Вегетативное размножение растений митоз или мейоз

Добавил пользователь Валентин П.
Обновлено: 19.09.2024

Но не спешите с выводами, а положитесь, пожалуйста, на мой опыт репетитора по биологии. То, о чем мы сегодня поговорим, может оказаться многим полезным. А говорить мы будем о тех недоразумениях, которые возникают на экзаменах при ответе на эти вопросы.

Опять, возможно, начну с долей критики в адрес учебников. Тема деления, размножения клеток настолько важна, что ей уделяется действительно много места. Казалось бы, что еще может быть лучше: для объяснения процессов приводится груда цветных иллюстраций и всевозможных схем.

А что должно действительно остаться в голове надолго, чтобы в итоге не делать самых простых ошибок ни на экзаменах, ни, что еще важнее, в своей жизни.

1. Хотя бы не путать сами названия процессов друг с другом

из одной исходной клетки образуется две, совершенно одинаковые по генетической информации как друг с другом, так и с родительской клеткой.

Причем, что очень важно помнить, каждая нить при этом — однохроматидная — 1с, то есть в 2n хроматиновом (хромосомном) наборе гомологов — 2с хроматиновой информации.

И вот только после завершения постсинтетического периода интерфазы G2, подготовив всё необходимое, клетка приступает сначала к делению ядра кариокинезу или митозу , а затем происходит и само деление клетки — цитокинез.


А какова суть мейоза?

И вот сейчас, запомните мою крамольную мысль. Мейоз в отличие от митоза — это не размножение. Это способ образования гаплоидных клеток (спор — у растений и половых клеток гамет — у животных). Гаметы лишь после процесса оплодотворения, который в данном случае и является половым размножением, послужат образованию нового организма.

Еще раз обращаю ваше внимание, что у животных организмов мейозом делятся клетки специализированных тканей гонад, из которых образуются гаметы или половые клетки. А у растений мейозом образуются споры, у уже потом путем митозов образуются гаметы.

А вот почему гаплоидные споры нельзя считать половыми клетками читайте в статье «Чередование поколений«.

Мейозу, как и митозу, предшествует удвоение генетического материала клетки, но мейоз протекает в два этапа мейоз I и мейоз II.

Сама редукция числа хромосом, то есть уменьшение их количества в два раза происходит уже после первого этапа мейоза, поскольку а профазу мейоза I происходила коньюгация гомологичных хромосом, но хромосомы в двух образовавшихся гаплоидных клетках остаются еще двухроматидными (1n2c).


2. Что еще очень важно помнить любому, особенно молодым людям — потенциальным родителям

И в этот момент образования и яйцеклеток, и сперматозоидов особенно важно, что бы не было воздействия на организм человека никаких неблагоприятных факторов (нервных потрясений, больших доз лекарственных препаратов, алкоголя, никотина и других наркотических средств), способных привести к ошибкам кроссинговера при мейозе (а, значит, и к появлению генетически неполноценного потомства).

3. На что еще следует обратить внимание

Даже если хорошо помнится, что митозом размножаются все соматические клетки организма, а мейоз — способ образования половых клеток, допускается следующая ошибка.

Да, мейоз — способ образования половых клеток, но… Но только у животных организмов. Снова хочу подчеркнуть, что у всех высших растений (мхов, папоротников, голосеменных и покрытосеменных растений) мейотическому делению подвергаются споры! В дальнейшем из гаплоидных спор путем митозов формируются половые клетки растений — гаметы.

Авторам школьных учебников следовало бы именно на это обратить внимание, поскольку составители тестовых заданий любят (и они правы) включать вопросы по основополагающим процессам функционирования живых систем. А способы размножения клеток живых организмов и способы полового размножения организмов разных таксонов как раз и относятся к таким процессам.

До сих пор ломаю голову, как мог он знать тогда о возможных ошибках кроссинговера при мейозе?

У кого есть вопросы по статье к репетитору ЕГЭ по биологии по Скайпу, замечания, пожелания — прошу в комментарии.

У меня на блоге вы можете приобрести ответы на все тесты ОБЗ ФИПИ за все годы проведения экзаменов по ЕГЭ и ОГЭ (ГИА).

Раздел ЕГЭ: 2.7. … Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. …

Клеточный цикл (жизненный цикл клетки) — время существования клетки от начала одного деления до начала следующего деления, состоит из интерфазы и собственно процесса деления.

Интерфаза — период между делениями, в котором происходят процессы роста и развития клетки, удвоения ДНК, синтеза белков и органических соединений.

жизненный цикл клетки

  1. Пресинтетический (постмитотический) период G1 — образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, делятся митохондрии, клетка растет (хромосомный набор — 2n2c).
  2. Синтетический период S — удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид, активно синтезируются структурные белки ДНК — гистоны (хромосомный набор — 2n4c).
  3. Постсинтетический (премитотический) период G2 — подготовка к последующему процессу — делению клетки, синтезируются белки и АТФ, удваиваются центриоли (хромосомный набор — 2n4c).

Примечание. В схемах деления гаплоидный набор хромосом обозначают буквой n , а молекул ДНК (т. е. хроматид ) — буквой с . Перед буквами указывают число гаплоидных наборов, например:

виды деления клеток

Митоз и амитоз

Митоз (непрямое деление клетки) — процесс равномерного распределения между дочерними клетками ядерного наследственного материала.

В результате митоза из одной материнской клетки с диплоидным (двойным) набором хромосом образуются две диплоидные дочерние клетки, содержащие полную генетическую информацию в том же объёме, что и родительская. Митоз обеспечивает сохранность наследственных признаков и увеличение количества клеток или одноклеточных организмов.

Стадии (фазы) митоза:

  • Профаза (2n4c) — спирализация хромосом, уменьшение их функциональной активности; репликация практически не идёт; разрушение оболочки ядра; образование веретена деления; прикрепление хромосом к нитям веретена деления.
  • Метафаза (2n4c) — спирализация хромосом достигает максимума; хромосомы утрачивают свою функциональную активность, образуют экваториальную пластинку.
  • Анафаза (4n4c) — деление центромер; расхождение по нитям веретена сестринских хромосом. Анафаза заканчивается, когда центромеры достигают полюсов клетки.
  • Телофаза (2n2c) — деспирализация хромосом; образование ядерной оболочки; деление цитоплазмы; между дочерними клетками формируется клеточная стенка.

митоз

Амитоз — прямое деление клетки, при котором ядро делится путём перешнуровки без предшествующей перестройки:

  • хромосомы не проходят цикла спирализации;
  • не образуется веретено деления;
  • клетка делится сразу после репликации ДНК;
  • ДНК между дочерними клетками распределяется неравномерно.

Амитоз проходит быстрее, чем митоз. В результате амитоза увеличивается количество дочерних клеток, но одновременно могут появляться двух- и многоядерные клетки. Амитоз характерен для одноклеточных и некоторых клеток многоклеточных организмов (клетки при патологических состояниях).

Мейоз

Мейоз — способ деления эукариотических клеток, в результате которого из одной материнской клетки образуются четыре дочерние с уменьшенным в два раза набором хромосом. На этапе интерфазы (предшествует мейозу) происходит репликация ДНК с последующим удвоением хромосом. Клетки с диплоидным набором хромосом, каждая состоит из одной хромосомной нити (хромонемы). После интерфазы хромосомы становятся удвоенными, а их диплоидное число 2n сохраняется. Центриоли в клеточном центре удваиваются.

Стадии (фазы) мейоза I (редукционное деление):

  1. Профаза I — спирализация хромосом; конъюгация; кроссинговер; хроматиды начинают расходиться; биваленты обособляются и располагаются по периферии ядра; ядрышко исчезает (хромосомный набор клетки — 2n4c).
  2. Метафаза I — начинается с момента разрушения ядерной оболочки; биваленты располагаются в экваториальной плоскости, прикреплённые к нитям веретена деления (хромосомный набор клетки — 2n4c).
  3. Анафаза I — центромеры каждой пары гомологичных хромосом разъединяются, и к полюсам клетки отходят гомологичные хромосомы, состоящие из двух хроматид (хромосомный набор клетки к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c).
  4. Телофаза I — начинается с достижения хромосомами полюсов клетки (у каждого полюса — n хромосом): происходит редукция числа хромосом; образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка (хромосомный набор каждой из образовавшихся клеток — 1n2c).

Завершение мейоза I сопровождается образованием двух дочерних клеток, содержащих гаплоидный набор хромосом, которые в свою очередь остаются удвоенными.

Во время кратковременной интерфазы (интеркинеза) не происходит репликация ДНК, нет удвоения хромосомы, две дочерние клетки вступают во второе деление мейоза.

Стадии (фазы) мейоза II (по типу митоза — равное деление):

  1. Профаза II — непродолжительная, так как хроматиды спирализованы (хромосомный набор клетки — 1n2c).
  2. Метафаза II — образуются экваториальная пластинка, хромосомы, состоящие из двух хроматид, центромерными участками прикрепляются к нитям веретена деления (хромосомный набор клетки — 1n2c).
  3. Анафаза II — хроматиды расходятся к полюсам клетки (хромосомный набор у каждого полюса — 1n1c , в клетке — 2n2c).
  4. Телофаза II — образуется ядерная оболочка; делится цитоплазма; формируется клеточная стенка. Образуются четыре гаплоидные клетки 1n1c (хромосомные наборы образовавшихся клеток не идентичны).

мейоз

Мейоз II проходит по типу митоза. В результате мейоза из одной клетки с диплоидным набором хромосом после двух последовательных делений образуются 4n клетки.

Черты мейоза

  1. Редукция числа хромосом (если бы не было уменьшения числа хромосом при образовании половых клеток, то из поколения в поколение их количество возрастало бы и был бы утрачен один из важнейших признаков каждого вида — постоянство числа хромосом),
  2. Конъюгация (сближение и переплетение) гомологичных хромосом.
  3. Рекомбинация генетического материала, обусловленная случайным расхождением материнских и отцовских гомологичных хромо сом в дочерние клетки, а также кроссинговером (процессом обмена участками гомологичных хромосом).

Таким образом, мейоз — непрерывный процесс, состоящий из двух последовательных делений ядра и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время интерфазы I.

Наборы хромосом и количество ДНК в клетке (мейоз)

Наборы хромосом и количество ДНК в клетке (мейоз)

Наследственность как всеобщее свойство живых организмов тесно связана с другим важнейшим свойством живого — размножением. Благодаря размножению осуществляется преемственность между родительскими особями и их потомством. В основе размножения лежит процесс деления клеток.

Хромосомы: индивидуальность, парность, число

Во время деления клетки хорошо заметны хромосомы. При изучении хромосом разных видов живых организмов было обнаружено, что их набор строго индивидуален. Это касается числа, формы, черт строения и величины хромосом. Набор хромосом в клетках тела, характерный для данного вида растений, животных, называется кариотипом Рис. 6).

Рис. 6. Диплоидный набор хромосом в клетке

В любом многоклеточном организме существует два вида клеток — соматические (клетки тела) и половые клетки, или гаметы. В половых клетках число хромосом в 2 раза меньше, чем в соматических. В соматических клетках все хромосомы представлены парами — такой набор называется диплоидным и обозначается 2/1- Парные хромосомы (одинаковые по величине, форме, строению) называются гомологичными.

В половых клетках каждая из хромосом находится в одинарном числе. Такой набор называетсягаплоидным и обозначается п.

Митоз. Подготовка клетки к делению

Наиболее распространенным способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий, или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки.

Во время подготовки клетки к делению — в период интерфазы (период между двумя актами деления) число хромосом удваивается. Вдоль каждой исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия. Удвоенная хромосома состоит из двух половинок — хроматид. Каждая из хроматид содержит одну молекулу ДНК- В период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются также все важнейшие структуры клетки. Продолжительность интерфазы в среднем 10—20 ч. Затем наступает процесс деления клетки — митоз.

Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза, телофаза (рис. 7).

В профазе хорошо видны ценгриоли - органоиды, играющие определенную роль в делении дочерних хромосом. Центриолй делятся и расходятся к разным полюсам. От них протягиваются нити, образующие веретено деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются.

Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосома состоит из двух хроматид и имеет перетяжку — центромеру, к которой прикрепляются нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

В анафазе дочерние хромосомы расходятся к разным полюсам клетки.

В последней стадии — телофазе — хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко.

В процессе деления цитоплазмы все ее органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1—2 ч.

Профаза 1 Метафаза Анафаза 1

Рис. 7. Схематические изображение основных стадий митоза и мейоза

В результате митоза все дочерние клетки содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз — это способ деления клетки, заключающийся в точном распределении генетического материала между дочерними клетками, обе дочерние клетки получают диплоидный набор хромосом.

Биологическое значение митоза огромно. Функционирование органов и тканей многоклеточного организма было бы невозможно без сохранения одинакового генетического материала в бесчисленны. Неточных поколениях. Митоз обеспечивает такие важные процессы жизнедеятельности, как эмбриональное развитие рост поддержание структурной целостности тканей при полной утрате клеток в процессе их функционирования (замещение погибши эритроцитов, эпителия кишечника и пр.). восстановление органов и тканей после повреждения.

Размножение. Мейоз. оплодотворение

Процессы размножения у живых организмов различны. Однако все их можно свести к двум формам: бесполому и половому

Сущность бесполого размножения

В бесполом размножении участвует только одна родительская особь; новый организм может возникнуть из одной клетки или из нескольких неспециализированных клеток материнского организма.

В природе встречается несколько видов бесполого размножения спорообразование, вегетативное размножение, почкование и до У некоторых организмов бесполое и половое размножение закономерно сменяют друг друга. Это явление называется чередованием поколений. Например, в тенистых лесах можно увидеть заросли папоротника - это бесполое поколение растении, которое размножается с помощью спор. Из спор развивается половое поколение - заросток папоротника. Другой пример - чередование вегетативного и полового размножения у целого ряда кишечнополостных животных.

Бесполое размножение эволюционно возникло раньше полового С его помощью численность вида может быстро увеличиться. Однако бесполой размножение не сопровождается повышением наследственной изменчивости потомков: при таких формах все потомки генетически сходны с материнской особью, так как развиваются из клеток, делящихся митозом.

Половое размножение, его значение для эволюции пoлoвoe размножение имеет большое эволюционное преимущество по сравнению с бесполым. Это обусловлено тем, что в половом размножении принимают участие, как правило, две родительские особи. В результате слияния мужской и женской половых клеток (гамет), несущих гаплоидный набор хромосом, образуется оплодотворенная яйцеклетка — зигота, несущая наследственные задатки обоих родителей. Благодаря этому увеличивается наследственная изменчивость потомков и повышается их возможность в приспособлении к условиям среды обитания.

У низших многоклеточных организмов гаметы одинаковых размеров, у более высокоорганизованных растений и животных половые клетки не одинаковы по величине. Одни гаметы богаты запасными питательными веществами и неподвижны — яйцеклетки; другие, маленькие, подвижные — сперматозоиды. Образование гамет происходит в специализированных органах — половых железах- У высших животных женские гаметы образуются в яичниках, мужские — в семенниках.

Мейоз, его сущность

Половое размножение грибов, растений, животных связано с образованием специализированных половых клеток. Особый тип деления клеток, в результате которого образуются зрелые половые клетки (яйцеклетки и сперматозоиды), называется мейозом.

В половых железах в процессе образования половых клеток, как сперматозоидов, так и яйцеклеток, выделяют ряд стадий. В первой стадии — размножения— первичные половые клетки делятся путем митоза, в результате чего увеличивается их количество. Во второй стадии — роста — будущие яйцеклетки увеличиваются в размерах иногда в сотни, тысячи и более раз. Размеры сперматозоидов увеличиваются незначительно. В следующей стадии — созревания — каждая половая клетка претерпевает мейоз, состоящий из двух последовательных делений — мейоза I и мейоза II. Удвоение ДНК и хромосом происходит только перед мейозом I. В результате мейоза образуются гаметы с гаплиидным числом хромосом. Таким образом, в отличие от митоза, при котором дочерние клетки получают диплоидный набор хромосом, в результате мейоза зрелые половые клетки имеют лишь одинарный, гаплоидный, набор хромосом. При этом в каждую дочернюю клетку попадает по одной хромосоме из каждой пары, присутствовавшей в родительской клетке. Мейоз, так же как и митоз, состоит из ряда фаз.

Во время профазы I мейоза двойные хромосомы хорошо заметны в световой микроскоп. Каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры. Гомологичные хромосомы сближаются и конъюгируют, т. е, продольно тесно соединяются друг с другом (хроматида к хроматиде). При этом хроматиды часто перекручиваются или перекрещиваются. К концу профазы гомологичные хромосомы отталкиваются друг от друга. В местах перекреста хроматид происходят разрывы и обмены их участками. Это явление называется кроссинговером — перекрестом хромосом (рис. 8). Затем, как и в профазе митоза, растворяется ядерная оболочка, исчезает ядрышко, образуются нити веретена.

Рис. 8. Перекрест хромосом в мейозе

В метафазе I хромосомы располагаются в экваториальной плоскости. В анафазе 1 гомологичные хромосомы, каждая из которых состоит из двух хроматид, расходятся к противоположным полюсам клетки. В телофазе из каждой пары гомологичных хромосом в дочерних клетках оказывается по одной. Число хромосом уменьшается в 2 раза, хромосомный набор становится гапло-идным. Однако каждая хромосома состоит из двух хроматид, т. е. по-прежнему содержит удвоенное количество ДНК. Поэтому во время интерфазы между первым и вторым делениями мейоза удвоения (редупликации) ДНК не происходит.

Второе мейотическое деление идет по типу митоза. В анафазе 2 к полюсам расходятся хроматиды, которые и становятся дочерними хромосомами. Из каждой исходной клетки в результате мейоза образуется четыре клетки с гаплоидным набором хромосом.

По рассмотренной схеме мейоза идет сперматогенез — образование мужских половых клеток у животных и человека. В отличие от сперматогенеза, в результате овогенеза (формирования женских гамет) образуется не четыре равноценные клетки, а одна зрелая яйцеклетка и три маленькие клеточки, которые впоследствии исчезают. Таким образом, по сравнению с яйцеклетками сперматозоидов образуется во много раз больше. Это необходимо для обеспечения оплодотворения большего числа яйцеклеток и, следовательно, для сохранения вида.

Биологическое значение мейоза и оплодотворения

Сущность процесса оплодотворения состоит в слиянии сперматозоида с яйцеклеткой с образованием диплоидной клетки - зиготы.

Если бы в процессе мейоза не происходило уменьшение числа хромосом, то в каждом следующем поколении в результате оплодотворения число хромосом увеличивалось бы вдвое- Благодаря мейозу зрелые половые клетки получают гаплоидное число хромосом, а при оплодотворении восстанавливается характерное для данного вида диплоидное (2л) число хромосом.

В ходе мейоза происходит перекрест и обмен участками гомологичных хромосом. Кроме того, материнские и отцовские хромосомы случайно распределяются между гаметами (гомологичные хромосомы каждой пары расходятся в стороны случайным образом независимо от других пар). Все эти процессы обеспечивают большое разнообразие гамет и увеличивают наследственную изменчивость организмов, что имеет большое значение для эволюции.

Когда вы только родились, ваш вес составлял в среднем от 3 до 4кг, а рост всего около 50-60 см, но с каждым днем вы становились больше и выше..

А какой рост и вес у вас сегодня и почему произошло увеличение этих показателей по сравнению с прошлыми годами?

Всё это благодаря способности клеток к размножению, в основе которого лежит процесс деления.

Рост и развитие всех многоклеточных организмов всегда связаны с делением клеток.


У человека и животных во взрослом состоянии в некоторых тканях клетки постоянно отмирают и заменяются новыми, которые образуются как раз путем деления.

Следовательно, деление клеток является тем процессом, благодаря которому поддерживается жизнь всего организма и обеспечивается непрерывность жизни клетки.

Наряду с непрерывностью жизни клетки происходит и преемственность наследственных свойств от родительской клетки к дочерней.

То есть в процессе деления каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы обладать общей наследственной программой, специализироваться и выполнять функции, какие и выполняла материнская клетка.


Существуют два различных типа деления клетки: вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке -митоз, и репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства гамет - мейоз.

То есть клетки тела или соматические клетки образуются путем непрямого деления -митозом, а половые клетки (гаметы) образуются благодаря редукционному делению клетки или мейозу.

Сегодня наука может заглянуть в этот клеточный мир и проследить за процессами митоза и мейоза в клетках, приближая нас к раскрытию и пониманию еще одной тайны живой природы - самовоспроизведению.

Клеточный цикл

Для начала рассмотрим жизнь одной клетки нашего организма.

Весь период существования клетки от момента её образования до собственного деления или гибели называется клеточным циклом или жизненным циклом клетки.

Длительность жизненного цикла у разных клеток разная, но у большинства активно делящихся клеток, она составляет примерно от 10 до 24 часов.

У меня есть дополнительная информация к этой части урока!


Примеры длительности жизни клеток:

· у амебы жизненный цикл клетки равен 36 часам

· бактериальные клетки могут делиться каждые 20 минут

· у клеток кишечного эпителия грызунов цикл между делениями в среднем 15 часов

· клетки крови человека: тромбоциты живут около 7- 11 дней, лейкоциты - от одного дня до нескольких недель, эритроциты живут 30-120 дней

· нервные клетки перестают делиться ещё во время внутриутробного развития, их жизнь зависит от времени жизни ткани или органа, в состав которых они входят

Ученые выделяют следующие периоды в этом жизненном цикле клетки у эукариот:

· интерфаза- период клеточного роста, во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Интерфаза подразделяется на период G1-фазы, период S-фазы, период G2-фазы, период G0-фазы

· период клеточного деления, обозначается как М- фаза

Посмотрите на схему жизненного цикла клетки:


Периоды интерфазы:

Название периода

Процессы, происходящие в клетке

Пресинтетический период- G1-фаза или фаза начального роста

2n- набор хромосом (двойной),

2c- количество ДНК

синтез всех РНК, ферментов, белков, образование рибосом, синтез АТФ, образование одномембранных органелл клетки, рост клетки, создание запаса питательных веществ

Синтетический период- S-фаза

2n4c- количество хромосом осталось прежним, а количество ДНК увеличилось вдвое

происходит репликация ДНК клеточного ядра, построение второй хроматиды и формирование двухроматидных хромосом

Постсинтетический период- G2-фаза

происходит подготовка к митозу, интенсивный синтез белков, РНК, деление митохондрий и пропластид (предшественники всех типов пластид) у растений, синтез АТФ, удвоение массы цитоплазмы, увеличение массы ядра

Период функционирования клеток- фаза покоя G0

период клеточного цикла, в течение которого клетки находятся в состоянии покоя и не делятся, клетка как бы находится вне клеточного цикла.

Примеры: нервные клетки или клетки сердечной мышцы. Они вступают в состояние покоя при достижении зрелости (то есть когда закончена их дифференцировка).

Некоторые клетки могут выйти из этого состояния и начать вновь деление.

У меня есть дополнительная информация к этой части урока!


Прохождение клеткой фаз клеточного цикла регулируется специальными белками- циклинами.

Циклины получили своё название от того, что их концентрация в клетке периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях

Период деления клетки.

Деление клетки- процесс образования из родительской клетки двух и более дочерних клеток.


Обычно деление клетки - это малая часть большого клеточного цикла.

У эукариот есть два различных типа деления клетки:

1) непрямое деление:

· митоз- вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке

· мейоз- репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства половых клеток

2) прямое деление- амитоз, встречается относительно редко и проявляется в отмирающих тканях, а также в клетках опухолей

Для того чтобы понять, как происходят процессы деления клеток, необходимо знать строение хромосом, ведь именно они играют важнейшую роль в передаче наследственной информации от клетки к клетке.

Пройти тест и получить оценку можно после входа или регистрации

Строение хромосом в различные периоды клеточного цикла

Хромосомы- это структуры, в которых сосредоточена большая часть наследственной информации.

Они располагаются в ядре эукариотической клетки, состоят из молекулы ДНК, которая связана с белками-гистонами.


Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки- центромеров.

Центромера- специализированный участок ДНК, в районе которого в стадии профазы и метафазы деления клетки соединяются две сестринские хроматиды в митозе, а в мейозе гомологичные хромосомы в профазе и метафазе первого деления.

• центромера играет важную роль при расположении хромосом в виде метафазной пластинки в процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления

• каждая центромера разделяет хромосому на два плеча

Строение хромосомы:


В жизненном цикле клетки, а конкретно в синтетический период происходит репликация ДНК (удвоение), именно с этого момента каждая хромосома состоит уже не из одной хроматиды, а из двух хроматид.


Хроматида (от греч. chroma - цвет, краска + eidos - вид)- это нить молекулы ДНК, соединенная с белками. Является частью хромосомы от момента ее дупликации до разделения на две дочерние хроматиды в анафазе митоза или анафазе второго деления мейоза.

Типы хромосом (морфологические типы):

• акроцентрические (центромера расположена близко к концу хромосомы, и одно плечо значительно короче другого)

• субметацентрические (центромера смещена от середины хромосом, и одно плечо короче другого)

• метацентрические (центромера расположена в середине хромосомы, и плечи ее равны)

· телоцентрическая хромосома- хромосома, состоящая только из одного плеча и имеющая центромеру на самом краю; считается, что истинных телоцентрических хромосом не существует, т.к. даже маленькое второе плечо (визуально на хромосомных препаратах не выявляемое), по-видимому, всегда присутствует; часто такой вид хромосом используется в качестве синонима термина "акроцентрическая хромосома"


Гомологичные хромосомы- парные хромосомы, одинаковые по форме, размерам и набору генов.

Их гены в соответствующих (идентичных) участках представляют собой аллельные гены.

Аллельные гены- различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом.

Но следует отметить, что гомологичные хромосомы не идентичны друг другу по следующим причинам:

• хотя гомологичные хромосомы имеют один и тот же набор генов, но этот набор может быть представлен различными формами одного и того же гена.

К примеру, у вас в гомологичных хромосомах есть участок с аллельными генами, которые определяют цвет ваших глаз. От матери в вашу гомологичную хромосому попал ген, отвечающий за карий цвет глаз- доминантный (сильный) признак, а от отца в хромосому попал ген, отвечающий за серый цвет глаз- это рецессивный (слабый) признак. Таким образом, аллельные гены отвечают за один признак- цвет глаз, но этот ген представлен в данном случае различными формами (доминантный и рецессивный, серый и карий).

То есть ген один, а проявление его разное, поэтому мы говорим о гомологии, а не о идентичности.

• также в результате некоторых мутаций (удвоение хромосом, утраты ее частей и других причин) могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов

Для каждого эукариотического организма характерен свой набор хромосом.

Количество, формы размеры хромосом у каждого организма различны.

К примеру, у человека всего 46 хромосом с 20-25 тыс. активных генов, а у коровы 60 хромосом с 22 тыс. активных генов.

А для проведения анализа и исследования всех хромосом клетки, ученые выделили такое понятие как кариотип.

Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры.

Кариотип- совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида данного организма (индивидуальный кариотип).

В комплекс характеристик кариотипа входят:

• число хромосом, характерное для данного вида

• положение центромеры каждой хромосомы

• рисунок дифференциального окрашивания хромосом (специальный метод окрашивания, который позволяет по рисунку чередующихся поперечных темных и светлых полос на хромосоме идентифицировать конкретную хромосому или ее участок)

Рассмотрим кариотип человека:


По рисунку мы видим кариотип здорового человека, который включает 22 пары неполовых хромосом (аутосом) и пару половых хромосом (ХХ (женский пол) или ХY (мужской пол).

Хромосомы в кариотипе различаются размерами, формой, положением центромеры, рисунком окрашивания.

Каждая хромосома содержит определенный набор генов (например, в первой хромосоме хранятся гены A, B, C, D, во второй хромосоме - гены K, L, M, N). Каждый ген отвечает за свой признак (один ген отвечает за цвет глаз, другой за структуру волос, третий отвечает за проявление праворукости или леворукости и так далее.

Хромосомы также нумеруют: самая большая хромосома- первая, и далее, чем меньше хромосома, тем больший номер она получает.

На рисунке вы видите, что каждая хромосома состоит из двух сестринских хроматид (не забывайте, что каждая хроматида содержит 1 молекулу ДНК).

Поэтому получается, что хромосома одна, но она содержит 2 молекулы ДНК.

Помимо этого у диплоидного организма имеется двойной набор хромосом.

То есть у каждой хромосомы есть гомологичная ей хромосома, это тоже вы можете разглядеть на рисунке.

У человека имеются 22 пары гомологичных хромосом (плюс пара половых хромосом, которые негомологичны друг другу).

Один набор хромосом человек получает от матери, другой от отца.

Объединение этих наборов происходит при оплодотворении.

Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух гомологичных хромосом. Такой набор хромосом называется гаплоидный или одинарный (от греч. haploos- одиночный, простой и eidos- вид).

У человека путем мейоза образуются половые клетки (гаметы), каждая из них несет 23 хромосомы, а не 46, как в обычной соматической клетке.

В биологии обычно количество хромосом в клетке обозначается буквой n:

1n или просто одной буквой n- гаплоидный (одинарный) набор хромосом

2 n- диплоидный (двойной) набор хромосом

с- количество ДНК в хромосоме.

Количество хромосом в жизненном цикле разных организмов может быть разным.

У животных хромосомный набор диплоидный, а гаплоидны только гаметы.

Например, у хламидомонады, наоборот, гаплоидный набор хромосом на протяжении всего жизненного цикла, а диплоидна лишь зигота, которая сразу вступает в мейоз.

У некоторых растений наблюдаются сразу две фазы:

• у мхов преобладает гаметофит - он обладает гаплоидным набором хромосом

• у папоротников взрослого растения спорофита, наоборот, основная жизненная стадия представлена диплоидным набором хромосом

На спорофите путем митоза образуются клетки спорангия- органы, производящие споры, клетки которого имеют также диплоидный набор хромосом.

Сами споры имеют гаплоидный набор хромосом, благодаря мейозу.

Также у папоротников есть стадия заростка, который прорастает из споры, - значит, и у него гаплоидный набор хромосом.

У семенных растений самостоятельной гаплоидной стадии не существует.

Нарушение структуры хромосом.

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений:

• генные мутации (изменения на молекулярном уровне)

• делеции- хромосомная перестройка, при которой происходит потеря участка хромосомы

• дупликации или удвоение- структурная хромосомная мутация, заключающаяся в удвоении участка хромосомы

• транслокации- тип хромосомных мутаций, при которых происходит перенос участка хромосомы на негомологичную хромосому, приводят к развитию лимфом, сарком, лейкемии, шизофрении

• инверсии- это поворот определенного участка хромосомы на 180°; является следствием двух одновременных разрывов в одной хромосоме

Читайте также: