Чугун

Из-за низкой устойчивости к резким механическим нагрузкам, по качественным показателям должен быть не ниже, чем у марки СЧ 30.

Сталь

Конкретное применение марок сталей ГОСТом не предусмотрено, производитель сам выбирает марку стали. Однако, наиболее распространённые стали должны иметь пределы прочности σB не менее 500 МПа и термической обработкой рабочих поверхностей до твердости не менее 43 HRC (с).

Основные размеры и обозначения

Размеры трехкулачковых патронов. Нормируется по ГОСТ 2675-47:

  • номинальный диаметр: от 80 (мм) до 630 (мм);
  • внутренний диаметр: от 16 (мм) до 190 (мм);
  • ширина: от 50 (мм) до 125 (мм);
  • ширина кулачков: от 12 (мм) до 60 (мм).

Размеры четырехкулачковых патронов:

  • диаметр патрона: от 80 (мм) до 1000 (мм);
  • наружный диаметр присоединительного конуса: от 82.563 (мм) до 285.775 (мм);
  • размер шпинделя станка: от 5 (мм) до 15 (мм);
  • диаметр проходного отверстия: от 40 (мм) до 200 (мм).

Обозначения патронов иностранного производства читаются в соответствии с их принятых норм и доступны в печати для расшифровки. Например:

Патрон токарный 3–200.33.14 П

  • [3] — количество кулачков;
  • [200] — наружный диаметр патрона, мм;
  • [33] — характеристика, определяемая типом, исполнением, наружным диаметром патрона;
  • [14] — Модификация;
  • [П] — класс точности.

Как выбрать

Чтобы правильно выбрать токарный патрон необходимо учесть несколько важных моментов:

Не обладая четкого представления об изложенной выше информации, нельзя считать себя готовым к приобретению токарного патрона, как важного узла станка.

Нужно понимать, что качество и производительность токарного станка влияют на качество и производительность труда и материальное состояние.

Как собрать по чертежам самостоятельно

Для работы по металлу новичку собрать самопальный патрон можно, но весь процесс станет головной болью из-за поисков, нестыковок, ошибок и т. д. Сделать токарный патрон для обработки дерева гораздо доступнее, хотя и не проще, как может показаться.

Прежде всего – чтобы работа шла, необходимо создать подробный сборочный чертёж с чертежами деталировки. За чертежами, потянутся мероприятия. Без чертежей и плана действий чего-либо путного достичь вряд ли удастся, ибо всякий, кто действует без плана, действует долго и плохо.

Затем начинается процесс сбора комплектующих и материалов. Процесс воплощения идей самый трепетный и несёт в себе мощную струю самообновления. А удачное завершение становится очередным благоприятным этапом в творческой жизни.

Всех пользователей дрелей рано или поздно касаются такие вопросы, связанные со сверлильным патроном:

  • какое максимальное по диаметру хвостовика сверло он может зажать
  • какое минимальное по диаметру хвостовика сверло он может зажать
  • какое у него посадочное место

Первый и второй пункты будут интересовать при необходимости использовать сверла или насадки тех или иных диаметров. А третий — при возникновении потребности в замене патрона.

В этой статье будет четко рассказано про все размеры сверлильных патронов для дрели, чтобы помочь пользователям разобраться в данных вопросах. Отмечу, что все нижесказанное одинаково относится как к быстрозажимным, так и к ключевым патронам.

Максимальный диаметр хвостовика сверла

Данный размер показывает, насколько широко раскрываются зажимные губки у патрона.

По этому параметру патроны для дрелей могут иметь следующие максимальные размеры:

При этом первые три размера — это очень большая редкость. Остальные диаметры встречаются гораздо чаще.

Нетрудно догадаться, что максимальный зажимаемый диаметр хвостовика для той или иной дрели производитель подбирает, исходя из ее мощности и габаритов. Было бы нелепо устанавливать на маленькую дрель в 300 Вт патрон на 16 мм, как и на киловатную модель патрон на 10 мм. Хотя осуществить такое вполне можно, так как, к примеру, есть киловатные дрели с посадочным местом на 1/2″, где изначально стоит патрон с зажимом на 16 мм, а есть и патроны на 10 мм с такой же посадкой. Ну, а о посадках будет сказано ниже в соответствующем разделе.

Касаемо максимального диаметра зажима, то этот вопрос начинает тревожить пользователя, если ему не удается зажать бОльшую по диаметру насадку или сверло, чем позволяет его модель дрели. Что же, в такой ситуации можно подобрать подходящий патрон, однако увлекаться сильно работой с посадкой большого диаметра не стоит, так как, скорее всего, ваша дрель не предназначена для работы с ней из-за малой мощности.

Минимальный диаметр хвостовика сверла

Патроны по минимальному зажимному диаметру бывают следующих размеров:

  • размер 0,5 мм бывает на патронах с максимальным зажимом до 6,5 мм;
  • 0,8 мм — до 10 мм;
  • 1 мм — до 6, 10 и 13 мм;
  • 1,5 мм — до 10 и 13 мм;
  • 2 мм — до 13 мм;
  • 3 мм — до 16 мм.

Здесь у пользователя возникает необходимость, обратная той, что была указана в предыдущем разделе. То есть у вас есть патрон, который зажимает сверла и насадки с хвостовиком, к примеру, на 2 мм, а вам нужно зажать в него хвостовик на 1 мм.

Опять же, вопрос решаемый. Единственное, может быть неудобно работать большой и тяжелой дрелью с маленьким по диаметру сверлом — его легко можно сломать. Ну и стоит отметить, что размеры на 0,5 и 0,8 мм еще и найти бывает нелегко.

Посадочное место

Оно может быть резьбовым либо конусным. На большинстве современных моделей используется резьбовое соединение. Однако иногда оно бывает и конусным — в основном на дрелях с патроном под максимальный хвостовик 16 мм.


Резьбовое соединение

Резьба может быть метрической, но в большинстве случаев на современных дрелях она идет дюймовая. Производители всегда пишут прямо на патроне, какая у него резьба, если он, конечно же, резьбовой.

Дюймовая резьба бывает следующих размеров:


Резьбовой патрон с маркировкой 1,5 — 13 мм — 1/2

При этом самыми распространенными являются 3/8 и 1/2. Эти две посадки могут использоваться на патронах с максимальным зажимаемым хвостовиком на 10 и 13 мм. Посадка 1/2 редко, но еще встречается и на патронах с зажимом до 16 мм. 1/4 — это посадка на патронах до 6,5 мм, а 5/8 — опять же до 16.

Метрическая резьба бывает только М12. Применяется для патронов с зажимом до 10, 13 и 16 мм.

Конусное посадочное место может иметь обозначение В12, В16 и В18. Цифры обозначают диаметр в миллиметрах. Применяются они на патронах с зажимом до 10, 13 и 16 мм. Причем с последним диаметром чаще всего.

Конусная посадка Конусный патрон с маркировкой 3-13 мм В16

Это все, что я хотел сказать о размерах дрелевых патронов. Надеюсь, что помог вам со всем этим разобраться. Статью же на этом заканчиваю — до новых встреч!

Всем привет! Я думаю каждый мужчина, а возможно и некоторые женщины, зажимали сверло в сверлильном патроне. А вот какие они бывают возможно знают не все.

Первым важным параметром я хочу выделить максимальный и минимальный диаметр хвостовика зажимаемого инструмента. Существуют патроны на 6 мм; 6,3 мм; 6,5 мм; 10 мм; 13 мм и 16 мм – это максимальные диаметры, которые они могут зажать. Минимальные диаметры бывают: 0,5 мм; 0,8 мм; 1 мм; 1,5 мм; 2 мм и 3 мм. Каждый наибольший диаметр соответствует наименьшему. Другими словами – патрон имеет маркировку 3-16 мм – это значит что он может зажимать хвостовики от 3 мм до 16 и никак не зажмет сверло диаметром 1 мм. Для сверла 1 мм нужен патрон от 1 до 6 мм.

Вторым не менее важным параметром является способ посадки патрона на вал электроинструмента, шпиндель станка или оправку.

Существует конусная и резьбовая посадка.

Конусная посадка. Если у патрона конусная посадка, то в его маркировке вы увидите один из следующих символов: В7, В10, В12, В16, В18, В22, В24, В32 , В45. Самыми распространенными являются конусы В12, 16 и 18. Это инструментальные укороченные конусы Морзе, параметры которых описаны в ГОСТ 9953-82.

Каждая из вышеописанных маркировок конуса соответствует своему полноценному конусу Морзе: В7 – Конус морзе №0 (КМ 0); В10 и В12 – КМ1; В16 и В18 – КМ2 и т.д. Это значит, что к примеру патроны В16 и В18 имеют одну конусность ( угол), только разные диаметры посадки. Если примерить патрон с такими маркировками на сверло с хвостовиком КМ2, то В16 плотно сядет в начале хвостовика, а В18 на середине хвостовика. На старых патронах можно увидеть маркировку как ниже на фото. Мне достался такой патрон еще в консервационной смазке. Он зажимает сверла от 1.5 до 9 мм и имеет посадку 2а т.е. В16. Цифра 2 означает КМ2, а буква – конкретный размер посадки, так как второму конусу Морзе соответствует два укороченных конуса В16 и В18.

Ниже на фото сверху оправка под патрон КМ2 с конусом В16, а ниже вал от старой дрели с резьбовой посадкой.

Резьбовая посадка. Данный способ крепления делится на два варианта:

Первый вариант – это метрическая резьба М12 шаг 1.25. Такую резьбу можно встретить в патронах отечественного производства.

Второй вариант – это дюймовая резьба: 1/2"*20 UNF; 3/8"24 UNF; 5/8"16 UNF; 1/4". Первое дробное число означает диаметр резьбы в дюймах, а второе целое число с буквами означает шаг резьбы – число ниток резьбы на один дюйм длины. Понять то, что у вашего патрона дюймовая резьба можно по маркировке, а если она отсутствует, то можно измерить вал инструмента. Привожу ниже диаметры и шаги самых распространенных дюймовых резьб в миллиметрах: 1/2"*20(12,7 мм, шаг 1,27мм);3/8"*24(9,52мм. шаг 1,05 мм).

Также у патронов есть отличие по способу зажатия инструмента. Для одних патронов нужен ключ, который обычно идет в комплекте, а другие можно просто зажать рукой – быстрозажимные. Последние могут быть выполнены полностью из металла, так и иметь пластиковые детали.

Если Вам интересно читайте Как легко открутить патрон

Про конус Морзе можно узнать здесь.

Применение станочного оборудования – это один из самых серьезных прорывов в сфере создания налаженной системы производства.

Станки, в особенности сверлильные, используются практически повсеместно, так как сочетают в себе высокую мощность, точность и хорошую скорость работы.


Патрон для сверлильного станка

В последние несколько десятков лет они практически полностью заменили ручной труд с применением ручным инструментов. В этой статье пойдет речь и патронах для сверлильных станков ГОСТ 8522-79.

1 Общая информация

Сверлильный станок, как уже понятно из названия, используется для создания различного рода заготовок и деталей, в производстве которых необходимо разрабатывать отверстия с помощью сверления.

Существует множество моделей такого оборудования (станки 2М112, 2Н106П и т.д.). Причем каждая из них имеет свои уникальные особенности.

Так, модель 2М112 является скорее стационарной, а модель 2Н106П – это представитель настольного оборудования для нарезания отверстий и резьбы в средних заготовках. Их характеристики и свойства контролирует текущий ГОСТ.

Однако вне зависимости от типа конструкции и модели, сверлильный станок (не имеет значения, будет это образец 2М112, 2Н106П или любой другой прототип) будет иметь схожую конструкцию.


Патрон сверлильный и калибр-конус Морзе 2

Являет он собой жесткую конструкцию на стальной раме. На раме расположен двигатель, который передает усилия на свои движущиеся части и вращает шпиндель станка.

От вращения шпинделя в движение приходит сам рабочий элемент станка. Так как именно в шпинделе есть элементы резьбы или креплений.

В разных станках есть разные способы крепления шпинделей и рабочих элементов. Одним из самых распространенных считается конусный зажим типа Морзе, который взаимодействует с базовой оснасткой шпинделя.

1.1 Особенности крепления рабочих инструментов

Непосредственно сверлильный станок работает за счет вращения сверла или элемента, что будет использоваться для нарезания резьбы, зенкования, расточки и т.д. Но для каждой такой работы необходимо применять разное оборудование. Так, для нарезания резьбы необходимо покупать резчики или метчики нужных размеров.

С их помощью можно создавать различные модификации стандартной резьбы, дотачивать ее или менять направления. Для выполнения расточки, зенкования и других подобных работ тоже необходимо применять уже свои, отдельные инструменты.

Для обычного сверления используют высокоточные или обычные сверла, что монтируются по зажимной или самозажимной технологии.

Проблема здесь в том, что все эти инструменты очень различны. Да и количество разновидностей станков тоже исчисляется сотнями (выше представленные модели 2М112, 2Н106П и т.д. являются всего лишь примерами, хоть и самыми удачными), а их особенности тоже стоит принимать во внимание.


Цанговые патроны для сверлильного станка

Так, настольный станок 2Н106П предназначается для более простых работ. А вот высокоточные модели типа 2М112 уже могут выполнять практически весь спектр работ, начиная от нарезания резьбы, и заканчивая сверлением под разными диаметрами.

В каждом станке может быть свой тип шпинделя. В моделях 2Н106П и 2М112 они различаются, а ведь это продукция одной серии и одного завода. Причем шпиндели могут различаться не только по общей конструкции, но и по мелким параметрам. Все эти нюансы оказывают огромное влияние на оснастку станков.

Для их нормального функционирования было придумано огромное количество дополнительного оборудования, переходников, конусов по самозажимной технологии и т.д.

Все они предназначаются для того, чтобы иметь возможность на один шпиндель установить максимальное количество возможной оснастки.

На том же станке 2М112 можно пользоваться как креплениями типа В18 или В16, что монтируются по самозажимной технологии, так и конусом Морзе старой технологии, переходниками, переводчиками и т.д.
к меню ↑

2 Популярные крепежные инструменты

Итак, существует множество моделей крепления для сверлильных инструментов. Все их положения регулирует текущий ГОСТ. Однако лучше от этого человеку не становится.

А все дело в том, что ГОСТ дает нам только примерные сведения о том, что такое этот инструмент, как он выглядит и где используется. Для получения большей информации приходится задействовать другие источники.


Схема крепления сверла в патроне

А ведь отличить тот же конус В18 от конуса В16 даже опытный мастер сможет не сразу. Простой же человек не сможет сказать, что такое конус Морзе, чем он отличается от конуса В18 или 16 (правильный ответ – ничем, ведь конусы В18 и 16 – суть одни и те же конусы Морзе, только под разные габариты).

И для чего они используются. Притом что ему в обязательно порядке еще придется проанализировать свойства своего станка. Например, станок 2М112 будет иметь отличные параметры шпинделя, если сравнивать с менее производительными моделями.

А ведь на рынке представлены еще и зажимной или самозажимной патрон ГОСТ 8522-79, а также различного рода переходники и другие подобные изделия. Для лучшего понимания сразу разграничим несколько понятий.
к меню ↑

2.1 Характеристики конусов Морзе

Конус Морзе – это специальный конический инструмент, что предназначается для крепления сверла или патрона внутри шпинделя.

Изобретен этот элемент Стивеном Морзе еще в позапрошлом веке. Изобретение Морзе стало настоящим прорывом в сфере промышленной обработки материалов.

Ведь теперь рабочим получалось намного быстрее менять оборудование на станке, а также без особых проблем приспосабливать разные инструменты для применения на нескольких типажах шпинделей.


Втулки переходные с конуса на конус Морзе

Со временем конус Морзе приобрел огромную популярность и стал выпускаться в большом количестве модификаций и разновидностей. Его разновидностями являются такие модели как:

Описывать их все мы не будем, так как на это уйдет слишком много времени. Только заранее отметим, что например, модели В16 и В18 отличаются друг от друга. Но сам показатель 16 не является полностью размерным.

То есть конус Морзе В16 не будет иметь длину 16 мм или высоту 16 мм, и даже диаметр в нем будет чуть больше 16 мм. Модель В16 – это конус под диаметр в 27 мм, что предварительно был сокращен и укорочен практически вдвое.

Дело в том, что изначально конусы Морзе были метрическими и выпускались в нескольких типоразмерах. Примером старых метрических конусов являются конусы Морзе:

Последним ходовым образом был конус КМ-7. Однако с миниатюризацией производства и повышением мощности двигателей изменились и требования к станкам.

Тот же станок 2М112 является улучшенной моделью более древнего и старого станка, что был примерно в 2 раза больше и тяжелее. Соответственно изменились патроны ГОСТ 8522-79, шпиндели и другое зажимное оборудование.


Вертикально сверлильный станок 2М112

В итоге рабочим пришлось переходить на новые стандарты. Но так как почти все шпиндели взаимодействовали с изобретением Стивена Морзе, то и конуса было решено приспособить.

Так и появились модели типа В16, В18 и т.д. Их попросту укорачивали почти в два раза, стараясь, таким образом, приспособить к новым стандартам.

В итоге конус В16 стал укороченной аналогией конуса КМ-2 с диаметром чуть больше 16 мм. А вот конус В18 во многом схож с моделью 16 образца, только он уже имеет диаметр 18 мм, так как изначально укорачивался с размера в 32 мм.
к меню ↑

2.2 Патроны для станков

Патроны – это уже следующий элемент зажимного механизма.

Если конус взаимодействует непосредственно со шпинделем и его внутренностями (в первую очередь он должен идеально подходить к внутреннему отверстию шпинделя), то патрон ГОСТ 8522-79 уже взаимодействует с самим конусом, ну или шпинделем (но такое в наше время практикую редко).

Более того, некоторые самозажимные патроны имеют хвостовую часть в виде конуса либо специально разрабатывались под идеальное с ним взаимодействие.

Такое решение совершенно оправдано. В первую очередь оно диктуется практически повсеместным переходом на использование конусов. Голые шпиндели сейчас применяют только в кустарных производствах либо при отсутствии подходящего оборудования.


Стандартный патрон с простейшим зажимным механизмом

Также стоит учитывать, что при наличии конуса основное разрушительное воздействие от вращения переходит именно на него. Зажимной патрон ГОСТ 8522-79 же остается практически нетронутым.

При желании его можно быстро и легко снять. В то время как съемка патрона с целевого шпинделя или самого конуса со шпинделя – это довольно сложный процесс.

Некоторые рабочие у станка даже нарезают на внешней части конуса резьбу и накладывают гайку, чтобы иметь возможность убрать самозажимной элемент с помощью ключа.

К тому же зажимной патрон требует меньше манипуляций. Их можно регулировать, настраивать диаметр входного отверстия, диаметр зажима и т.д.

Внутри патронов расположено несколько вращающихся деталей, которые можно затягивать. Креплением для инструментов выступают Т-образны планки, расстояние которых тоже можно регулировать.

По сути, зажимной патрон – это универсальная зажимная насадка на станок. Однако без конуса Морзе использовать ее было бы практически невозможно. Именно поэтому многие патроны ГОСТ 8522-79 изначально сочетают с конусами, хотя такие решения нельзя назвать полностью положительными.


Цанговые патроны с хвостовиком под конус Морзе

Зажимной Патрон может иметь разные диаметры как внешние, так и внутренние. Средний такой инструмент способен использовать сверла диаметром от 16 до 30 мм. Но есть и куда более крупные модели.

Есть зажимной и самозажимной патрон. Зажимной необходимо изначально затягивать ключами и подтягивать в случае необходимости. Самозажимной подтягивается самостоятельно, за счет вращения шпинделя. Самозажимной образец часто используется в промышленности, а вот в быту от него больше вреда, чем пользы.

По типу крепления и зажима сверл и инструментов для нарезки резьбы он тоже разделяется на несколько подвидов. Тут уже основные различия есть между способами зажима элементов. Одни из них предполагают использование специальных ключей, а затем ослабление резьбы.

Другие же достаточно немного ослабить кулачковыми вставками, а затем повернуть на один или несколько оборотов.

Тут уже подбор ведется в зависимости от типа работ и используемого станка. Например, на модель 2М112 чаще выбирают самозажимные патроны с кулачковыми креплениями под сверло.
к меню ↑

2.3 Особенности конструкции сверлильного патрона (видео)

В этом видео устанавливаю патрон на планшайбу. Если честно не ожидал что хватит высоты для установки маховика в .

Концы шпиндельные токарных станков. В видео использованы фрагменты из видео блогеров Слава Петров и Анатолий .

00:32 Демонтаж патрона 05:31 Установка патрона 09:56 Условия точной установки деталей 15:26 Контроль точности .

Токарный станок своими руками,ПЛАНШАЙБА,ПАТРОН,ЧАСТЬ 3,Токарный станок,своими руками,homemade lathe machine .

Чтобы устранить будущие возможные биения, планшайбу вытачиваем сразу на конусе. Режем пластину 30 мм, центруем, .

Приветствую всех на канале пользуясь случаем тем что снят сейчас переходной фланец токарного станочка вот хочу .

Делаю своими руками переходную шайбу, проставку, фланец на родную планшайбу, что бы установить патрон 125мм .

Буду начинать красить планшайбу мед нужно заточить здесь размер сделать вот вытачку на 5 миллиметров глубиной и до .

Закончена эпопея связанная с установкой токарного патрона с условным конусом 6 на шпиндель с резьбовой посадкой.

Читайте также: