Закон либиха гласит вещество которое находится в управляет урожаем

Добавил пользователь Валентин П.
Обновлено: 18.09.2024

В природе нет такого места, где бы на организм действовал один фактор. Все факторы действуют одновременно и совокупность этих действий называется констелляцией. Значения факторов не всегда равнозначны. Они могут быть все недостаточны, и тогда наблюдается общее угнетение биоты (слабое развитие растительного покрова, снижение продуктивности, изменение фракционной структуры биомассы, изменение других показателей экосистем), но чаще одни из них в достатке, даже в оптимуме, а другие – в дефиците. При этом констелляция не является простой суммой влияния факторов, т.к. степень воздействия одних факторов на организмы и популяции зависит от степени воздействия других факторов.

ПРИМЕР. При оптимальной теплообеспеченности увеличивается толерантность растений и животных к недостатку влаги и питания, а недостаток тепла сопровождается снижением потребности во влаге и повышенной потребностью в питательных элементах. Причем это наблюдается и у растений, и у животных. У растений при недостатке тепла и переувлажнении почв становятся физиологически недоступными элементы питания, и для обеспечения толерантности требуется повышенное плодородие почв. Также и у животных – чтобы усилить защитные функции организма на холоде, надо хорошо поесть. Так, всегда перед тем, как залечь в берлогу медведь накапливает подкожный жир. Реакции газообмена у рыб неодинаковы в воде разной солености. У жуков рода Blastophagus реакция на свет зависит от температуры. При температуре 25°C они ползут на свет (положительный фототропизм), при снижении ее до 20°C или увеличении до 30°C – реакция нейтральная, а при значениях ниже и выше этих пределов – прячутся.

Однако компенсаторные возможности у факторов ограничены. Нельзя ни один фактор полностью заменить другим, и если значение хотя бы одного из факторов выходит за верхний или нижний пределы выносливости компонента биоты, существование последнего становится невозможным, каковы бы благоприятны не были остальные факторы.

ПРИМЕР. Нормальное выживание пятнистого оленя в Приморье имеет место только в дубняках на южных склонах, т.к. здесь мощность снега незначительна и обеспечивает оленю достаточную кормовую базу на зимний период. Ограничивающим фактором для оленя является глубокий снег. Недостаток тепла ограничивает распространение на север большинство видов и формаций маньчжурской флоры: сосняки из сосны густоцветковой, пихта цельнолистная и ее формации распространены только в Южном Приморье. А в зоне распространения многолетней мерзлоты повсеместно господствует лиственница. Для кедрового стланика и ольховника камчатского решающими факторами распространения являются высокая влажность воздуха и условия перезимовки. Они хорошо переносят морозные зимы только при наличии мощного снежного покрова, защищающего побеги от иссушения и обморожения зимними муссонами Дальнего Востока. Эти виды образуют заросли только в прибрежных районах Охотского и Берингового морей, а в континентальных р-нах – в подгольцовом поясе на высоте не менее 1000 м/н.у.м. На ранних стадиях развития ограничивающим фактором у хвойных пород может быть избыток света. Все они, даже сосна могильная, в первые годы жизни требуют притенения.

В пессимальных условиях ограничивающих факторов несколько и их общее подавляющее влияние может быть выше суммарного подавляющего эффекта отдельно взятых факторов.

ПРИМЕР с южными склонами – инсоляция усиливает сухость среды, препятствует повышению плодородия почв.

Часто ограничивающим фактор бывает на одной из стадий развития вида. Как известно, наиболее уязвимы ювенильные особи и для них ограничивающих факторов м.б. несколько. В разных географических зонах и ограничивающие факторы разные: на Крайнем Севере – чаще тепло, в южных районах – влага. Разные виды по-разному реагируют на один и тот же фактор. По реакции их взрослых особей на тот или иной фактор можно построить экологический ряд (в порядке убывания или нарастания действия фактора).

ПРИМЕР экологического ряда древесных пород по теневыносливости: лиственница – береза белая – осина – ивы – липа – дуб – береза даурская – ясень – клены – ольха – ильм – граб – ель – кедр – пихта. Экологический ряд типов леса (по теплообеспечнности): лиственничник (Л.) травяный – Л. зеленомошный – Л. брусничный – Л. сфагновый (рис. 3). Экологический ряд типов леса (по увлажнению): ильмовник (или ясеневник) крупнотравно-папоротниковый – дубняк (Д.) с березой разнотравный – Д. осоковый – Д. рододендроновый осоковый – Д. марьянниково-осоковый – Д. осочковый редкопокровный (рис. 4).

В пределах популяции тоже можно выделить индивидуумы наиболее и наименее чувствительные к одному и тому же фактору. Это обусловлено сочетанием наследственных (генетических) и приобретенных (фенотипических) признаков организмов. Благодаря экологической индивидуальности в популяциях существуют разные по жизнестойкости особи. Самые жизнестойкие переживают периоды неблагоприятных условий, способствуя сохранению вида в экстремальных условиях.

4.5. Правило предварения В.В. Алехина

Установил ботаник Вас. Вас. Алехин (1951). Одни и те же сообщества в одной зоне зональные, в других – экстразональные. Во втором случае за пределами северных границ ареала они занимают наиболее благоприятные для себя местообитания, за пределами южных границ – наименее благоприятные. Это особенно проявляется на северных и южных склонах лесной зоны. На холодных северных склонах в Магаданской области растут лиственничные редины со сфагновым покровом, а на теплых южных – лиственничные мохово-лишайниковые редколесья (Чукотка) и каменноберезовые разнотравные леса (Северное Охотоморье). В юго-западных районах Приморья северные склоны заняты влажными хвойно-широколиственными лесами, а южные – сухими дубняками с редкими вкраплениями сосняков из сосны густоцветковой (могильной) и абрикосниками, на самой окраине – переходящими в лесостепные сообщества.

Выявленная закономерность имеет большое значение, т.к. позволяет достаточно точно описать растительность еще не изученных территорий и реконструировать его прежний облик в местах, где он был уничтожен.

В природе нет такого места, где бы на организм действовал один фактор. Все факторы действуют одновременно и совокупность этих действий называется констелляцией. Значения факторов не всегда равнозначны. Они могут быть все недостаточны, и тогда наблюдается общее угнетение биоты (слабое развитие растительного покрова, снижение продуктивности, изменение фракционной структуры биомассы, изменение других показателей экосистем), но чаще одни из них в достатке, даже в оптимуме, а другие – в дефиците. При этом констелляция не является простой суммой влияния факторов, т.к. степень воздействия одних факторов на организмы и популяции зависит от степени воздействия других факторов.

ПРИМЕР. При оптимальной теплообеспеченности увеличивается толерантность растений и животных к недостатку влаги и питания, а недостаток тепла сопровождается снижением потребности во влаге и повышенной потребностью в питательных элементах. Причем это наблюдается и у растений, и у животных. У растений при недостатке тепла и переувлажнении почв становятся физиологически недоступными элементы питания, и для обеспечения толерантности требуется повышенное плодородие почв. Также и у животных – чтобы усилить защитные функции организма на холоде, надо хорошо поесть. Так, всегда перед тем, как залечь в берлогу медведь накапливает подкожный жир. Реакции газообмена у рыб неодинаковы в воде разной солености. У жуков рода Blastophagus реакция на свет зависит от температуры. При температуре 25°C они ползут на свет (положительный фототропизм), при снижении ее до 20°C или увеличении до 30°C – реакция нейтральная, а при значениях ниже и выше этих пределов – прячутся.

Однако компенсаторные возможности у факторов ограничены. Нельзя ни один фактор полностью заменить другим, и если значение хотя бы одного из факторов выходит за верхний или нижний пределы выносливости компонента биоты, существование последнего становится невозможным, каковы бы благоприятны не были остальные факторы.

ПРИМЕР. Нормальное выживание пятнистого оленя в Приморье имеет место только в дубняках на южных склонах, т.к. здесь мощность снега незначительна и обеспечивает оленю достаточную кормовую базу на зимний период. Ограничивающим фактором для оленя является глубокий снег. Недостаток тепла ограничивает распространение на север большинство видов и формаций маньчжурской флоры: сосняки из сосны густоцветковой, пихта цельнолистная и ее формации распространены только в Южном Приморье. А в зоне распространения многолетней мерзлоты повсеместно господствует лиственница. Для кедрового стланика и ольховника камчатского решающими факторами распространения являются высокая влажность воздуха и условия перезимовки. Они хорошо переносят морозные зимы только при наличии мощного снежного покрова, защищающего побеги от иссушения и обморожения зимними муссонами Дальнего Востока. Эти виды образуют заросли только в прибрежных районах Охотского и Берингового морей, а в континентальных р-нах – в подгольцовом поясе на высоте не менее 1000 м/н.у.м. На ранних стадиях развития ограничивающим фактором у хвойных пород может быть избыток света. Все они, даже сосна могильная, в первые годы жизни требуют притенения.

В пессимальных условиях ограничивающих факторов несколько и их общее подавляющее влияние может быть выше суммарного подавляющего эффекта отдельно взятых факторов.

ПРИМЕР с южными склонами – инсоляция усиливает сухость среды, препятствует повышению плодородия почв.

Часто ограничивающим фактор бывает на одной из стадий развития вида. Как известно, наиболее уязвимы ювенильные особи и для них ограничивающих факторов м.б. несколько. В разных географических зонах и ограничивающие факторы разные: на Крайнем Севере – чаще тепло, в южных районах – влага. Разные виды по-разному реагируют на один и тот же фактор. По реакции их взрослых особей на тот или иной фактор можно построить экологический ряд (в порядке убывания или нарастания действия фактора).

ПРИМЕР экологического ряда древесных пород по теневыносливости: лиственница – береза белая – осина – ивы – липа – дуб – береза даурская – ясень – клены – ольха – ильм – граб – ель – кедр – пихта. Экологический ряд типов леса (по теплообеспечнности): лиственничник (Л.) травяный – Л. зеленомошный – Л. брусничный – Л. сфагновый (рис. 3). Экологический ряд типов леса (по увлажнению): ильмовник (или ясеневник) крупнотравно-папоротниковый – дубняк (Д.) с березой разнотравный – Д. осоковый – Д. рододендроновый осоковый – Д. марьянниково-осоковый – Д. осочковый редкопокровный (рис. 4).

В пределах популяции тоже можно выделить индивидуумы наиболее и наименее чувствительные к одному и тому же фактору. Это обусловлено сочетанием наследственных (генетических) и приобретенных (фенотипических) признаков организмов. Благодаря экологической индивидуальности в популяциях существуют разные по жизнестойкости особи. Самые жизнестойкие переживают периоды неблагоприятных условий, способствуя сохранению вида в экстремальных условиях.

4.5. Правило предварения В.В. Алехина

Установил ботаник Вас. Вас. Алехин (1951). Одни и те же сообщества в одной зоне зональные, в других – экстразональные. Во втором случае за пределами северных границ ареала они занимают наиболее благоприятные для себя местообитания, за пределами южных границ – наименее благоприятные. Это особенно проявляется на северных и южных склонах лесной зоны. На холодных северных склонах в Магаданской области растут лиственничные редины со сфагновым покровом, а на теплых южных – лиственничные мохово-лишайниковые редколесья (Чукотка) и каменноберезовые разнотравные леса (Северное Охотоморье). В юго-западных районах Приморья северные склоны заняты влажными хвойно-широколиственными лесами, а южные – сухими дубняками с редкими вкраплениями сосняков из сосны густоцветковой (могильной) и абрикосниками, на самой окраине – переходящими в лесостепные сообщества.

Выявленная закономерность имеет большое значение, т.к. позволяет достаточно точно описать растительность еще не изученных территорий и реконструировать его прежний облик в местах, где он был уничтожен.

Законы земледелия — закономерности, описывающие взаимодействие факторов жизни растений и определяющие оптимальные условия их роста и развития с целью получения максимального урожая.

Законы земледелия основаны на результатах большого количества исследований и опытов, их обработки и анализа и закладывают теоретические и практические основы растениеводства. Правильное применение агротехнических, почвенно-мелиоративных и других приемов, повышение культуры земледелия и эффективное регулирование плодородия почвы и урожайности культур основывается на научном понимании и практическом использовании законов земледелия.

Навигация

Законы земледелия (English version)

Закон равнозначимости и незаменимости факторов жизни растений

Все факторы жизни растений равнозначны и незаменимы.

Для роста и развития растения необходимо обеспечение всех факторов жизни, как космических, так земных, независимо от количества фактора. Отсутствие одного фактора, даже самого малого, приводит к резкому уменьшению урожая и гибели растения.

Ни один фактор не заменяется другим. Например, недостаток калия нельзя заменить избытком фосфора, а недостаток света восполнить теплом и т.д.

Получение максимально возможных урожаев возможно только при постоянном поступлении всех факторов жизни в достаточном количестве. Однако на практике закон равнозначимости и незаменимости факторов является относительным в силу различных затрат на обеспеченность растений факторами жизни. Связано это с возможностью создания такие условия, как в материально-техническом отношении, так и почвенными и природно-климатическими условиями в конкретной местности.

Закон равнозначимости и незаменимости факторов жизни растений закладывает материальную основу земледелия: для получения стабильно высоких урожаев необходимо стремиться к обеспечению в полной мере растений всеми факторами.

Закон минимума

Рост и развитие растения определяется фактором, находящимся в минимуме.

где У — урожай; А — коэффициент пропорциональности для конкретного фактора; X — напряжение фактора.

Открытие закона минимума позволило во второй половине XIX века значительно увеличить урожайность культур, традиционно возделываемых в Центральной Европе благодаря внесению минеральных удобрений на оскуделых почвах.

Если высоту самой маленькой дощечки повысить добавлением соответствующего фактора, то фактический урожай будет определять уже другой клепкой, оказавшейся в минимуме.

Не смотря на очевидность и простоту закона, последующие исследования установили ряд уточнений. Ю. Либих признавал понижающий эффект при каждом увеличении отдельного фактора. А. Майер доказал: закон минимума следует принимать с учетом всей совокупности факторов, а не только питательных элементов. Э. Вольни, расширил действие закона в совокупности факторов на качество урожая.

Бочка Либиха

Графическое изображение закона минимума: 1 - максимально возможный урожай; 2 - фактический урожай

Закон минимума, оптимума, максимума

Максимальное развитие растения возможно при оптимальной обеспеченности факторами жизни.

В ходя ряда экспериментов данный закон подвергался проверкам и уточнениям, в результате чего он не нашел своего подтверждения.

Закон минимума, оптимума, максимума был предложен в результате ряда проведенных исследований, наиболее известный опыт Гельригеля. Он выращивал ячмень в стеклянных сосудах, заполненных одинаковой плодородной почвой. Все условия роста растений были одинаковыми, за исключением влажности почвы, определявшуюся по полной влагоемкости 100%. В 8 сосудах влажность составляла 5, 10, 20, 30, 40, 60, 80 и 100%. По окончанию опыта урожайность распределялась следующим образом:

Закон минимума, оптимума, максимума

Изменение урожайности растений в зависимости от содержания влаги в почве

Влажность почвы, % ПВ 5 10 20 30 40 60 80 100
Урожайность, кг сухого вещества на сосуд 1 63 146 176 217 227 197 0

Максимальный урожай ячменя в опытах Гельригеля приходится на влажность почвы 60% ПВ. Минимальное, как и максимальное количество влаги не обеспечили получение урожая. Если выразить разницу в прибавке урожая на каждую следующую градацию влажности, отнесенную к единице влажности, то получается прогрессирующее уменьшение прибавки урожая от последовательной прибавки влажности при том, что остальные факторы остаются неизменными. Эта закономерность получила название закона Тюнена.

В.Р. Вильямс проанализировал опыт Гельригеля и показал частный характер полученной закономерности. Он установил, что опыт Гельригеля нарушает условие единственного логического различия, являющегося важнейшим требованием агрономического опыта. Разная влажность почвы не создает одинаковые условия питания растений. Влажность неразрывно связана окислительно-восстановительными условиями в почве, а следовательно, существенно влияет на почвенные биохимические процессы.

Таким образом опыт Гельригеля по существу не достоверен, а его выводы ошибочны. Это подтверждают данные опыта Э. Вольни. При тех же условиях, что и в опыте Гельригеля, за исключением удобрения, не поддающегося восстановлению в анаэробиозисных условиях, полученные результаты приведены в таблице.

Влажность почвы, % ПВ 10 20 40 60 80 100
Урожайность, дг/сосуд 13 35 112 212 122 32
Разница между последующими и предыдущими показателями, дг/сосуд 22 77 100 -90 -90
Разница на градацию влажности (%), дг/сосуд 22 39 50 -45 -45

Опыты Э. Вольни показали совершенно иной характер зависимости урожая от влажности почвы по сравнению с кривой Гельригеля: увеличение влажности вызывает прогрессивное увеличение прибавки урожая на единицу влажности, а не уменьшение.

По мнению В.Р. Вильямса, опыт Э. Вольни тоже имел методические недостатки. В дальнейшем Э. Вольни поставил многофакторный опыт на растениях яровой ржи, выращивая их в трех рядах стеклянных сосудов по четыре сосуда в каждом ряду.

В каждом ряду было три сосуда с влажностью 20, 40 и 60% ПВ с неудобренной почвой, в четвертом сосуде каждого ряда удобренная почва с влажностью 60%. Освещенность каждого рядя была различной (слабое, среднее, сильное). Результаты представлены в таблице и на рисунке.

ПоказательУрожайность, дг/сосуд
без удобрений с удобрениями
При влажности почвы, % ПВ 20 40 60 60
Освещение
- сильное

110

320

403

584
- среднее 95 218 274 350
- слабое 88 185 208 223

Опыт Э. Вольни

Зависимость урожайности от факторов роста: освещения, влажности, удобрения

Рост урожайности в сосудах с неудобренной почвой с ростом влажности повторяет результаты опыта Гельригеля. Ввод удобрения привел к резкому росту урожайности в сосудах с влажностью почвы 60%. Однако, добавление фактора освещенности в опыт резко повысил эффективность удобрения. Если просуммировать урожайность вариантов с удобрениями при различной освещенности, то окажется, что взаимодействие всех факторов даст значительный прирост урожая, увеличивающийся по мере добавления в систему новых факторов жизни растений. Данные выводы также опровергают закон Тюнена.

Закон совокупного действия факторов жизни растений

Все факторы жизни растений взаимодействуют в процессе роста и развития растений, то есть действуют совокупно.

Опирая, на закон совокупного действия факторов жизни растений, ряд исследователей предпринимали попытки установить математическую зависимость урожайности от факторов жизни. Наибольший успех в этом добился Э. Митчерлих.

Э. Митчерлих попытался найти математическую зависимость прибавки урожая от удобрения почвы. Он установил, что прибавка урожая пропорциональна разнице между максимально возможным и фактически полученным урожаем и зависит от каждого фактора и его интенсивности. Э. Митчерлих опытным путем определил коэффициенты использования отдельных питательных элементов: для азота N — 0,2, фосфора Р2О5 — 0,6, калия К2О — 0,4, магния Mg — 2,0 на 1 мм осадков.

Последующие исследования показали, что зависимость Э. Митчерлиха неуниверсальна из-за сложности биологических процессов создания урожая. Кроме того, вскоре Тренель показал, что она математически неверна.

Несмотря на сложности математического выражения этого закона, он имеет важное значение в практики земледелия. В.Р. Вильямc указывал, лишь добиться максимальной отдачи урожая возможно лишь при одновременном воздействии на весь комплекс факторов жизни растений, представляющий единое органическое целое, элементы которого неразрывно связаны между собой. Воздействие на один из факторов жизни влечет за собой необходимость воздействия на все остальные.

Закон возврата

Вещество и энергия, отчужденные из почвы с урожаем, должны быть компенсированы (возвращены в почву) с определенной степенью превышения.

В первые открыт Ю. Либихом. Д.Н. Прянишников и К.А. Тимирязев считали закон возврата одним из величайших для науки.

Земледелие по своей природе как отрасль производства материально: урожай создается из материальных составных частей — энергии и веществ, потребляемых растениями из почвы. Почва также является средой произрастания растений и посредником в их обеспечении факторами жизни.

Систематическое отчуждение урожая с полей без возврата использованных им энергии и составных частей почвы, она теряет свое плодородие. Если вынос энергии веществ компенсируется, то плодородие почвы сохраняется; а при компенсации с избытком, происходит воспроизводство плодородия.

Закон возврата — это научная основа воспроизводства плодородия почвы. Его можно рассматривать как частный случай физического закона сохранения материи и энергии.

Закон плодосмена

Чередование во времени и пространстве культурных растений, отличающихся между собой по биохимическим, биологическим, агрономическим и другим свойствам.

Профессор М.Г. Павлов еще в 1838 году признавал закон плодосмена как закон природы:

Другие законы земледелия

В земледелии существует ряд других законов: закон автотрофности зеленых растений, основывающийся на теории фотосинтеза и минерального питания растений; закон поступления, передвижения и превращения минеральных веществ в растениях и др.

В.И. Ленин критиковал данные выводы

Опыты В.Р. Вильямса, Э. Вольни и других ученых показали, аналогичные результаты: оптимальное снабжение растений светом, влагой и питательными веществами позволяет увеличить урожай в несколько раз при значительно меньших расходах элементов питания и влаги на создание единицы продукции. Данные выводы позволили успешно внедрить и использовать интенсивные технологии выращивания сельскохозяйственных растений, базирующиеся на всех законах земледелия с учетом местных почвенно-климатических условиях и особенностях вида, разновидности и сорта культуры.

Практика применения законов земледелия

Разработанные системы земледелия базируются на действии законов земледелия. Современные направления адаптивно-ландшафтных систем земледелия строятся на использовании земельных ресурсов определенной агроэкологической группы, ориентированы на экономически выгодное производство продукции высокого качества в соответствии с рыночными потребностями, обеспечивающие устойчивость агроландшафта и постоянное воспроизводство плодородия почвы. Освоение систем земледелия неразрывно связано с освоением новых технологий, одним из главных требований к которым — адаптированность к природным условиям, формам хозяйствования, различным уровням интенсификации производства и т.д.

Методология построения технологий базируется на законах земледелия. Например, руководствуясь законом миниму, определяют и устраняют лимитирующие факторы урожайности с учетом почвенно-климатических условиях, специализации и уровня интенсификации производства. Интенсификация производства меняет значимость тех или иных факторов: с устранением дефицита одних повышается роль других. Возврат питательных веществ, отчуждаемых с урожаем, согласно закону возврата, должен компенсироваться с избытком, для постоянного расширенно воспроизводства плодородия.

Несоблюдение или нарушение законов земледелия в сельскохозяйственной практике приводит не только к неполучению ожидаемых, но и отрицательным результатам с необоснованными экономическими затратами. Например, необоснованная мелиорация, интенсивные технологии, химизация, реформирование АПК. Без учета комплекса взаимных и системных связей факторы и приемы, казавшиеся обоснованными, необходимыми, экологически оправданными, в итоге приводили к отрицательным последствиям функционирования сельскохозяйственного производства.

Высокие урожаи обеспечиваются сочетаниями определенных факторов жизни растений на каждом этапе развития. Только при комплексном действии всех условий жизни возможно полное использование каждого из них, что на практике встречается редко. Чаще, фактор, находящийся в минимуме, определяет формирование урожая в конкретных почвенно-климатических условиях. Например в Нечерноземной зоне это питательные вещества, в засушливых районах — вода.

Каждый агротехнический прием, как правило, для создания благоприятных условий роста и развития растений влияет на 1-2 фактора жизни. Поэтому только комплекс мероприятий дает возможность регулировать все условия жизни растений. Очевидно, что наибольшую значимость из этих агроприемов будет иметь тот, который воздействуют на фактор, находящийся в минимуме.

Помимо почвенно-климатических особенностей зоны или местности, при разработке комплекса агротехнических мероприятий следует учитывать фазы развития растений. Приемы должны обеспечивать прирост запасов органических и минеральных веществ в почве, повышая ее плодородие и улучшая структуру и строение.

Каждая особь, популяция, сообщество испытывают одновременно воздействие различных факторов, но лишь часть из них являются жизненно важными. Такие жизненно важные факторы называются лимитирующими. Чаще всего хотя бы один фактор лежит вне оптимума. И от этого фактора зависит возможность существования вида в данном месте. Еще в 1840 году Ю. Либих установил, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Ему принадлежит приоритет изучения различных факторов на рост растений и выявление того, что урожай растений можно эффективнее всего повысить, улучшив минимальный фактор (обычно — увеличив количество N и P), а не те элементы питания, которые требуются в больших количествах, такие, как, например, двуокись углерода или вода. Вещества, которые требуются в ничтожнейших количествах, но которых очень мало и в почве, например цинк, эти вещества и становятся лимитирующими. Концепция Либиха о том, что "рост растения зависит от того элемента питания, который присутствует в минимальном количестве" стала известна как "закон минимума" Либиха.

Для успешного применения на практике концепции Либиха к ней необходимо добавить два вспомогательных принципа: первый — ограничительный ("закон Либиха строго применим только в условиях стационарного состояния, т.е. когда приток и отток энергии и вещества сбалансирован"); второй — принцип взаимодействия факторов, который утверждает, что "высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора могут изменять скорость потребления элемента питания, содержащегося в минимальном количестве".

Для инженера-эколога концепция лимитирующих факторов ценна тем, что она дает отправную позицию при исследовании сложных ситуаций в системе "человек – техника — природа". Взаимоотношения элементов такой системы могут быть весьма сложными. В процессе решения задач новой техники и технологии специалист может выделить вероятные слабые стороны и заострить внимание, хотя бы в начале, на тех характеристиках среды, которые могут оказаться критическими или лимитирующими.

Пределы толерантности. Наряду с выводом о том, что "рост растений зависит от того элемента питания, который присутствует в минимальном количестве", ставшим основой либиховского "закона минимума", Ю. Либих указывал на диапазон лимитирующих показателей. Было выяснено, что лимитирующим фактором может быть не только недостаток, но и избыток таких факторов, как свет, тепло и вода. Понятие о лимитирующем влиянии экологического максимума наравне с минимумом ввел В. Шелфорд (1913 г.), сформулировавший "закон толерантности". Диапазон между двумя величинами, экологическим минимумом и экологическим максимумом, которым характеризуются так или иначе все живые организмы было принято называть пределом толерантности (от лат. toleratia — терпение, терпимость). Если определенный организм обладает небольшим диапазоном толерантности к одному из изменчивых факторов, то этот фактор заслуживает пристального внимания, ибо он может оказаться лимитирующим. Например, кислород, вполне доступный для организмов, обитающих в наземных частях экосистем, редко может оказаться лимитирующим. Тогда как для организмов, обитающих под водой, кислород может стать важным лимитирующим фактором. В случае экстремального сужения диапазона толерантности живой организм может всю метаболическую энергию затратить на преодоление стресса, связанного с уменьшением пределов лимитирующего фактора, а из-за недостачи энергии на нормальную жизнедеятельность — погибнуть. Если белый медведь в силу каких-либо обстоятельств будет перемещен в теплые края, то ему придеться тратить всю метаболическую энергию на преодоление теплового стресса, и животному не хватит энергии на добывание пищи и сохранение своего вида в природе.

Концепция лимитирующих факторов в общем случае широко распространяется как на биологические, так и на физические факторы, и на изложение всего, что известно по этому вопросу, потребовался бы печатный труд большого объема, что не входит в задачу данной книги. Однако, учитывая, что инженеру-экологу приходится чаще иметь дело с физическими факторами, кратко перечислим основные физические и климатические факторы.

Читайте также: