Корневая и прикорневая микрофлора и ее влияние на растение

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Микроорганизмы, развивающиеся на поверхности стеблей или листьев растений, получили название эпифитной микрофлоры . Микроорганизмы-эпифиты вынуждены довольствоваться минимальными источниками питательного субстрата, представленного выделениями растительных тканей и веществами-загрязнителями (пылью). Поэтому состав эпифитной микрофлоры весьма специфичен. Нередко 80% общего количества эпифитов составляют бактерии Erwiniaherbicola. Второе место по численности занимают различные грибы (Penicillum, Mucor, Fusarium и другие). На поверхности многих тропических растений обнаружены азотфиксирующие бактерии рода Beiyerckia, поставляющие азот непосредственно в лист.

Разнообразная и обильная микрофлора находится на поверхности семян. Так, на 1г зерна ржи приходится не менее 2.500 тыс. микробных клеток, пшеницы – 1.500 тыс., риса – 250 тыс. Общая численность эпифитных микроорганизмов резко возрастает при повышении влажности воздуха и усиленном выделении продуктов обмена растительными тканями.

При жизни растения эпифитная микрофлора не оказывает на него вредного влияния. Наоборот, питаясь продуктами выделений растений, она способствует освобождению тканей от продуктов собственного обмена. Эпифитная микрофлора образует определенный биологический барьер, препятствующий заражению растительных тканей фитопатогенными микробами.

Таким образом, симбиотические взаимоотношения микроорганизмов с высшими растениями разнообразны. При таком контакте пользу получают оба организма, не нанося друг другу вреда.

42) Пропионовокислое брожение.

Пропионовокислое брожение представляет собой процесс превращения сахара или молочной кислоты в пропионовую и уксусную кислоты с образованием углекислоты и воды:

3C6H12О6 = 4С2Н5СООН + 2СН3СООН + 2СО2 + 2H2O или 3С3Н6О3 = 2С2Н5СООН + СН3СООН + СО2 + Н2О

Брожение вызывается пропионовокислыми бактериями. Это короткие, неподвижные, бесспоровые анаэробные палочки, оптимальная температура развития которых около 30°С. Пропионовокислые бактерии близки к молочнокислым бактериям и нередко развиваются вместе с ними.

Следует отметить, что пропионовокислому брожению могут подвергаться не только молочная кислота, но и ее соли. Это брожение имеет важное значение в созревании сыров. Молочная кислота (вернее, ее кальциевая соль), образующаяся в результате жизнедеятельности молочнокислых бактерий, под влиянием пропионовокислых бактерий превращается в пропионовую кислоту, уксусную кислоту и углекислый газ. Выделение углекислоты приводит к образованию глазков в сыре, придающих ему характерный ноздреватый рисунок. Пропионовая и уксусная кислоты способствуют образованию специфического сыр­ного вкуса и запаха. Пропионовокислые бактерии используются также для получения витамина B12.

Pressa 2

Микроорганизмы исключительно важны для существования жизни на нашей планете. Благодаря деятельности микрофлоры происходит минерализация органических остатков и непрерывное поступление в атмосферу диоксида углерода, за счет которого осуществляется фотосинтез зеленых растений.

Выветривание горных пород, образование торфа, нефти, каменного угля, селитры, известняков – все эти процессы также протекают при непосредственном участии микроорганизмов. Образование почвы неразрывно связано с эволюцией жизни. Первые живые микроорганизмы положили начало почвообразовательному процессу.

В далекие геологические эпохи Землю окружала атмосфера из плотного слоя газов, препятствующая прохождению солнечных лучей. Первые микробы энергию, необходимую для усвоения углерода, использовали от разложения химических соединений. Микроорганизмы выделяли сильные кислоты, которые разлагали материнскую породу, измельчали ее, создавая новый вид структуры. С течением времени безжизненная выветренная порода обогащалась органическим веществом, происходил процесс почвообразования. В пахотном слое масса бактерий составляет от 3 до 7-8т/га.

В природе все растения находятся в тесном контакте с микрофлорой, населяющей поверхность их корней и размножающейся в прикорневом слое почвы. В результате взаимодействия почвенной микрофлоры и растений наблюдается следующее:

  1. Превращение труднодоступных элементов питания в доступные для питания растений.
  2. Потребление корневых выделений вегетирующих растений, что положительно влияет на процесс корневого питания.
  3. Аккумуляция в микробных клетках питательных веществ, что предохраняет их от вымывания из почвы.
  4. Передвижение питательных веществ по гифам грибов и по цепочкам бактериальных клеток из почвы к корню.
  5. Связывание газообразного азота атмосферы и улучшение за счет него азотного питания растений. различных стимулирующих веществ и накопление их в зоне ризосферы, что имеет большое значение для активирования биохимических процессов в растениях.
  6. Тесный симбиоз с растениями (проникновение в ткани) некоторых микроорганизмов (клубеньковые бактерии, эндо и эктомикоризные грибы).
  7. Выделение различных антибиотических веществ, которые защищают растения от паразитарных форм.

Микрофлора в почве, на которой произрастают растения, распределена неравномерно. Наибольшее число микроорганизмов наблюдается в ризосфере – в слое почвы, непосредственно прилегающем к корням. Микрофлора по количеству и соотношению видов на корнях одного и того же растения непостоянна и меняется в течение вегетационного периода по фазам развития растений, а также зависит от влажности почвы, вносимых удобрений, освещенности растений и т.п.

Взаимоотношения растений с корневой микрофлорой носят чаще характер симбиоза. Микроорганизмы питаются выделениями растений и, размножаясь на корнях, оказывают разностороннее влияние на питание растений, в том числе и на поступление веществ в корни. Так микрофлора, потребляя корневые выделения, облегчает доступ питательных веществ к клеткам корня, усиливая обменные процессы между поверхностью корневой системы и внешней средой.

Питательные вещества в почве находятся в рассеянном состоянии и чаще всего адсорбированы на твердых почвенных частицах, поэтому они не перемещаются свободно с током воды. Если бы не было посредников между почвой и растением в виде почвенных микроорганизмов, то, несмотря на огромную общую длину корневой системы, большая часть веществ, находящихся за пределами ризосферы, не поступала бы в растение. К корням питательные вещества могут передвигаться по гифам грибов и по цепочкам бактериальных клеток. Это явление, несомненно, играет важную роль в обеспечении непрерывного поступления их из почвы, находящейся вне ризосферы. Скопление микроорганизмов на корнях и в ризосфере не приводит к обеднению прикорневого слоя почвы питательными веществами. Наоборот, здесь обычно содержится больше элементов минерального питания, чем за пределами ризосферы. Этот факт отчасти может быть объяснен приведенными выше наблюдениями о способности микроорганизмов передавать вещества на расстояние в направлении наибольшего потребления, однако основное объяснение в том, что в зоне корней интенсивно протекают процессы минерализации веществ.

До сих пор почва вместе с населяющими ее организмами была универсальным биологическим адсорбентом и нейтрализатором самых разнообразных органических соединений, что приводило к разложению большинства попавших в почву отбросов хозяйственной деятельности человека. Отходы и отбросы служили для почвенных микробов источником углерода и других элементов. Так, экспериментально установлено, что виды родов Bacillus и Pseudomoras способны усваивать пестициды как единственный источник углерода, следовательно, разрушать их. В последнее время микроорганизмам все труднее справляться с переработкой массы веществ, поступающих во внешнюю среду. Промышленность и сельское хозяйство выбрасывают в природу колоссальное количество отходов, пестицидов и других веществ. Поэтому основная задача сегодня – не допускать загрязнения окружающей среды и внедрять технологии, которые способствуют повышению урожайности культур и в то же время будут экологически безопасными для окружающей среды и здоровья человека.

Один из элементов такой технологии – это применение микробных инокулятов (микробиопрепаратов), повышающих продуктивность сельскохозяйственных культур. Известно, что вещества, выделяемые почвенной микрофлорой, накапливаясь в почве, поглощаются растениями и оказывают различное влияние на их рост и жизнедеятельность. Витамины, аминокислоты, ауксины и другие вещества активизируют рост и многие биохимические процессы. Антибиотические вещества, поступая из почвы в растения, повышают антимикробные свойства тканей растений, сопротивление к инфекциям, усиливают их иммунобиологические свойства.

Разработка многокомпонентных, многофункциональных микробиопрепаратов для получения биологически полноценной и экологически чистой агропродукции путем оздоровления и улучшения природной среды ведется с 1970 года в г. Иркутске. Разработанные микробиопрепараты – результат многолетних научных исследований (1970-2008гг.) по изучению биологии, систематики микроорганизмов и структуры микробных комплексов разных экосистем Прибайкалья и по прикладным разделам сельскохозяйственной и почвенной микробиологии.

Микрофлора лекарственного растительного сырья.

Микробы, обитающие на лекарственном растительном сырье могут включать представителей нормальной эпифитной и фитопатогенной микрофлоры. Микробная обсеменённость растительного лекарственного сырья зависит от исходной загрязненности, но может повышаться на этапах первичной обработки, измельчения, приведения в стандартное состояние. Порча сырья происходит в основном при повышенной влажности, способствующей размножению гнилостных микроорганизмов.

Эпифитная микрофлора [от греч. epi, на + phyton, растение] представлена микроорганизмами, обитающими на поверхности растений. Микроорганизмы-эпифиты не причиняют вреда растению, а в некоторых случаях составляют конкуренцию фитопатогенным микробам. В качестве источников питания эпифитная микрофлора утилизирует выделения растений и различные их поверхностные загрязнения. Основной представитель эпифитной микрофлоры — Erwinia herbicola —подвижная грамотрицательная палочка, образующая золотисто-жёлтые колонии на МПА. Реже на поверхности растений выделяют Pseudomonas fluoresceins— подвижную грамотрицательную палочку. Бактерии образуют зелёный пигмент пиовердин, вызывающий флуоресценцию колоний при коротковолновом УФ-облучении. Пиовердин обладает свойством бактериоцина, действующего на грамположительные и грамотрицательные бактерии, а также проявляет умеренную фунгицидную активность. Иногда на поверхности растений выделяют Bacillus mesenthericus— аэробные подвижные спорообразующие грамположительные палочки. Как было указано выше (см. главу 6), наиболее обильно микроорганизмы представлены в почве, особенно в прикорневой зоне. В её состав входят различные микобактерии, псевдомонады, спорообразующие, азотфиксирующие и нитрифицирующие бактерии, актиномицеты и грибы. Вокруг корней растений находится зона интенсивного роста и повышенной активности микробов. Поверхность корневой системы колонизируют преимущественно псевдомонады и грибы. Последние вступают в симбиотические отношения с растениями и образуют микоризу (грибоко-рень), стимулирующую рост обоих партнёров.

Микрофлора лекарственного растительного сырья

Фитопатогенная микрофлора. Способностью вызывать болезни растений обладают различные вирусы, бактерии и грибы. Поражения, вызываемые фитопатогенными бактериями называют бактериозами. Фитопатогенные грибы вызывают микофитозы По локализации процесса выделяют общие и местные поражения. Первые вызывают гибель всего растения или отдельных его частей, вторые — отдельных участков растения. По механизму поражения бактериозы разделяют на паренхиматозные заболевания, сосудистые поражения и опухоли. Паренхиматозные заболевания. Развиваются при попадании бактерий в ткани растений через различные анатомические отверстия (устьица, чечевички, нектарники) и повреждения покровных тканей. Возбудители выделяют ферменты и токсины, облегчающие их распространение по межклеточным пространствам. Проникновение бактерий вглубь вызывает массовую гибель клеток. К ним относят гнили (основные возбудители — бактерии родов Pseudomonas и Erwinia), ожоги (основные возбудители — виды Erwinia и Corynebacterium) и пятнистости (основные возбудители — виды Pseudomonas и Xanthomonas). Сосудистые поражения. Развиваются при распространении бактерий по сосудам растений. Основные возбудители— виды Corynebacterium

Возбудители микофитозов также вызывают паренхиматозные и сосудистые поражения растений. Использование сырья, обсеменённого грибами, в качестве пищевых продуктов может вызвать тяжёлые заболевания — микотоксикозы.

Фитопатогенные вирусы вызывают мозаичные болезни, желтуху, карликовость. Их характерная особенность — появление слабоокрашенных пятен или целых участков, а также задержка роста растений. Помимо вирусов, к фитопатогенам относят и вироиды.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Микроорганизмы, развивающиеся на поверхности стеблей или листьев растений, получили название эпифитной микрофлоры . Микроорганизмы-эпифиты вынуждены довольствоваться минимальными источниками питательного субстрата, представленного выделениями растительных тканей и веществами-загрязнителями (пылью). Поэтому состав эпифитной микрофлоры весьма специфичен. Нередко 80% общего количества эпифитов составляют бактерии Erwiniaherbicola. Второе место по численности занимают различные грибы (Penicillum, Mucor, Fusarium и другие). На поверхности многих тропических растений обнаружены азотфиксирующие бактерии рода Beiyerckia, поставляющие азот непосредственно в лист.

Разнообразная и обильная микрофлора находится на поверхности семян. Так, на 1г зерна ржи приходится не менее 2.500 тыс. микробных клеток, пшеницы – 1.500 тыс., риса – 250 тыс. Общая численность эпифитных микроорганизмов резко возрастает при повышении влажности воздуха и усиленном выделении продуктов обмена растительными тканями.

При жизни растения эпифитная микрофлора не оказывает на него вредного влияния. Наоборот, питаясь продуктами выделений растений, она способствует освобождению тканей от продуктов собственного обмена. Эпифитная микрофлора образует определенный биологический барьер, препятствующий заражению растительных тканей фитопатогенными микробами.

Таким образом, симбиотические взаимоотношения микроорганизмов с высшими растениями разнообразны. При таком контакте пользу получают оба организма, не нанося друг другу вреда.

42) Пропионовокислое брожение.

Пропионовокислое брожение представляет собой процесс превращения сахара или молочной кислоты в пропионовую и уксусную кислоты с образованием углекислоты и воды:

3C6H12О6 = 4С2Н5СООН + 2СН3СООН + 2СО2 + 2H2O или 3С3Н6О3 = 2С2Н5СООН + СН3СООН + СО2 + Н2О

Брожение вызывается пропионовокислыми бактериями. Это короткие, неподвижные, бесспоровые анаэробные палочки, оптимальная температура развития которых около 30°С. Пропионовокислые бактерии близки к молочнокислым бактериям и нередко развиваются вместе с ними.

Следует отметить, что пропионовокислому брожению могут подвергаться не только молочная кислота, но и ее соли. Это брожение имеет важное значение в созревании сыров. Молочная кислота (вернее, ее кальциевая соль), образующаяся в результате жизнедеятельности молочнокислых бактерий, под влиянием пропионовокислых бактерий превращается в пропионовую кислоту, уксусную кислоту и углекислый газ. Выделение углекислоты приводит к образованию глазков в сыре, придающих ему характерный ноздреватый рисунок. Пропионовая и уксусная кислоты способствуют образованию специфического сыр­ного вкуса и запаха. Пропионовокислые бактерии используются также для получения витамина B12.

Читайте также: