Решетка пеннета для дигибридного скрещивания гороха

Добавил пользователь Владимир З.
Обновлено: 21.09.2024

Узнать, каким может быть цвет волос у ребенка или какими станут его глаза, поможет наука. Для этого не нужно прибегать к сложным исследованиям. Построить решетку Пеннета сможет даже школьник. Поможет редакция.

Решетка Пеннета широко используется для решения генетических задач наследования потомства вменделевской генетике. Сеепомощью можно рассчитать вероятность того, как ген родителей передастся ребенку. Решают такие задачи еще школьники науроках биологии, задают такие задания истудентам. Этот навык используют вработе ипрофессиональные генетики.

Решетку также применяют ивбыту. Так, производители новых пород растений изучают, насколько удачно пройдет скрещивание нескольких разных видов истоитли это делать.

Наиболее важно изучение наследования врождении детей. Уродителей есть шанс выяснить, насколько велик шанс того, что ребенок унаследует отодного изних серьезное генетическое заболевание.

Метод расчета передачи генов отродителей потомству придумал генетик изБритании Реджинальдом Пеннетом вначале 20века. Сего помощью уже больше ста лет генетики наглядно рассчитывают, каким может быть потомство родителей.

Решеткой этот метод называется из-за внешних признаков. Онвыглядит как таблица сдвумя столбцами. Впервой вертикальной записывают гаметы одного родителя, вовторой— другого. Построить такую таблицу очень легко.

Как построить решетку Пеннета

Для начала нужно изучить понятия. Запомните, что геном определяет признак любого живого организма. Например, цвет волос. Различные варианты одного итогоже гена называют аллелями.

Генотип— это все гены, которые составляют ДНК. Ихвнешний вид иповедения называются фенотипом.

Внашем случае вероятность наследования ребенком признаков— 50на 50. Унас две ячейкиАа идвеаа. Вкаждом случае нам нужно сложить 25%+25%. Получается, что унас равные шансы угетерозиготы ирецессивной гомозиготы. Тоудетей пары изнашего примера одинаков шанс получить черные волосы или русые.

Теперь выможете описать фенотип. Определить вероятность появления уребенка конкретного признака можно, если сложить вероятности всех ячеек содной или несколькими доминантными аллелями. Сделать это можно, только если аллели соответствуют конкретному признаку. Чтобы выяснить, насколько велика вероятность наследования рецессивного признака, позакону нужно сложить вероятности ячеек сдвумя рецессивными аллелями.

Кстати, решетку Пеннета можно сделать значительно шире. Так получится узнать куда больше опотомстве пары. Например, если сделать решетку счетырьмя строчками ичетырьмя столбцами, товнее можно поместить почетыре алллели каждого родителя. Тоесть удастся узнать, как ребенок унаследует сразу два гена родителя. Можно еще сильнее расширить ееиувеличить количество изучаемых генов еще больше. Правда, вэтом случае решетка будет очень большой иподводить подсчет будет сложнее.

Поведение альтернативных форм одного признака Менделю объяснил принцип расщепления, наблюдаемый при моногибридном скрещивании. Следующий его шаг – прослеживание наследования двух разных признаков: дигибридное скрещивание.


С пониманием поведения отдельных черт, Мендель продолжал спрашивать себя, а как ведут себя разные черты по отношению друг к другу, влияют ли они друг на друга или нет. Он решил проследить за тем, как передаются 2 признака, не обращая внимание на множество других, отличающих родителей характеристик.

Как Мендель проводил дигибридное скрещивание

Рассмотрим скрещивание, включающее различные аллели формы семян (круглые R и морщинистые r) и аллельные признаки цвета семян (желтый Y, зеленый y). Скрещивая чистые линии растений (дигомозиготы) с круглыми жёлтыми семенами (RRYY) и с морщинистыми зелеными (rryy), Мендель получил единообразное гетерозиготное потомство F1 с одним и тем же фенотипом (круглые и жёлтые семена) и генотипом (RrYy – дигетерозигота).

При записи такого типа задач нужно помнить, что каждая пара аллелей расходится в разные гаметы и два аллельных гена, отвечающие за один признак, например RR, не попадают в одну половую клетку.

Результат показал, что закон единообразия гибридов первого поколения проявляется не только при моногибридном, но и при дигибридном скрещивании. Теперь мы знаем, что это соблюдается при условиях, что родительские формы гомозиготны, при полном доминировании и когда неаллельные гены лежат в негомологичных хромосомах.

Дигибридное скрещивание, генетическая запись фото

Для наглядности скрещивание можно записывать так, чтобы было видно, что аллельные гены лежат в разных хромосомах

Дигибридное скрещивание: расщепление по фенотипу в поколении F2

Анализируя полученные результаты, сначала рассмотрим количество возможных фенотипов в поколении F2 , которое дало данное дигибридное скрещивание. Мендель сомневался, увидит ли он только два родительских фенотипа: с круглыми жёлтыми и морщинистыми зелёными семенами, или дополнительно появиться круглые зелёные, морщинистые желтые семена.

Если бы признаки наследовались сцеплено, то образовалось бы только два типа гамет: RY и ry. Но в случае с горохом и признаками, выбранными Менделем наследование происходило независимо, поэтому у родителей второго поколения образовалось 4 типа гамет: RY, ry, Ry и rY. Так проявился уже знакомый нам закон расщепления.

Дигибридное скрещивание удобно рассматривать в решетке Пеннета

Чтобы рассмотреть все варианты возможного потомства, удобно построить решетку Пеннета. Это квадрат 4х4 с 16 возможными результатами. Из неё мы видим, что есть 9 растений с круглыми желтыми, 3 с морщинистыми желтыми, 3 с круглыми зелеными и 1 с морщинистыми зелеными семенами. Это демонстрирует фенотипическое соотношение 9:3:3:1, характерное для признаков, которые ведут себя независимо.

R: ♀ RrYy ♂ RrYy
G: RY, ry, Ry, rY RY, ry, Ry, rY

Принцип независимого наследования. Третий закон Менделя

Что же на самом деле наблюдал Мендель? Из 556 семян, полученных при дигибридном скрещивании, он увидел следующие фенотипические результаты:

  • 315 круглых жёлтых (обозначаются R_Y_, где подчёркивание указывает на наличие любого аллеля);
  • 108 круглых зелёных (R_ yy);
  • 101 морщинистых жёлтых (rr Y__);
  • 32 морщинистых зелёных (rr yy).

Признаки семян гороха фото

Эти результаты очень близки к соотношению 9:3:3:1. (Ожидаемое 9:3:3:1 соотношение для 556 потомства составляет 313:104:104: 35). Соотношение 9:3:3:1 называют фенотипическим радикалом и используют при решении задач.

Оказалось, что аллели двух генов ведут себя независимо друг от друга и не влияют на неаллельные признаки. Круглые и морщинистые семена встречаются в соотношении примерно 3:1 (423: 133), так же как и жёлтые и зелёные (416:140). Аналогичные результаты Мендель получил и для других пар признаков. Значит, дигибридное скрещивание – это два независимо протекающих моногибридных скрещивания.

Отсюда можно сделать вывод, что при скрещивании гетерозиготных особей, отличающихся по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фенотипу в соотношении (3+1) n , где n – число признаков в гетерозиготном состоянии.

Мы называем это третьим законом Менделя – законом независимого наследования.

Закон независимого наследования имеет следующую формулировку: при скрещивании двух гомозиготных организмов, анализируемых по двум (или более) парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

Цитологическое объяснение независимого наследования

К независимому наследованию приводит поведение хромосом во время мейоза. Гены двух разных пар признаков находятся в негомологичных хромосомах. У гомозиготных особей образуется только один тип гамет, содержащих по одной из каждой пары негомологичных хромосом. В процессе оплодотворения диплоидный набор хромосом восстанавливается. Генотип гибридов первого поколения представлял собой следующее сочетание RrYy (или АаВв, чтобы проследить по иллюстрации).

Так как негомологичные хромосомы расходятся произвольно, то гибридные особи дают 4 типа гамет: Ав, АВ, аВ, ав. Попарное слияние этих типов гамет при оплодотворении даёт 16 возможных вариантов зигот.

Дигибридное скрещивание - цитологические основы наследования

Цитологические основы законов единообразия и незакисимого наследования признаков при дигибридном скрещивании

Гипотеза чистоты гамет

  • у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;
  • из аллельной пары в гамету попадает только один ген вследствие расхождения гомологичных хромосом или хроматид при мейозе.

Полигибридное скрещивание

Число пар генов и соответствующих им признаков, по которым организмы отличаются друг от друга, часто бывает больше двух. Анализ данных по большому количеству аллельных пар называют полигибридным скрещиванием.

При таком анализе приходится изучать большое количество генотипов и фенотипов. Но закономерности, которым подчиняется их наследование часто бывает таким же как при моно- и дигибридном скрещивании.

Когда соблюдается третий закон Менделя?

Законы Менделя носят статистический характер (выполняются на большом количестве особей) и являются универсальными, т. е. они присущи всем живым организмам. Для проявления третьего закона Менделя необходимо соблюдение ряда условий:

  • гены разных аллельных пар (неаллельные) должны находиться в разных парах (негомологичных) хромосом;
  • между генами не должно быть сцепления и взаимодействия, кроме полного доминирования;
  • должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания организмов с разными генотипами (не должно быть летальных генов).

В основе независимого наследования генов разных аллельных пар лежит генный уровень организации наследственного материала, заключающийся в том, что гены относительно независимы друг от друга.

Неаллельные гены в одной хромосоме фото

Если неаллельные гены лежат в одной паре гомологичных хромосом, то запись будет выглядеть так

Отклонения от третьего закона Менделя

Отклонения от ожидаемого расщепления по законам Менделя вызывают летальные гены. Например, при скрещивании гетерозиготных каракульских овец расщепление в F1 составляет 2:1 (вместо ожидаемого 3:1). Ягнята, гомозиготные по доминантной аллели серой окраски (W), нежизнеспособны и погибают из-за недоразвития рубца желудка.

У человека аналогично наследуется доминантный ген брахидактилии (короткие толстые пальцы). У гетерозигот наблюдается брахидактилия, а гомозиготы па этому гену погибают на ранних стадиях эмбриогенеза.

У человека имеется ген нормального гемоглобина и ген серповидно-клеточной анемии (HbS). Гетерозиготы по этим генам жизнеспособны, а гомозиготы по HbS погибают в раннем детском возрасте (гемоглобин S не способен связывать и переносить кислород).

Затруднения в интерпретации результатов скрещивания (отклонения от законов Менделя) может вызвать и явление плейотропии, когда один ген отвечает за проявление нескольких признаков. Так, у гомозиготных серых каракульских овец ген W детерминирует не только серую окраску шерсти, но и недоразвитие пищеварительной системы.

Задачи на дигибридное скрещивание с решением

  1. У человека глухонемота наследуется как аутосомный рецессивный признак, а подагра – как доминантный признак. Оба гена лежат в разных парах хромосом. Определите вероятность рождения глухонемого ребёнка с предрасположенностью к подагре у глухонемой матери, не страдающей подагрой и у мужчины с нормальным слухом и речью, болеющего подагрой.

Рассуждение:

  • это прямая задача, так как из описания известны генотипы родителей, а узнать нужно генотипы и фенотипы потомков. Доминирование полное, признака 2, значит скрещивание дигибридное.
  • вводим буквенные обозначения доминантного и рецессивного признаков: глухонемота – а, норма по данному признаку – А, подагра доминантный признак – В, её отсутствие – в.
  • определяем генотипы родителей. Мать глухонемая, значит её набор аллелей однозначен – аа, она не страдает подагрой, у неё отсутствует доминантный аллель по этому признаку – вв. Генотип матери аавв. Отец может иметь несколько вариантов генотопов. Он не глухонемой, но может быть носителем, тогда либо Аа, либо АА. Он болен подагрой, но его второй аллеьный ген может быть нормальным: либо Вв, либо ВВ. Нужно рассмотреть несколько вариантов решения задачи с разными возможными генотипами отца: АаВв, АаВВ, ААВв и ААВВ. Жаль, что в задаче не сказано, что родители дигомозиготы.
  • составляем схемы скрещивания и определяем генотипы и фенотипы потомков.

Вариант 1.

P: ♀ аавв ♂ АаВв
G: ав АВ, Ав, аВ, ав

Генотип ребёнка с предрасположенностью к подагре при данном генотипе родителей – ааВв. Вероятность рождения таких детей составляет 25%, или ¼ часть.

Вариант 2.

P: ♀ аавв ♂ АаВВ
G: ав АВ, аВ
F1: АаВв, ааВв

Вероятность рождения глухонемых детей с предрасположенностью к подагре составляет 50%.

Вариант 3.

P: ♀ аавв ♂ ААВв
G: ав АВ, Ав
F: АаВв, Аавв

Вариант 4.

P ♀ аавв ♂ ААВВ
G ав АВ
F АаВв

  1. У свиней чёрная окраска шерсти (А) доминирует над рыжей (а), а длинная щетина (В) над короткой (в). Гены не сцеплены. Какое потомство может быть получено при скрещивании чёрного с длинной щетиной дигетерозиготного самца с гомозиготной чёрной самкой с короткой шерстью. Определите генотипы родителей, потомства, фенотипы потомства и их соотношение.

Рассуждение:

Задача более однозначна, в ней чётко сказано, что самец дигетерозиготен, а самка гомозиготна.

  • Определяем генотипы родителей. Чёрный (А) самец с длинной шерстью (В) дигетерозиготен – АаВв. Чёрная (А) самка с короткой (в) шерстью гомозиготна – ААвв.
  • Определяем гаметы родителей.
  • Записываем схему скрещивания в решётку Пеннета. Так как у матери один тип гамет, строк нам хватит и 2.

Чёрный с длинной шерстью

Ответ: генотипы родителей: самка – Аавв, самец – АаВв, генотипы потомства: ААВв, ААвв, АаВв, Аавв; фенотипы потомства и их соотношение: 2 чёрных длинношерстных : 2 чёрных короткошерстных.

  1. Известно, что карий цвет глаз (D) и тёмные волосы (С) – доминантные признаки. Кареглазый брюнет, гетерозиготный по обоим признакам женился на голубоглазой блондинке. Определите генотипы родителей, а также возможные генотипы и фенотипы детей этой пары.

Рассуждаем:

Задача на дигибридное скрещивание раз описывают два разных признака. Доминирование полное.

Решаем

  • Определяем генотипы родителей. Кареглазый брюнет гетерозиготный по обоим признаком – один вариант генотипа: DdCc, голубоглазая блондинка – также один вариант: ddcc.
  • Определяем типы их гамет.
  • Записываем скрещивание в решётку Пеннета и определяем фенотипы и генотипы возможных потомков.

Ответ: генотипы родителей: мать – ddcc, отец – DdCc; возможные генотипы детей – DdCc, Ddcc, ddCc, ddcc; возможные фенотипы детей – кареглазый брюнет, кареглазый блондин, голубоглазый брюнет, голубоглазый блондин в соотношении 1:1:1:1.

Вам будет интересно

Анализирующее скрещивание белых и красных роз фото

При селекционной и экспериментальной работе часто бывает нужно определить генотип особи с доминантными признаками. При…

Стручёк и горошины фото

Моногибридное скрещивание – такое, при котором исследуют только два варианта одного признака, например, белую и…

Подумайте! Когда нужно начинать ориентироваться – до похода или тогда, когда уже заблудился? Какие способы…

Картографические проекции сегодня – это математические способы изображения всего земного эллипсоида или его части на…

Чтобы измерить расстояние по плану, карте или глобусу, нужно знать, что такое масштаб и уметь…

В изучении наследования признаков генетики исходят из представления, что развитие каждого признака определяется отдельным геном.

Следовательно, при дигибридном скрещивании развитие изучать наследование двух генов.

Если допустить, что каждый из генов находится в отдельной хромосоме, то нужно ожидать, что зрелые яицеклетки и спермии, имеющие гаплоидный набор хромосом, будут иметь лишь по одной аллели каждого гена. Тогда гаметы материнского растения должны нести аллели А и В (или а и В), а отцовского — а и b (или А и b). Оплодотворение яйцеклетки АВ спермием ab приведет к образованию дигибридной зиготы F1 в соматических клетках гибридного зародыша восстановится двойной набор хромосом, и гибрид окажется гетерозиготным по двум аллельным парам, т. е. дигетерозиготным АаВв. Такой же генотип образуется и в случае соединения гамет Аb и аВ.

Гибридные семена гороха в нашем примере имеющие наследственную структуру АаВb по фенотипу, как и следовало ожидать при полном доминировании, окажутся гладкими и желтыми.

Чтобы убедиться в том, что гибрид F1 является гетерозиготным по двум генам АаВb, можно применить уже известный нам прием анализирующего скрещивания. Для этого гибрид F1 следует скрестить с формой, гомозиготной по обоим рецессивным признакам — aabb. У гибрида в мейозе образуется четыре сорта гамет: АВ, аВ, Ab, ab. Форма aabb дает лишь один сорт гамет — ab. При равновероятном осуществлении всех сочетаний гамет образуется четыре типа зигот в равном отношении l AaBb : 1aaBb : 1Aabb : 1aabb. Анализирующее скрещивание позволяет наиболее быстро исследовать генотип гибридного организма по интересующим нас генам.

Мендель также произвел анализирующее скрещивание гибридных растений F1 (семена гладкие и желтые) с растениями, гомозиготными по двум рецессивным генам (семена морщинистые и зеленые). В потомстве он получил четыре класса семян в числовых отношениях, очень близких к ожидаемому расщеплению 1 : 1 : 1 : 1, а именно: гладких желтых — 55 (АаВb), гладких зеленых — 51 (ааВb), морщинистых желтых — 49 (Aabb), морщинистых зелёных — 53 (aabb).

Таким образом, генетическими методами было показано, что дигибридный организм образует четыре сорта гамет в равном отношении и, следовательно, является гетерозиготным по обеим аллельным парам.

Расщепление по фепотипу. Третий закон Менделя

В потомстве от самоопыления пятнадцати дигибридных растений F1 Мендель получил 556 семян, из которых было 315 гладких желтых, 101 морщинистое желтое, 108 гладких зеленых и 32 морщинистых зеленых.

Как нам уже известно, в моногибридном скрещивании при полном доминировании в F2 наблюдается расщепление по фенотипу в отношении 3 : 1, по генотипу 1:2:1. Представим себе, что каждая отдельная пара Аа и Вb ведет себя в наследовании так же, как при моногибридном скрещивании. Для такого предположения имеются основания; вспомните об известном нам механизме расхождения хромосом в мейозе. В этом случае у дигибридного растения, как женского, так и мужского, содержащего обе аллельные пары, в мейозе будут образовываться четыре сорта гамет (АВ, Ab, аВ, ab), которые при оплодотворении могут свободно сочетаться между собой и дать 16 типов зигот.

Чтобы выяснить, как ведет себя каждая пара аллелей в потомстве дигибрида, можно опять применить метод учета каждой пары признаков отдельно. Для этого все 556 семян второго поколения надо разбить на два класса: 1) по форме: 315 + 108 = 423 гладких и 101 + 32 = 133 морщинистых; 2) по окраске: 315 + 101 = 416 желтых и 108 + 32 = 140 зеленых.

Зная, что расщепление по каждой паре признаков происходит в отношении 3 : 1, мы можем сказать, что из общего числа семян должны быть 3 /4 гладких и 1 /4 морщинистых. Производя соответствующие вычисления (556х 3 /4 — 417 и 556х 1 /4 = 139), мы получим теоретически ожидаемые численные отношения семян в F2 по каждой паре признаков 417 : 139. Из приведенных расчетов ясно, что в дигибридном скрещивании по каждой паре аллелей наблюдается закономерное расщепление в отношении 3:1.

Чтобы представить, каким образом осуществляется сочетание одновременно двух пар аллелей Аа и Вb, а также установить характер расщепления в F2 при одновременном учете обоих признаков, можно идти двумя путями. Первый путь — построение решетки Пеннета. Решетка Пеннета позволяет установить все возможные сочетания мужских и женских гамет при оплодотворении, а также определить фенотипы и генотипы особей F2.

Наследование окраски и формы семян у гороха

Второй путь является чисто математическим, основанным на законе сочетания двух и более независимых явлений. Этот закон гласит: если два явления независимы, то вероятность того, что они произойдут одновременно, равна произведению вероятностей каждого из них.

Как было показано, расщепления по каждой паре аллелей при дигибридном скрещивании происходят как два независимых явления. Появление особей с доминантным признаком при моногибридном скрещивании происходит в 3 /4 всех случаев, а с рецессивными — 1 /4. Следовательно, вероятность того, что признаки гладкая форма и желтая окраска семян проявятся одновременно, вместе равна произведению 3 /4Х 3 /4 = 9 /16, гладкая форма и зеленая окраска — 3 /4Х 1 /4 = 3 /16, морщинистая форма и желтая окраска— 1 /4Х 3 /4 = 3 /16 и морщинистая форма и зеленая окраска — 1 /4Х 1 /4 = 1 /16. Иначе говоря, произведение отдельных вероятностей дает отношение классов расщепления по фенотипу 9 /16: 3 /16: 3 /16: 1 /16, или 9:3:3:1.

Вернемся к примеру расщепления по признакам, полученному при анализе 556 семян F2 в опыте Менделя. Нетрудно убедиться в том, что полученные им семена распределились по классам сочетания признаков в отношении, близком к ожидаемому. Для того чтобы рассчитать теоретически ожидаемые числа по классам, следует умножить 556 семян соответственно на 9 /16, 3 /16, 3 /16 и 1 /16. Следовательно, соотношение классов расщепления по фенотипу в F2 дигибридного скрещивания при полном доминировании укладывается в формулу 9:3:3: 1.

Теперь должно быть понятным, почему при подсчете каждой пары альтернативных признаков отдельно отношение числа гладких семян к числу морщинистых было 12 : 4, или в эмпирических числах 423 : 133, и желтых к зеленым —12:4, или 416 : 140, т. е. для каждой пары отношение было 3:1. Те же результаты могут быть получены с использованием решетки Пеннета, в которой 16 вышеописанных генотипов по фенотипу разбиваются на четыре класса в том же отношении 9 : 3 : 3 : 1.

Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как в моногибридном скрещивании, т. е. независимо от другой пары примаков.

Расщепление по генотипу

Формула 9:3:3:1 выражает отношения расщепления по фенотипу в F2 при дигибридном скрещивании.

Необходимо провести анализ того же расщепления по генотипу. Очевидно, в случае полного доминирования это можно сделать только путем скрещивания особей всех 16 генотипов, которые могут получиться в результате сочетания четырех сортов женских и мужских гамет с гомозиготной рецессивной формой aabb. Поскольку при расщеплении по фенотипу каждая пара аллелей ведет себя независимо, то и расщепление по генотипу будет проявляться в соответствии с той же закономерностью, но в иных соотношениях.

Анализируя генотипы F2 по решетке Пеннета, мы можем определить частоту разных генотипов, что даст нам формулу расщепления 1 : 2 : 2 : 4 : 1 : 2 : 1 : 2 : 1. Зная, что при моногибридном скрещивании расщепление по генотипу соответствует 1АА : 2Аа : 1аа для одной пары аллелей и 1BB : 2Bb : 1bb для другой, можно подсчитать вероятность появления генотипов разных классов при дигибридном скрещивании.

Вероятность появления генотипа АА равна 1 /4. Соответственно для Аа — 1 /2 и для аа — 1 /4. То же самое будет для другой аллельной пары: ВВ — 1 /4, Вb — 1 /2, bb — 1 /4. Производя перемножение двух вероятностей, можно получить все классы расщепления по генотипу. В результате такого расчета получаются те же 9 классов расщепления по генотипу 1 : 2 : 2 : 4 : 1 : 2 : 1 : 2 : 1, которые можно было установить по решетке Пеннета.

Как мы видели, при моногибридном скрещивании число классов расщепления по фенотипу равняется 2 (3 : 1), а по генотипу — 3 (1 : 2 : 1); при дигибридном скрещивании число фенотипических классов расщепления равно 4, а генотипических — 9. Следовательно, в случае двух генов число классов соответствует по фенотипу 2 2 , а по генотипу — 3 2 . В дальнейшем при анализе расщепления нескольких генов в полигибридных скрещиваниях мы убедимся, что выведенные формулы справедливы и для этих скрещиваний.

Следует сказать о правилах написания формул различных генотипов и фенотипов. При полном доминировании гомозиготные формы по фенотипу неотличимы от гетерозиготных; так, ААВВ неотличима от АаВb, ААВb, АаВВ. В целях сокращения при написании сходные фенотипы гомозигот и гетерозигот иногда обозначают фенотипическим радикалом А—В—. Подставляя в такой радикал на место прочерка разные аллели, можно получать сходные фенотипы (например, для радикала А—bb сходные фенотипы будут у генотипов ААbb и Aabb).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Читайте также: