Как воздух влияет на растения

Добавил пользователь Валентин П.
Обновлено: 15.09.2024

Дидактическая цель; создать условия для осознания и осмысления блока новой учебной информации.

Формы проведения занятия; лекция, учебный фильм

Основные понятия

Азот, инертные газы, озон, угарный газ, выхлопные газы.

Сернистый газ. Серная кислота. Кислотные дожди

Вопросы для обсуждения

1.Какое значение для растений имеют кислород и углекислый газ?

2.Кислород постоянно используется живыми организмами для дыхания. Почему его содержание в воздухе остается постоянным?

3.Почему большие массивы лесов на Земле образно называют “легкими планеты”?

4.Какие из непостоянных примесей воздуха особенно вредны растениям и почему?

5.Почему для озеленения крупных городов не используют пих­ту и ель обыкновенную?

Состав воздуха. Вам уже известно, что воздух — это смесь га­зов. Чистый сухой воздух везде имеет примерно одинаковый со­став: азот (78%), кислород (21%), углекислый газ (0,035%), инертные газы (около 1%). В воздухе есть также пары воды и дру­гие газы природного происхождения — сероводород, аммиак, озон, метан, или болотный газ. Кроме этого в воздух попадают продукты сжигания с промышленных предприятий, от транспор­та: сернистый газ, угарный газ и др.

В воздухе всегда содержатся твердые частицы: пыль, мелкие кусочки угля, сажа, частицы металлов, например свинца, а так­же летучие выделения растений, мелкие организмы (бактерии), споры грибов, растений и другие примеси.

Почти каждая из составных частей воздуха по-своему необхо­дима растениям или, наоборот, вредна для них.

Значение азота. Азот, которого в воздухе больше всего, непо­средственно растениями не используется. Растения могут погло­щать его только в виде растворов солей. Азот очень нужен расте­ниям. Он является составной частью таких веществ, как белок, хлорофилл и др.

Во время грозовых разрядов сверкает молния, в воздухе обра­зуются соединения азота, которые хорошо растворяются в каплях дождя. Попадая в почву, они образуют азотосодержащие соли, ко торые и поглощают растения. Иногда говорят, что расте чают “удобрение из грозы”.

Значение кислорода. Кислород необходим растениям дыхания. Дышит каждая живая клетка растения. При этом ются органические вещества и освобождается энергия, мая для жизни растения.

Содержащийся в воздухе и растворенный в водоемах почти весь образован зелеными растениями в процессе фотосинтеза. Кислород используют для дыхания растения, грибы, организмы, простейшие животные и человек. Миллионы лет кислород постоянно выделяют растения, его потребляют в процессе дыхания, как сами растения, так и другие организмы. Чем больше на Земле растений, тем лучше обеспечены кислородом все живые организмы.

Значение углекислого газа. Углекислого газа в воздух немго, но он очень важен для растений, так как участвует в душном питании. Откуда же он поступает в воздух? Углекислый газ выделяют почти все живые организмы при дыхании, образуется при разложении органических остатков в почве, а навозных и компостных кучах.

В почве находится огромное количество живых организмов. Все они дышат очень энергично, поэтому в природе углекислый газ в основном поступает в воздух из почвы. Конечно в городах и вблизи промышленных предприятий, где много топлива, углекислого газа в воздухе содержится всегда больше.

Значение некоторых примесей в воздухе. Из непостоянных примесей большой вред наносит растениям сернистый г сжигании 1 т каменного угля в воздух может попадать 20 кг. сернистого газа.

Сернистый газ содержится в дыме, выходящем из заводских труб. Во время дождя он растворяется в каплях воды. На падает уже не дождевая вода, а серная кислота. Такие дожди называют кислотными. Попадая на листья, кислотный дождь оставляет на них пятна; он губителен для мелких обитателей, ухудшает условия для роста растений. Вместе с воздухом сернистый газ и в сухое время может проникнуть через устьица в лис­тья растений. Он нарушает в растениях обмен веществ, поврежда­ет листья, листопад наступает раньше.

Особо вреден сернистый газ таким вечнозеленым растениям, как пихта и ель обыкновенная. Более выносливы голубая канад­ская ель, хвоинки которой покрыты восковым налетом, а также лиственница и листопадные лиственные деревья — тополя, липа, ивы. Очень чувствительны к сернистому газу лишайники. Поэто­му на стволах деревьев в больших городах лишайников вы не найдете.

Вблизи оживленных автострад в воздух попадает очень много вредных выхлопных газов. Деревья реагируют на это по-разному. В кронах одни почки повреждаются и засыхают (обычно на кон­цах побегов), а немного ниже пробуждается сразу большое число почек, поэтому побеги растут пучками (рис.1).


Рис.1. На придорожном растении липы побеги растут пучком

Растения и гри­бы вблизи шоссейных дорог вбирают многие вредные вещества из выхлопных газов, в том числе и вредный для человека свинец. Поэтому не рекомендуют собирать грибы, лекарственные травы в городах, поселках и вблизи оживленных шоссейных дорог.


Почвенный воздух, или газовая фаза, – важнейшая составная часть почвы, находящаяся в тесном взаимодействии с твёрдой, жидкой и живой фазами.

Почвенным воздухом называется смесь газов и летучих соединений, заполняющих поры почвы, свободные от воды.

Почвенный воздух

Состав почвенного воздуха

Наличие достаточного количества воздуха, его благоприятный состав не менее важны в жизни почвы и формирования урожая, чем обеспеченность почв водой и питательными веществами.

Главные источники газовой фазы почвы – атмосферный воздух и газы, образующиеся в самой почве. С атмосферным воздухом в почву поступает кислород, необходимый для дыхания растений, аэробных микроорганизмов, почвенной фауны. В процессе дыхания кислород потребляется с выделением углекислого газа.

Большинство растений не может существовать без непрерывного притока кислорода к корням и вывода углекислого газа из почвы. Растения, корневая система которых находится под водой, например рис, приспособились к усвоению воздуха листьями и переноса его по паренхиме к корням растения и ризосферным микроорганизмам.

Если изолировать почву от атмосферного воздуха, то кислород в ней расходуется полностью через несколько суток. Следовательно, почвенный воздух обеспечивает живые организмы кислородом только при условии постоянного обмена с атмосферным воздухом. Процесс обмена почвенного воздуха с атмосферным называют газообменом или аэрацией.

Почвенный воздух

Состояния почвенного воздуха

Почвенный воздух находится в трёх состояниях: свободном, адсорбированном и растворённом.

Свободный почвенный воздух находится в некапиллярных и капиллярных порах почвы, обладает подвижностью, способен свободно перемещаться в почве и обмениваться атмосферным. Наибольшее значение в аэрации почв имеет воздух некапиллярных пор, практически всегда свободных от воды.

В суглинистых и глинистых почвах часть свободного почвенного воздуха при увлажнении изолируется пробками воды и теряет сплошность. Такой воздух называется защемлённым. Его значение в аэрации почв невелика.

Величина защемлённого воздуха составляет в среднем 6 – 8 % объёма почвы, а в глинистых почвах может быть более 12 %; определяется по разности значений между общей пористостью и полной влагоёмкостью, выраженной в объёмных процентах.

Адсорбированный почвенный воздух – газы, сорбированные поверхностью твёрдой фазы почвы. Адсорбция газов сильнее проявляется в почвах тяжёлого гранулометрического состава, богатых органическим веществом.

Газы адсорбируются в зависимости от строения их молекул, дипольного момента в такой последовательности:

Наибольшее количество адсорбированного воздуха характерно для сухих почв, так как твёрдые частицы почвы активнее поглощают пары воды, чем газы. При влажности почв выше максимальной гигроскопичности вода вытесняет поглощённые газы, что отражается на изменении состава свободного почвенного воздуха.

Растворённый почвенный воздух – газы, растворенные в почвенной воде. Растворимость возрастает с повышением их концентрации в свободном почвенном воздухе, а также с понижением температуры почвы. Хорошо растворяются в воде аммиак, сероводород, углекислый газ. Растворимость кислорода сравнительно небольшая (табл. 1).

1. Растворимость газов в воде (г/л) при различной температуре и атмосферном давлении 101 кПа

В зависимости от температуры почвы и активности в ней биохимических процессов содержание кислорода в почвенных растворах изменяется от 0 до 14 мг/л.

Высокая насыщенность кислородом (6 – 14 мг/л) почвенного раствора отмечается ранней весной, когда почва переувлажнена, а расход последнего ещё не велик вследствие низкой биологической активности почвы.

Растворённые газы проявляют высокую активность. С насыщением почвенного раствора СО2 повышается растворимость карбонатов, гипса и других минеральных соединений. Растворённый кислород поддерживает окислительные свойства почвенного раствора.

Почвенный воздух

Факторы, влияющие на состав почвенного воздуха

Основную роль в почве играет свободный воздух. Несмотря на его постоянную связь с атмосферным, он характеризуется рядом особенностей.

Состав атмосферного воздуха довольно постоянный, и содержание его основных компонентов изменяется незначительно.

В атмосферном воздухе содержится в объёмных процентах:

  • 78,08 азота (N2),
  • 20,95 кислорода (О2),
  • 0,93 аргона (Аr),
  • 0,03 углекислого газа (СО2),
  • на долю неона, криптона, ксенона, озона, радона, водорода приходится всего 0,01 %. (И.Б. Ревут, 1972).

В хорошо дренированных почвах состав почвенного воздуха близок к составу атмосферного, поскольку расходуемый в почве кислород быстро перемещается из атмосферы в почву. Другая картина наблюдается в плохо аэрируемых почвах. Состав почвенного воздуха изменчив значительно.

В зависимости от таких факторов, как время года, температура, влажность почвы, глубина, развитие и рост корневых систем, микробиологическая активность, рН и прежде всего скорость газообмена через почвенную поверхность, состав почвенного воздуха в большей или меньшей степени отличается от состава атмосферного.

Наиболее сильные различия отмечаются в концентрации углекислоты (СО2), которая является основным продуктом аэробного дыхания корней высших растений и многочисленных макро- и микроорганизмов в почве. Если концентрация СО2 в атмосфере – 0,03 %, то в почве она достигает уровней, которые в десятки или даже в сотни раз выше.

Поскольку СО2 продуцируется в почве путём окисления содержащего кислорода органического вещества, поскольку повышение концентрации СО2 обычно связано с понижением концентрации СО2 обычно связано с понижением концентрации элементного кислорода О2.

Хотя и необязательно в строго пропорциональной степени, так как могут существовать дополнительные источники кислорода в растворённой воде форме или легко восстанавливаемых соединениях.

Так как концентрация кислорода в атмосферном воздухе обычно около 20,96 %, то очевидно, что даже стократное увеличение концентрации СО2 от 0,03 до 3 % может понизить концентрацию кислорода только до 18 %. Однако, прежде чем растения начнут страдать от недостатка кислорода, некоторые из них могут страдать от избыточной концентрации СО2 и как в газовой, так и в жидкой фазах.

В крайних случаях в условиях весьма затруднённой аэрации концентрация О2 может падать до нуля и продолжительные анаэробные условия могут приводить к созданию химических условий, характеризующихся развитием восстановительных реакций (например, денитрификации), к выделению сероводорода (H2S), метана (СН4) и этилена, и восстановлению минеральных окислов.

В пахотных хорошо аэрируемых почвах с благоприятными физическими свойствами содержание СО2 в почвенном воздухе в течении вегетации растений не превышает 1 – 2 %, а содержание СО2 не бывает ниже 18 %.

При переувлажнении в пахотных почвах тяжёлого гранулометрического состава содержание СО2 может достигать 4 – 6 % и более, а О2 падать до 17 – 15 % и ниже. В заболоченных почвах наблюдаются ещё более высокие концентрации СО2 и низкие О2.

Азот почвенного воздуха мало отличается от атмосферного. Некоторые изменения в содержании азота происходят в результате связывания его клубеньковыми бактериями, проявление денитрификации. В почвенном воздухе обнаруживается и другой характерный продукт денитрификации – закись азота (N2O).

В почвенном воздухе в небольшом количестве (1-10 -9 -1·10 -12 %) постоянно присутствуют летучие органические соединения различной природы (этилен, метан и др.). С ухудшением аэрации в почвенном воздухе этилен накапливается в концентрациях, превышающий уровень токсичности для корней растений (0,001 %).

На заболоченных и болотных почвах в почвенном воздухе могут находиться в заметных количествах аммиак, водород, метан.

Почвенный воздух неоднороден по составу и подвижности, в зависимости от размера почвенных пор. В более крупных порах воздух более подвижен, менее обогащён СО2 больше содержит О2.

Почва

Экологическая роль почвенного воздуха для растений

Высшие растения весьма чувствительны к составу почвенного воздуха. В корне, как и в других органах растений, ясно выражен процесс дыхания, т.е. поглощение кислорода и выделение углекислоты.

Дыхание корней тесно связано с содержанием кислорода в почве, хотя об оптимальном содержания количественном содержании в почве кислорода и углекислоты однозначно ответить нельзя, так как оно зависит от очень многих факторов.

По данным В.А. Новикова, содержание в почвенном воздухе 7 – 12 % кислорода, что, по мнению автора, имеет место лишь в хорошо обрабатываемых структурных почвах, обеспечивает интенсивное дыхание корней, хороший их рост и активное поглощение ими минеральных веществ.

В тяжёлых глинистых плохо аэрируемых почвах, где наблюдается снижение содержания кислорода до 1 – 2 %, рост корней замедляется, поглощение воды и питательных веществ ограничивается, а рост надземной части растений прекращается.

М.Б. Рассел так же приводит данные о том, что кислород имеет важное значение во всех процессах жизнедеятельности корней растений: в дыхании, поглощении воды и питательных веществ.

Однако у него мы встречаем указание, что реакция различных видов растений на содержание кислорода в почвенном воздухе различна. Причём крайними в ряду растений являются водные с одной стороны, и обитающие на хорошо аэрируемых почвах – с другой.

Рис, например, способен обмениваться газами между корнями и воздухом на поверхности воздуха через ткани растений, т.е. путём внутреннего переноса кислорода от частей, расположенных над поверхностью почвы (листья и стебли), к частям, распространённым в почве, заметной водой. Однако большинство растений неспособны удовлетворить потребность корней в кислороде за счёт внутреннего переноса.

Реакция почвы (листья и стебли), к частям, распространённым в почве, залитой водой. Однако большинство растений неспособны удовлетворить потребность корней в кислороде за счёт внутреннего переноса.

Реакция растений на содержание того или иного количества кислорода в почве в значительной степени зависит от температуры среды. (И.Б. Ревут,1972). Так, если в почвенном воздухе содержится 3 % кислорода, то угнетение растений отмечается при температурах 18 – 30 ˚С.

При содержании 10 % кислорода в почвенном воздухе нормальное развитие растений отмечалось при 18 ˚С, а при 30 ˚С скорость роста при такой концентрации кислорода замедляется.

Отсюда следует, что потребная для корней концентрация кислорода в почвенном воздухе тем выше, чем выше температура почвы. Причина этого явления лежит в снижении растворимости кислорода в воде и в повышении процессов дыхания растений. Последнее связано с повышенным расходом кислорода.

Состав почв

Содержание кислорода в почве

Другая важная закономерность заключается в том, что рост корней может продолжаться при сравнительно низком содержании кислорода в почвенном воздухе, но при обязательном условии непрерывного поступления его из атмосферы.

Д.Бойтон о концентрации кислорода

Д. Бойтон получил очень интересные критические величины концентраций кислорода в почвенном воздухе для корней яблони. Если в период активного роста яблони диаметр корней превышает 1 мм, то низшим пределом содержания кислорода можно считать 3 %.

При концентрации кислорода менее 1 % корни заметно теряют в весе. Для активного роста кончиков корней оказалось необходимым повысить концентрацию кислорода до 5 – 10 %, а для появления новых корней – до 12 %. Однако для нормального хода поглощения воды и питательных веществ корнями содержание кислорода должно быть не ниже 15 %.

Различная реакция растений на содержание кислорода и углекислоты во многом зависит от особенностей самого растения, от его вида, анатомического строения и т.д.

И.Б.Ревут о кислороде в почве

Тем не менее И.Б. Ревут (1972) сообщает, что накопление в почвенном воздухе углекислоты в пределах до 10 %, а в некоторых случаях и более, при сравнительно высоком содержании кислорода (более 10 – 15 %) или при низком его содержании.

Но в условиях бесперебойного воздухообмена с атмосферным воздухом может лишь в очень слабой степени замедлить рост растений. В большинстве случаев это вообще не скажется на условиях их жизни. Содержание кислорода и углекислоты в почвенном воздухе является важным фактором жизнедеятельности почвенных организмов.

В зависимости от отношения микроорганизмов к кислороду они разделяются на аэробные – нуждающиеся в наличии свободного кислорода и анаэробные – не нуждающиеся в свободном кислороде, способные расти и развиваться в отсутствии воздуха.

Существует так же группа микроорганизмов переходного типа. Одни из них, будучи анаэробными, могут существовать и при широком доступе кислорода. Они носят название факультативных анаэробов.

Вместе с тем среди аэробов имеются такие, которые не могут развиваться в среде с большим процентом кислорода. К ним относятся, например, серобактерии, мирящиеся с содержанием кислорода до 3 %. Их называют микроаэрофильными.

И.П.Черечин о кислороде в почве

И.П. Черечин пришёл к заключению, что переход от аэробных условий к анаэробным при оптимальной температуре и влажности наблюдается при содержании кислорода около 2,5 % к объёму почвенного воздуха.

При низких положительных температурах или небольшом содержании влаги в почве анаэробные процессы не развивается даже при снижении концентрации кислорода до 0,5 %. Итого исследований и сделанные выводы представляют большой интерес для земледелия и почвоведения и почвоведения и поэтому они должны подвернуться дальнейшему уточнению.

Влияние почвенного воздуха на процессы, протекающие в почве. Почвенный воздух влияет на почвообразовательные процессы как изменение через микробиологические активности, так непосредственно. Так, растворённый кислород поддерживает окислительные свойства почвенного раствора.

Насыщенность кислородом

Анаэробные условия в почве

Вызывают ряд восстановительных реакций как химических, так и биохимических. Среди них денитрификация – процесс восстановления нитратов до нитритов и далее до окислов азота и элементарного азота . Некоторые из многочисленных продуктов анаэробных процессов токсичны.

По данным Р. Бретфильда, Л. Батжера и И. Оскемпа, в зависимости от условий аэрации существенно изменяется состояние некоторых соединений в почве (табл. 2).

2. Форма химических соединений в зависимости от аэрации почвы

Химический элемент Нормальная форма элемента в хорошо аэрированных почвах Восстановленная форма в пересыщенных водой почвах
Углерод СО2 СН2
Азот NO3 NH2 и NH3
Сера SO4 H2S
Железо F + + + F + +
Марганец Mn + + + Mn + +

Аэрация оказывает существенное влияние на почвенные процессы через изменения микробиологической активности почвы.

В аэробных условиях, значительное число почвенных микроорганизмов принимает участие в разложении органического вещества, конечными продуктами которого является углекислота, вода, нитраты, сульфаты, а также соединения кальция, магния, железа и т.п.

В анаэробных условиях возникают совершенно иные продукты разложения органического вещества: метан, сероводород, аммиак, альдегиды.

Концентрация углекислоты играет важную роль в процессах в процессах выветривания первичных минералов в почвах. Повышенное содержание углекислоты воздействует на рН среды, почвенный раствор при этом подкисляется, резко меняется растворимость углекислого кальция.

Воздух в почве

Растворимость СаСО3 при отсутствии углекислоты составляла 0,013 г/л воды, при содержании 0,03 объёмного процента углекислоты растворялось 0,0627 г/л, а при 10 % углекислоты – 0,4889 г/л (И.Б. Ревут, 1972).

В связи с тем, что углекислота заметно воздействует на реакцию среды, содержание её сказывается на формах состояния фосфорной кислоты. В кислых почвах преобладает форма , в то же время в щелочных почвах она переходит в форму, значительно менее доступную для растений.

Поэтому на щелочных почвах возрастание содержания углекислоты оказывается в некотором смысле полезным, так как подкисление раствора приводит к повышению растворимости фосфатов и их усвоения растениями.

Необходимо так же учитывать, что чем больше в почве углекислоты, тем больше её выделяется из почвы в приземный слой воздуха.

А повышение содержания углекислоты в зоне надземной части растений часто приводит к заметному повышению уровня фотосинтетической деятельности зелёных растений, а нередко и к заметному повышению их продуктивности.

Влажность воздуха – один из основных факторов, который влияет на развитие растений. Действительно можно заметить, что цветы, которые цветовод периодически опрыскивает, растут быстрее, а листья красивее. Тем не менее высокая влажность не нужна абсолютно всем цветам. Кроме этого, обычно в среднестатистической квартире поддерживается приемлемый уровень влажности для нормального роста абсолютного большинства комнатных растений. Поэтому по сравнению с освещением и поливом, влажность скорее второстепенный фактор. От того, что вы не будете опрыскивать свои растения, они не погибнут.

Солейролия

Как влажность влияет на растения.

Меры повышения влажности.

Опрыскивания.

Поддоны с водой.

Метод использования емкости, в которую наливают воду для испарения, нельзя назвать достаточно эффективным. Тем не менее прием достаточно часто используется цветоводами. Отметим, что этот способ однозначно лучше опрыскиваний. Как вариант, можно поставить горшок с цветком в широкий поддон. Для декоративности насыпьте в него красивых камушков или гальку. Позаботьтесь о том, чтобы вода из поддона не могла впитываться в субстрат. Иначе вместо пользы ваш цветок может заболеть от избытка воды.

Увлажнитель воздуха.

Увлажнители воздуха очень хорошо повышают влажность. Единственный, но очень серьезный недостаток использования прибора – оседание солей на листьях. Эти происходит из-за того, что в воде всегда присутствуют примеси. Единственный выход – использовать дистиллированную или дождевую воду. Но даже в этом случае частично соли остаются.

Обмывания теплой водой.

Само по себе купание растений не повышает влажность. Но этот прием позволяет содержать цветок в чистоте, а значит улучшает воздушно-водный баланс. Теплая вода достаточно быстро испаряется, что исключает процесс загнивания в пазухах листьев. Обмывать растения можно в течение всего года. Но эту процедуру лучше исключить тем растениям, которые находятся в зимнем периоде покоя.

Влажность

Когда необходимо повышать влажность.

Чаще всего это требуется в летний период. Влажность воздуха падает в самые жаркие дни лета. И то при условии установления длительного периода ясных дней. В условиях дождливого лета, как правило влажность на достаточном уровне. В зимний период некоторым растениям тоже может потребоваться влажный воздух. Ведь радиаторы центрального отопления его высушивают. Как правило это небольшая группа растений, которые цветут в зимний период. Например азалия, сенполия, антуриум и др. Хотя чаще всего это не обязательно. Ведь в условиях хорошего освещения и правильно выбранного режима полива и эти растения прекрасно растут и цветут в зимний период.

Влажность. Ошибки.

Проблемы чрезмерной влажности.

Самая главная задача цветовода – обеспечить растению условия, приближенные к природной экосистеме. Все взаимосвязано. Изменение одного параметра может разрушить весь баланс. В условиях хорошего яркого освещения, правильно подобранного режима полива, приемлемого уровня влажности и необходимого объема грунта, абсолютно любое растение прекрасно развивается. Не важно капризное оно или нет. Влажность воздуха нельзя отнести к главным условиям успешного выращивания. Но, если бездумно отнестись к этому параметру, это разрушит водно-воздушный баланс. Ее недостаток не приведет к гибели цветка. А вот избыток влажности способствует развитию грибковых болезней. Любое растение может перенести сухость. Болезнетворные грибы могут развиваться только в условиях высокой влажности. Поэтому перед тем, как взять лишний раз в руки пульверизатор, проанализируйте: А действительно ли вашему цветку это необходимо?

dyhanie rastenij

Растения, как все живые организмы, в процессе дыхания поглощают кислород и выделяют углекислый газ. Газообмен у них происходит через устьица на листьях, а также через чечевички на стеблях и трещины в коре. Внутри тканей кислород следует по межклетникам, потом проникает в клетки. Доступ кислорода ко всем органам растения — одно из основных условий жизни.

При плохой обработке почвы или на переувлажненных почвах корням растений не хватает воздуха и, следовательно, кислорода. Поэтому при застое воды на отдельных участках поля большинство растений погибает. Ведь растения, так же как люди или животные, умирают без кислорода. Но у них потребность в кислороде меньше, чем у животных, и у них нет таких сложных органов дыхания.

Дыхание

Дыхание — это поступление в организм кислорода и удаление углекислого газа, а также использование кислорода для окисления органических веществ с освобождением энергии (Рис.1).

дыхание и фотосинтез

Рис.1 Сравнение дыхания и фотосинтеза растений

Дыхание Признак Фотосинтез
Кислород 1.Поглощаемый газ Углекислый газ
Углекислый газ 2.Выделяемый газ Кислород
Чечевички, устьица, кожица семян и т.д. 3.Пути газообмена Только через устьица
Во всех живых клетках 4.В каких клетках происходит Только в зеленых клетках, содержащих хлорофилл
Получение и использование энергии из питательных веществ на рост и развитие 5.Роль в жизни растений Запасание энергии света в виде питательных веществ


Во время дыхания часть органических веществ расходуется. Например, прорастающее зерно теряет 3-10% сухого вещества. Чем более неблагоприятна oкружающая среда для прорастания, тем больше требуется питательных веществ и тем интенсивнее дыхание проростка. Энергия, выделяемая во время дыхания, затрачивается на рост и развитие органов растений. Подтвердим опытным путем поглощение прорастающим семенем кислорода и выделение им углекислого газа (Рис.2).

влажные-и-сухие семена

Рис.2 Поглощение кислорода и выделение углекислого газа прорастающими семенами (1-влажные семена, 2-сухие семена)

Возьмем 2 широкогорлые стеклянные банки и в одну из них положим проросшие семена гороха (20-30 шт.). В другую — столько же сухих, непроросших семян гороха. Банки плотно закрываем крышками и ставим в теплое место. Через неделю в банку с сухими семенами опустим горящую свечу. Свеча не потухнет, будет продолжать гореть. Поскольку дыхание сухих семян замедленное, за неделю они не успели поглотить весь кислород из воздуха в банке.

В банке с проросшими семенами свеча сразу же погаснет. Почему? Проросшие семена дышат интенсивно, поэтому они поглотили весь кислород в банке и насытили воздух углекислым газом. Во время набухания и прорастания семян и дальнейшего развития растений дыхание в тканях усиливается. Межклеточные воздушные пространства в тканях растений облегчают движение газов.

Влияние различных условий на дыхание растений

Интенсивность дыхания у разных частей растения неодинакова. Наиболее высока она у молодых быстро растущих органов и тканей. С окончанием периода активного роста растений дыхание их тканей ослабевает. Активнее дышат высокогорные и светолюбивые растения (по сравнению с теневыносливыми). Дыхание растений усиливается с повышением температуры, когда речь идет о потеплении. Но в зной оно ослабевает, а при 45-50°С почти прекращается. Таким образом, на дыхание растений влияют различные факторы.

1. Влияние воды.

Сухие семена (10-12% влаги) дышат очень слабо. Если содержание влаги в семенах достигает 33%, то дыхание усиливается, расход питательных веществ увеличивается, и семена начинают прорастать. Поэтому при хранении в зернохранилищах влажность зерна не должна превышать 12-14%. Только в таких условиях семена могут долго храниться.

2. Влияние температуры.

Чем выше температура окружающей среды, тем интенсивнее дышат семена. Даже зимой при температуре -20-25°С дыхание растений не прекращается, оно лишь замедляется. Дыхание семян прекращается при температуре +50°С. Зимой в клубнях картофеля, хранящегося при низкой температуре, дыхание замедляется.

3.Влияние света.

При наличии достаточной освещенности дыхание растений ускоряется. Теневыносливые растения дышат слабее светолюбивых. Если поместить молодые проростки в темное место, их дыхание немного замедлится.

4.Влияние воздуха.

Всему живому на Земле, кроме некоторых бактерий, необходим кислород. Мы дышим воздухом, в котором кислород находится в определенном соотношении с другими газами (азот, инертные газы, углекислый газ).


Когда в воздух попадают отходы промышленного производства, это соотношение изменяется, что может оказаться губительным для растений, животных и человека.
В последнее время можно часто слышать выражения озоновые дыры, и парниковый эффект. Эти явления связаны с состоянием воздушной оболочки Земли. Накопление вредных веществ в атмосфере оказывает отрицательное воздействие на все живое, и на растения в том числе. Их дыхание замедляется.

Какие же вещества загрязняют воздух?

Вот главные из них:

1.Углекислый газ, выделяемый всеми живыми организмами, обитающими на Земле.
2.Отходы производства и газы, выделяемые заводами и фабриками, прежде всего угарный газ, зола, сажа, пыль, копоть, дым.
3.Выхлопные газы автомобилей.
4.Ядовитые газы, выделяемые синтетическими веществами, созданными химическим путем.
5.Пылевые частицы ядохимикатов, используемых в сельском хозяйстве.

Рост и развитие растений в условиях загрязненной атмосферы замедляются.
Они быстро подвергаются различным вредным воздействиям. Таким образом, воздух необходим не только для надземных органов растений, но и для корней, находящихся в почве. Если не будет обеспечен достаточный приток воздуха к корням, их дыхание замедлится, и они погибнут. Если корни постоянно покрыты водой, они загниют. Корни обеспечивают всю надземную часть растения питательными веществами и водой. Без них само растение неминуемо погибнет.

Роль зеленых растений:

1.Создание органических веществ.
2.Поступление кислорода в атмосферу
3.Поддержание постоянного содержания углекислого газа.
4.Участие в создании почв.

Зеленые растения запасают энергию космического светила — Солнца в виде органических веществ, используемых живыми существами нашей планеты.

Дыхание — это процесс, происходящий во всех живых организмах: поглощение кислорода и выделение углекислого газа. Кислород используется для окисления органических веществ, чтобы извлечь из них энергию. Растения запасают энергию солнечного света в виде органических веществ в ходе фотосинтеза и используют эту энергию, окисляя вещества в ходе дыхания, В целом, растения интенсивнее фотосинтезируют, чем дышат.

Читайте также: