Условия выращивания растений регулируют с помощью приемов

Добавил пользователь Alex
Обновлено: 19.09.2024

Информационно-аналитический портал
для крестьянских фермерских хозяйств

14 Ноябрь 2012 г. 21:25

Факторы жизни растений и законы земледелия

Вода. В жизни растений вода имеет огромное значение, так как все процессы жизнедеятельности происходят с ее участием. Все питательные вещества усваиваются только в растворах. С водой в растение из почвы поступают питательные вещества, испарение воды листьями обеспечивает нормальные температурные условия жизнедеятельности растений.

Почвообразование и формирование почвенного плодородия происходят только при обеспечении почвы водой. Без нее невозможно развитие почвенной фауны и микрофлоры.

Многие сельскохозяйственные растения нуждаются в большом количестве влаги, поэтому их надо регулярно поливать. Некоторые растения очень требовательны к влажности воздуха, например, капуста. другие больше используют почвенную влагу - тыква, арбузы, свекла и др.

По отношению к влаге кормовые растения подразделяются на следующие экологические типы: мезофиты, гигрофиты и ксерофиты. Гигрофиты (осока, ситник) растут на влажных лугах, болотах, побережьях рек; ксерофиты (полынь, ковыль) - в условиях недостатка влаги; мезофиты (тимофеевка луговая, люцерна, клевер) - в районах среднего увлажнения.

Периоды наибольшей потребности в воде называют критическими. Так, для большинства зерновых культур это фазы выхода в трубку и колошения, для кукурузы - цветения и молочно-восковой спелости, а для картофеля - цветения и клубнеобразования. Установлено, что растения резко снижают продуктивность при недостатке воды в период образования репродуктивных органов. Иногда на сельскохозяйственных угодьях оказывается избыток влаги, и это угнетает растения. Здесь приходится проводить осушение переувлажненных почв.

Для определения суммарной потребности растений в воде применяют транспирационный коэффициент. Это отношение массы израсходованной растениями воды к массе сухого вещества урожая Транспирационный коэффициент зависит от вида растений, стадии их развития, почвенных и погодных условий, насыщенности питания и т.д. В разных регионах для растений транспирационный коэффициент колеблется от 200 до 1000. Только ничтожно малая часть воды (меньше 1 %) идет на создание урожая, а остальная часть расходуется на испарение.

Воздух. Из воздуха растения получают кислород, необходимый для дыхания. Для образования органических веществ в зеленых клетках растение использует из воздуха углекислый газ.

Дыхание корней растений и жизнедеятельность почвенных микроорганизмов обеспечиваются почвенным воздухом. Он участвует в биохимических процессах превращения питательных элементов.

Избыточная влажность приводит к резкому ухудшению воздушного режима растений. Хорошо дренированные почвы с высокой общей скважностью лучше обеспечены воздухом.

Газообмен между почвой и атмосферой осуществляется при изменении барометрического давления, температуры почвы и воздуха вследствие поступления в почву воды, воздействия ветра и других факторов.

Чтобы усилить приток воздуха к корням растений, осуществляют рыхление почвы, что позволяет создавать необходимое строение пахотного слоя и тем самым обеспечивать условия нормального газообмена.

Фотосинтезом называется процесс образования зелеными растениями органического вещества из воды и углекислого газа в результате поглощения энергии солнечного света.

Зеленый цвет листьев растений зависит от особых зеленых пластид - хлоропластов, находящихся в их клетках. Почти у всех растений хлоропласты округлой или слегка вытянутой формы. В каждой клетке имеется несколько десятков, а иногда и свыше сотни хлоропластов. Они состоят из бесцветной цитоплазматической основы и зеленого пигмента хлорофилла, который поглощает световые лучи, но не все видимые лучи спектра, а лишь красные и сине-фиолетовые.

Зеленый лист - источник жизни на нашей планете. Хлоропласты листа- это единственная в мире лаборатория, в которой из простых неорганических веществ - воды и диоксида углерода - создаются органические вещества - сахар и крахмал.

При фотосинтезе усваивается всего лишь 1…2 % энергии солнечных лучей, падающих на растение. Однако и этого вполне достаточно, чтобы растения могли прокормить весь животный мир.

Свет к растениям поступает с солнечными лучами, которые распространяются неравномерно на юге их больше, а на севере меньше. Соответственно и растения, произрастающие в разных местах, привыкли или к обилию света, или к его недостатку. Поэтому их подразделяют на светолюбивые и теневыносливые.

Наиболее требовательны к свету южные растения - арбуз, тыква, баклажаны, фасоль, тропические травы и др. У этих растений при коротком световом дне быстрее образуются плоды и семена, а цветут они в конце лета или осенью.

Пшеницу, рожь, ячмень, овес относят к теневыносливым и холодостойким растениям, у которых цветение и плодоношение наступают при максимальной длине дня.

Продолжительность светового дня можно искусственно регулировать для растений, выращиваемых в теплицах и оранжереях.

Теплота. На рост растений с первых стадий их развития влияет температура почвы. Основным источником теплоты в почве являются солнечные лучи. Другим, но значительно меньшим источником служит теплота, выделяемая в результате биохимических превращений органических веществ, а также поступающая из глубинных слоев Земли.

Физиологические процессы, происходящие в растениях, жизнедеятельность микроорганизмов и почвенной фауны, биохимические процессы превращения веществ и энергии возможны только при определенных температурах.

К теплолюбивым культурам относятся кукуруза, сорго, фасоль, томат, арбуз, дыня, перец.

К пониженным температурам устойчивы чеснок, лук. Неплохо переносят пониженные температуры пшеница, рожь, ячмень, овес, горох, капуста и многие корнеклубнеплоды.

Элементы минерального питания. Из почвы растения получают все необходимые элементы минерального питания калий, кальций, железо, магний, серу, фосфор и азот. Калий необходим для роста растения, кальций - для развития их корневой системы. Магний и железо участвуют в образовании хлорофилла. Без азота, серы и фосфора не образуются белки, входящие в состав цитоплазмы и ядра.

Долгое время ученые-аграрии считали, что только эти элементы необходимы для нормального развития растения, но потом выяснилось, что нужны также очень небольшие количества многих других химических элементов, которые назвали микроэлементами. К наиболее важным в жизни растений микроэлементам относятся марганец, бор, медь, цинк, молибден, кобальт.

Урожай сельскохозяйственных культур зависит от генетических особенностей растений и условий окружающей среды. Получению максимальных урожаев с единицы площади и обеспечению повышения почвенного плодородия способствует знание основных законов земледелия - общебиологических основ формирования урожая.

Закон прогрессивного роста эффективного плодородия почвы. Он гласит, что формирование и увеличение плодородия почвы в течение времени заложены в самой природе почвообразовательного процесса, но его действие возможно лишь при соблюдении правил обработки почвы и выращивания сельскохозяйственных культур по мере интенсификации земледелия.

Почва могла возникнуть лишь после появления живых организмов на Земле. Образование почвы, или почвообразовательный процесс, происходит благодаря глубокому и сложному взаимодействию между живыми организмами и окружающими их условиями внешней среды, к которым прежде всего следует отнести материнские (горные) породы и атмосферу, а также главное условие, обеспечивающее непрерывность этого процесса, - приток солнечной энергии на поверхность земли.

При таком постоянном и непрерывном почвообразовательном процессе происходят взаимный обмен и переход одной формы материи в другую. Мертвая минеральная природа переходит в органическую и живую, а последняя, отмирая и разлагаясь, снова переходит в мертвую минеральную. Постоянное взаимодействие между мертвой и живой природой, а также их переход друг в друга в поверхностных слоях земли и составляет суть почвообразовательного процесса и развития основного и специфического свойства почвы - ее плодородия.

С развитием природного почвообразовательного процесса улучшаются многие показатели плодородия почвы - механические, водные и воздушные свойства. Это свидетельствует о том, что развитие жизни на Земле происходит по восходящей кривой; следовательно, в самой жизни заключен объективный фактор ее умножения, а развитие природного почвообразовательного процесса в целом приводит к улучшению плодородия почвы.

Закон прогрессивного роста плодородия почв имеет принципиальное значение для развития и функционирования процветающего и высокопродуктивного земледелия. Он позволяет людям иметь реальные условия и основания для понимания того, что на Земле имеется возможность удовлетворить потребность населения нашей планеты в продуктах питания.

Закон минимума, оптимума и максимума действий факторов жизни растений. Иногда его называют просто законом минимума. Им определено, что минеральные вещества и другие факторы урожайности одинаково нужны растениям и не могут заменить друг друга.

Закон возврата веществ в почву. В соответствии с этим законом при нарушении баланса усвояемых питательных веществ в почве в результате их потерь при выносе с урожаем или вследствие других причин его необходимо восстановить путем внесения удобрений и выполнения других технологических приемов.

Этот закон также был открыт Юстусом Либихом. Он доказал, что перегной нерастворим в воде и не может служить питанием для растений. Навозом удобряют поле потому, что при его разложения (минерализации) освобождаются аммиак, фосфорная и серная кислота, которые усваивают растения.

Когда земледелец убирает урожай, он отнимает у почвы нужные растениям вещества в несравненно большем количестве, чем возвращает в почву с навозом. Ведь большая часть минеральных веществ корма идет на образование мяса, молока и других продуктов животноводства. Поэтому при одном удобрении навозом поля ежегодно недополучают вещества, которые они отдают растениям. Либих писал о необходимости вносить в почву наряду с навозом минеральные вещества, а тех хозяев, которые не заботятся о соблюдении закона возврата, обвинял в хищничестве, в разграблений плодородия почвы.

Либих призывал правительства и народы европейских государств, чтобы они прислушались к предостерегающему голосу истории и науки и обратили должное внимание на оскудение полей.

Закон возврата получил высокую оценку у агрономов и ученых. В частности, русские ученые К. А. Тимирязев и Д.Н. Прянишников считали открытие этого закона одной из заслуг Ю.Либиха, а сам закон называли величайшим достижением науки.

Соблюдение закона возврата питательных веществ имеет важное значение не только для сохранения и повышения плодородия почвы, достижения высокого урожая, но и для получения продукции нужного биологического качества.

Практика показывает, что можно вырастить высокий урожай, но с низким качеством продукции, например с недостатком, биологически важных микроэлементов, белков, имеющих нужное соотношение аминокислот, с отсутствием необходимого набора витаминов и т. д. Довольно часто при посеве сильных сортов пшеницы по плохим предшественникам и недостаточном внесении азотных и фосфорных удобрений хозяйства получают зерно, не соответствующее установленным кондициям по количеству и качеству клейковины. Это объясняется не только несоблюдением элементарных правил агрономии, но и тем, что не учитывается закон возврата питательных веществ в почву, не вносится нужного количества удобрений для получения запланированного урожая.

Закон совокупного действия факторов роста и развития растений. Наивысшую эффективность в земледелии нельзя обеспечить каким-либо одним агрономическим приемом, даже весьма сильным, ее можно достичь лишь применением всего комплекса агротехнических мероприятий.

Известно, что отдельные факторы жизни растений тесно взаимодействуют, друг с другом. Растения непрерывно испытывают влияние всего комплекса факторов. Научные эксперименты, проводимые в вегетационных сосудах и полевых условиях, показали, что факторы жизни растений в наибольшей степени проявляют свою силу только при совместном действии. В полевых условиях с изменением воздействия на растения одного из факторов неизбежно нарушаются возможность и условия продуктивности использования других факторов.

Например, с повышением температуры воздуха увеличивается расход воды из почвы на испарение и жизнедеятельность растений. При этом повышается содержание воздуха в почве, усиливается деятельность аэробных бактерий, больше накапливается доступной для растений пищи. Но процесс накопления питательных веществ происходит только при оптимальной температуре и наличии необходимого количества влаги в почве.

С наступлением продолжительного засушливого периода с высокой температурой воздуха почва полностью теряет продуктивную влагу, в результате чего прекращается деятельность полезных микроорганизмов, и растения начинают испытывать дефицит влаги. Примеров взаимодействия различных факторов жизни растений весьма много.

Совокупное действие факторов жизни растений является весьма динамичным и изменчивым. Понимание взаимодействия различных факторов в жизни растений позволяет земледельцу управлять этими процессами и соответственно формировать высокие урожаи даже в сложных погодных условиях.

Закон плодосмена. Сельскохозяйственной наукой и практикой накоплен большой опытный материал, который подтверждает преимущества плодосмена, т. е. выращивания растений в севооборотах, по сравнению с монокультурой для примера приведем результаты опытов, ведущихся с 1912 г. на опытном поле Московской сельскохозяйственной академии им К.А. Тимирязева. При бессменном выращивании ржи без внесения удобрений урожай составил в среднем 8,7 ц/га, а при выращивании этой культуры в севооборотах и также без использования удобрения урожай составил 16,8 ц/га, т е почти в два раза выше

Все указанные законы составляют научную основу культурного земледелия. Эти объективные законы природы неумолимы, они существуют независимо от нашей воли, и их нарушение дорого обходится людям Чтобы добиться успеха в выращивании сельскохозяйственных культур и быть всегда в согласии с природой, надо постоянно изучать объективные законы земледелия и умело применять их на практике. В соответствии с этими законами высокие и устойчивые урожаи, возможно, получить лишь при осуществлении всего комплекса агротехнических и экономических мер, повышающих культуру земледелия. Какой-либо один даже очень эффективный прием не принесет ощутимого успеха, если не выполнять при этом всего комплекса необходимых приемов. Только при соблюдении и умелом использовании объективных законов, действующих в природе, применении правильной агротехники можно обеспечить рост культуры земледелия, повышения плодородия почв.

glavagronom.ru

В организме растений присутствуют физиологически активные вещества — фитогормоны, различающиеся принципом и механизмом влияния на их рост и развитие. Они синтезируются из органических кислот в отдельных частях и распространяются по всему растению, регулируя обмен веществ, вызывая ростовые (ускорение или замедление) или формативные эффекты (дефолиация). Именно за счёт передвижения гормонов достигается взаимовлияние органов и целостность растения. Изменения в интенсивности синтеза одного из фитогормонов, вызванные внутренними или внешними причинами, приводят к ответной реакции растения — переходу к другому характеру ростовых или формативных процессов. Потребность растения в гормонах составляет 10-13×10 -5 моль/л.

В природе стимуляторы и ингибиторы действуют сообща. В зависимости от фазы развития культуры и условий окружающей среды активизируется действие одного из фитогормонов. Когда его функция выполнена либо состояние окружающей среды меняется, то в действие включается другой фитогормон.

Регуляторы роста растений — физиологически активные соединения природного или синтетического происхождения, которые в малых количествах вызывают изменения в процессе роста и развития культур. Они не уничтожают вредителей и не действуют на возбудителей болезней.

Регуляторы роста различаются по принципу действия: стимуляторы — временно провоцируют рост и развитие растений за счёт активного деления клеток; ингибиторы (ретарданты) — замедляют рост и развитие, (подавляют прорастание семян, распускание почек, осевой вегетативный рост, формирование завязи и созревание).

Создание эффективных химических и биологических регуляторов роста растений сегодня относят к актуальному направлению научного поиска — нанотехнологиям, поскольку в маленьких дозах (мг или г на 1 гектар) они влияют на ростовые процессы и могут защитить растения от различных стрессов. Препараты на основе физиологически активных веществ используются для обработки посадочного материала, листовой и корневой подкормки, опрыскивания завязей, плодов и т.д. Они выпускаются в форме водных растворов, аэрозолей, паст и эмульсий. К стимуляторам роста можно отнести и микроудобрения.

Классификация регуляторов роста

По характеру действия на растительные ткани регуляторы роста делятся на стимуляторы (ускоряют рост и развитие) и ингибиторы (тормозят рост и развитие). По происхождению регуляторы роста бывают природными и синтетическими.

К природным регуляторам роста относят фитогормоны, ингибиторы роста и витамины. Известно 6 основных эндогенных фитогормонов: ауксин, гиббереллин, цитокинин, абсцизин, этилен и брассин (табл.). Каждый из них имеет синтетические аналоги. К уже известным и изученным группам фитогормонов в наше время выделено еще несколько эндогенных регуляторных веществ: брассиностероиды, жасминовая и салициловая кислоты, некоторые олигосахариды.

Из мевалоновой кислоты синтезируются 4-е класса фитогормонов: стимуляторы — гиббереллины, цитокинины и брассиностероиды, а также ингибитор — абсцизовая кислота.


Ауксин

Ауксин образуется в зонах растения с высокой меристематической активностью, инициирует деление и растяжение клеток, регулирует формирование проводящих пучков, участвует в изменении проницаемости мембран. Обогащенные ауксином ткани притягивают питательные вещества. Свойствами ауксина также является способность задерживать опадение листьев и завязей, вызывать партенокарпию. Такие регуляторы роста ауксиновой природы, как 1-нафтилуксусная и индометил-3-масляная кислоты, применяют в садоводстве для укоренения черенков, повышения приживаемости саженцев и восстановления корневой системы у пересаженных кустарников и деревьев.

Гиббереллин

Гиббереллины синтезируются в основном в листьях, откуда перемещаются вверх и вниз по стеблю. Они участвуют в переносе информации о нуклеотидной последовательности ДНК на информационную РНК при синтезе белков. Под их действием удлиняются листья, цветки и соцветия, гиббереллины усиливают рост стеблей сильнее, чем ауксины. Они практически не влияют на рост корней, но способствуют образованию партенокарпических плодов (бессемянных) и способны смещать пол растений в мужскую сторону.

Цитокинин

Цитокинины участвуют в синтезе фермента нитратредуктазы и транспорте ионов Н + , K + , Са 2+ , стимулируют прорастание семян, задерживают процессы старения растительных организмов, поддерживают нормальный обмен веществ у пожелтевших листьев, вызывая их вторичное позеленение. Цитокинин нашёл применение в культуре ткани, необходим для поддержания функциональной активности изолированных тканей и органов.

Абсцизин

Абсцизины синтезируются в листьях, транспортируются вверх и вниз по стеблю. Относятся к естественным ингибиторам, так как задерживают рост в фазе деления и растяжения клеток, но в высоких концентрациях не проявляют токсического действия. Участвуют в механизмах стресса, регулируя движение в устьицах. Индуцируют наступление состояния покоя у растений, ускоряют опадание плодов (абсцизия), задерживают прорастание семян. При наступлении неблагоприятных факторов внешней среды, особенно при дефиците влаги у растений, в их тканях происходит накопление абсцизовой кислоты, которая вызывает закрытие устьиц, снижается транспирация и сокращаются энергетические затраты.

Этилен

Этилен синтезируется во всех органах растения из метионина, повышает проницаемость клеточных мембран и скорость синтеза белка, тормозит деление клеток и удлинение проростков, изменяет направление роста клеток с продольного на поперечное, утолщает стебель. Этилен вызывает быстрый рост верхней стороны органа, в результате чего лист или лепесток изгибается, поэтому его используют для ускорения раскрывания цветков. Опускание листьев под действием этилена сокращает транспирацию. В большинстве случаев он увеличивает период покоя семян и клубней, используется в качестве стимулятора созревания плодов и овощей.

Брассиностероиды

Брассиностероиды поддерживают работу иммунной системы растения, особенно в стрессовых ситуациях. Они содержатся в каждой растительной клетке, однако их естественный уровень в меняющейся экологической ситуации оказывается недостаточным для поддержания иммунитета и нормального развития в течение вегетации. Поэтому они проявляют эффект при обработке культур.

Действие природных фитогормонов никогда не бывает изолированным друг от друга. Они находятся в растении в постоянном взаимодействии — дополняют или ослабляют взаимное влияние. Стимуляция и торможение развития — сложный механизм их взаимосвязи. Один и тот же фитогормон в разных условиях или в неопытных руках может дать неожиданный результат.

В последнее время ведется активный поиск фиторегуляторов, обладающих антистрессовым и регенеративным действиями. Изучаются негормональные регуляторы роста — полиамины, ряд фенольных соединений и др. Не являются фитогормонами такие общеукрепляющие препараты для растений, как янтарная кислота, полипептиды и олигосахариды. Все эти соединения обладают определенным спектром действия на культурные растения и по-разному влияют на их физиологические процессы.

Появилось множество препаратов, называемых иммуномодуляторами. Стимулирование собственного иммунитета растений (фитоиммунокоррекция) позволяет индуцировать у растений комплексную неспецифическую устойчивость к болезням грибного, бактериального и вирусного происхождений, а также к неблагоприятным факторам среды. Стимуляторы роста выделяют из бактерий, грибов, торфа, хвойного сырья, водорослей и синтетических материалов.

glavagronom.ru

Синтетические регуляторы роста

Их получают в результате органического синтеза. Так, в 1930-х годах голландский физиолог впервые синтезировал гормон ауксин (ИУК), затем появились более перспективные вещества: индолилмасляная и нафтилуксусная кислоты (гетероауксин). В 1940 году произвели дихлорфеноксиуксусную кислоту (2,4-Д) — гербицид из группы синтетических ауксинов. В 1955 году был синтезирован кинетин (цитокинин).

В основе химической формулы регуляторов роста для культур лежат фитогормоны и вторичные ростовые вещества (аминокислоты, алкалоиды, карбоновые кислоты, лактоны, липиды, терпеноиды, флавоноиды).

К синтетическим регуляторам роста также относят следующие ингибиторы — ретарданты и морфактины.

Ретарданты

Ретарданты избирательно тормозят рост стеблей (снижают синтез гиббереллина) с целью получения растений с сильным ветвлением, крепким стеблем и мощной корневой системой, чем повышают устойчивость культур к неблагоприятным факторам внешней среды. При этом они не оказывают отрицательного влияния на физиолого-биохимические процессы, а именно на верхушечную зону меристемы, из которой развиваются листья и генеративные органы.

Ретардантными свойствами обладает около тысячи химических соединений, большинство из которых относят к 4 группам веществ:

  1. Четвертичные ониевые соединения. Среди них наиболее популярен хлормекватхлорид или хлорхолинхлорид (ТУР или ССС) и морфол, ретардантный эффект которых обусловлен способностью прерывать биосинтез гиббереллинов у зерновых культур.
  2. Производные гидразина. Механизм их действия не связан с влиянием на синтез гиббереллинов, а обусловлен подавлением гормональной активности.
  3. Производные триазола. Препараты этой группы блокируют биосинтез гиббереллинов.
  4. Этиленпродуцирующие. Не прерывают биосинтез гиббереллина, но их действие связано с антигиббереллиновым эффектом.

Обязательное включение в технологию возделывания озимых зерновых применения ретардантов необходимо при уровне планируемой урожайности зерна более 40 ц/га, плотности стеблестоя в фазу кущения более 700-800 побегов, высоком уровне азотного питания и влагообеспеченности. Обработка регуляторами роста осенью — неизменный элемент технологии возделывания озимого рапса.

Морфактины

Морфактины вызывают аномалии в точке роста — тормозят развитие молодых частей растений за счет нарушения транспорта гормональных соединений (появление уродливых органов у растений).

В отличие от природных, синтетические ингибиторы резче подавляют ростовые процессы. Если соединение обладает резким подавляющим действием, то его относят к гербицидам, уничтожающим сорную растительность. Такие гербициды нарушают в растении морфогенетические процессы (формообразование), отчего ростовые процессы в тканях длительное время не поддаются восстановлению.

В 1942 году было установлено, что синтетический ауксин 2,4-Д и 2М-4Х в высоких дозах действует как гербицид избирательного действия, угнетая и уничтожая широколиственные сорняки в посевах злаковых культур. Злаки наиболее устойчивы к гербициду 2,4-Д в период кущения. Однако после внесения он сохраняет в почве активность длительное время. Одним из способов предупреждения последействия 2,4-Д на культуры в высоких дозах внесения является предпосевная обработка семян зерновых гуминовыми препаратами (Т.В. Князева, 2013).

glavagronom.ru

Условия эффективного применения регуляторов роста растений.

При применении регулирующих препаратов необходимо учитывать, что каждый из них создан для стимулирования или подавления роста и развития, повышения продуктивности и качества определенных культур только при соответствующих дозах, сроках и способах применения.

Важные факторы эффективного действия регуляторов роста:

  • правильный выбор препарата;
  • своевременная обработка с учётом погодных условий;
  • соблюдение определенной температуры раствора для обработки растений.

В случае превышения или снижения рекомендуемой температуры раствора он может оказать токсическое воздействие на растения или снизить эффект от использования регулятора. В случае комплексной обработки растений несколькими регуляторами роста их применение должно быть обоснованным. В этом случае рекомендуется выдерживать временной интервал между обработками, чтобы действие второго вещества не перекрывало эффект от предыдущего. Действие всех регуляторов роста также зависит от их концентрации (передозировка приводит к подавляющему эффекту).

В применении фитогормонов также нет строгих рекомендаций, имеются лишь общие представления об использовании, чтобы не навредить растению. Как правило, семена перед посевом и рассаду перед высадкой в открытый грунт обрабатывают цитокининами. Если вдруг условия для роста и развития культур становятся неблагоприятными, сразу после высева или высадки рассады в почву используют брассиностероиды. Если, к примеру, в неблагоприятных погодных условиях при пересадке рассады на постоянное место в почву, обработать её стимуляторами роста, то растения от этого сильно вытянутся, что негативно отразится на урожае.

Всходы на стадии 3-4 настоящих листьев обрабатывают ауксинами. Для некоторых зеленных и салатных культур обработку ауксинами проводят повторно перед цветением. Гиббереллины применяют на плодовых культурах с целью снижения опадания завязей и улучшения качества плодов.

В итоге вырисовывается следующая схема применения регуляторов роста:

  • процедуру обработки можно проводить от одного до нескольких раз;
  • препараты для роста растений нужно вносить, исходя из присутствующих у растений симптомов недуга;
  • использовать стимуляторы и регуляторы можно в целях профилактики;
  • при подготовке раствора и обработке им растений нужно четко следовать инструкции.

Список литературы находится в редакции.

Рост растений можно изменять в соответствии с желанием человека, и достигается это манипулированием непосредственно растением в отличие от вмешательства в условия внешней среды. К наиболее старым приемам регулирования роста растений относятся обрезка и прививка. Однако в последнее время все более широкое применение для управления ростом садовых растений приобретают химические вещества (регуляторы роста).

Обрезка — это уменьшение размеров растения.При обрезке убирают часть ветки или всю ее целиком.

В первую очередь удаляют мертвые, больные, увядшие, поврежденные органы, ограничивают длину некоторых веток, которые мешают или непропорционально вытянулись. Обрезка стимулирует растение, которое реагирует на нее более быстрым ростом. Поэтому обрезают и чахлые растения, чтобы заставить их расти.

Обрезку проводят в следующих целях:

Санитарная обрезка требуется для удаления мертвой, больной и поврежденной древесины.

При помощи формовой обрезки растениям придают нужную форму или устраняют различные отклонения от нормального роста.

Иногда возникает необходимость в сильной обрезке с целью омолаживания растения, т. е. для возбуждения затухающей побегопроизводительной способности, увеличения мощности облиствления, а также с целью поддержания определенной формы и размеров кроны.

К прививке растений прибегают в основном для выращивания ценных форм декоративных растений и когда это единственный способ спасти растение. Прививка заключается в приживлении части одного растения (привоя) на другое (подвой), причем не обязательно растений в пределах одного вида или хотя бы рода, но и разных родов в пределах семейства. Имеются примеры удачной прививки и между растениями, принадлежащими к разным семействам, но вряд ли стоит заниматься этим в домашних условиях.

Прививка применяется для таких трудно укореняющихся растений, как розы, азалии, кактусы, камелии, рододендроны, цитрусовые и некоторых других растений. Благодаря прививке можно получить штамбовые формы роз и других растений, плакучие формы растений (плющ на оголенных стволах аралии, верхушку аралии срезают), карликовые растения (карликовый подвой сдерживает силу роста привитого на нем привоя). Растения, имеющие слабый рост и плохую корневую систему, размножают прививкой на быстрорастущих подвоях.

Комнатные культуры прививают в расщеп, вставкой, сближением, проросшими семенами, частями клубней и их глазками, разрезанными луковицами и т.д. в зависимости от вида растений и времени прививки. Самые простые способы прививки - косым срезом, клином и в расщеп.

Привитые растения помещают в теплое (18—20 °С), светлое место и умеренно поливают. Первое время привитое растение необходимо притенять от прямых солнечных лучей. При благоприятных условиях сращивание подвоя с привоем происходит за 10 дней.

Регуляторы роста растений — это вещества, стимулирующие или, наоборот, тормозящие процессы, связанные с ростом и развитием. Бывают природные и искусственно синтезированные.Они играют не менее важную роль в повышении урожайности овощных и плодовых культур, улучшении их качества, чем применение удобрений или средств защиты растений.Достигается это за счет возможности управлять процессом роста и развития растений, для того чтобы в полной мере реализовать их жизненный потенциал.

Их действие очень многогранно:

- снимают период покоя у клубней и луковиц,

- ускоряют прорастание всходов,

- стимулируют побегообразование и рост корневой системы,

- снижают опадение завязей,

- вызывают более раннее и обильное цветение,

- ускоряют вступление в фазу плодоношения,

- повышают сопротивляемость к болезням и неблагоприятным условиям выращивания,

-восстанавливают растения после стрессов связанных с пересадкой, хранением, транспортировкой.

При применении регуляторов роста важно знать, что каждый препарат создан для определенных культур. Поэтому необходимо соблюдать рекомендуемые дозы, а так же сроки и способы применения. Самый простой способ обработки этими препаратами — опрыскивание. Применение регуляторов роста в период вегетации значительно уменьшает кратность обработки посадок фунгицидами.

К стимуляторам роста относятся:

- ауксины и их производные.

Гиббереллины стимулируют рост стеблей и деление клеток растений, активизируют прорастание семян, нарушая период покоя, вызывают образование партенокарпических плодов.

Цитокинины стимулируют заложению стеблевых почек, способствуют делению клеток, прорастанию семян.

Ауксины провоцируют рост корней, стеблей и листьев, а также активируют образование корней у черенков.

Ингибиторы роста применяются для торможения или ограничения роста растения. К ним относятся — абсцизины, этилен и их производные. Природные ингибиторы: абсцизовая кислота, кумарин и его производные. Они тормозят переход растений в состояние покоя. Этилен (газообразное вещество) и его производные этрел, гидрел и дегидрел тормозят рост зеленой массы растений, чем способствуют ускоренному созревания помидоров и огурцов. Также повышается урожайность этих культур.

Синтетические ингибиторы составляют три группы:

- Ретарданты — замедляют рост стебля, вызывая его укорачивание и утолщение. Питательные вещества перераспределяются. Большая их часть поступает в корни, приводя к усиленному росту. Рассада не подвергается вытягиванию даже при очень низкой освещенности и загущении.

- Антиауксины — замедляют или полностью тормозят процессы жизнедеятельности растений.

- Парализаторы — резко приостанавливают рост всех органов растения.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.003)

цветы, фото, фотография

В условиях открытого грунта температура воздуха и почвы почти полностью зависит от инсоляции, географического положения района и условий выращивания растений (защитные полосы, ориентация и крутизна склона и др.). В закрытом грунте тепловой режим можно регулировать с помощью отопления, кондиционирования воздуха, затенения, проветривания и др.

Тепло оказывает влияние на ход таких физиологических процессов, как фотосинтез, транспирация, дыхание и т. д. Рост многих растений при повышении температуры от 15° до 35° С ускоряется, при понижении от 15° до 0° С - замедляется. При температуре, превышающей 35-38° С, интенсивность роста быстро снижается. Длительный избыток или недостаток тепла может привести к гибели растения.

Потребность цветочных культур в тепле в разные периоды их роста и развития неодинакова. В начале вегетации благоприятна более низкая температура, чем в последующие периоды, днем необходимо больше тепла, чем ночью.

Декоративные растения по-разному относятся к теплу, что во многом зависит от условий климатических зон, из которых они произошли. По отношению к теплу их делят на растения открытого и закрытого грунта, или тепличные.

В первую группу входят такие виды, которые достигают своей декоративной ценности при выращиваний в условиях открытого грунта. К ним относятся как растения северных стран, так и южных. Например, представители субтропических растений - гвоздика Шабо, цинерария морская, бархатцы, цинния; тропических - бегония, вербена.

Растения открытого грунта по отношению к теплу в течение вегетационного периода условно делят на холодостойкие и теплолюбивые. Холодостойкие растения (летники, зимующие многолетники и двулетники) в период вегетации выносят понижение температуры до 0 - Г С, а кратковременно - до минус 2-3° С.

Теплолюбивые растения в период вегетации не выносят даже кратковременного понижения температуры до 0-1° С. Кроме некоторых летников, к этой группе можно отнести тропические растения, которые зимой находятся в теплицах, а летом используются в открытом грунте, - пальмы, агавы, юкка, а также ковровые - эхеверия, клейния, альтернантера.

Оранжерейные (тепличные), или растения закрытого грунта, достигают своей декоративной ценности только в условиях теплиц, т. е. для их развития необходимы положительные и часто довольно высокие температуры.

Растения закрытого грунта по отношению к зимним (самым низким) температурам делят на три группы.
1. Растения холодных теплиц, для которых в зимний период, т. е. в декабре, январе, феврале, необходима температура от 3° до 7-8° С (лавровые деревья, абутилон, герань, рододендрон, фуксия). При более высокой температуре они трогаются в рост, но, страдая от недостатка света, могут погибнуть.
2. Растения умеренных теплиц нуждаются в температурном режиме от 8 до 15° С; более низкие температуры действуют на них угнетающе - многие пальмы (финиковая, хамеропс), комнатный жасмин, альтернантера, кофейное дерево, панкрациум, некоторые виды кактуса (опунция) и многие другие.
3. Растения теплых теплиц, которым необходима температура от 15° до 25° С. При более низкой температуре они не только страдают, но и часто погибают (орхидеи, бромелия, ананас, кротоны, кокосовые пальмы, каладиум, фиалка узамбарская, многие папоротники, диффенбахия, фикус и др.).

Все тепличные растения происходят из субтропиков и тропиков. В основном это декоративно-лиственные растения и служат для внутреннего озеленения, иногда для аранжировки.

Оранжерейные растения по отношению к теплу в весенне-летнее время, т. е. в период интенсивного роста, подразделяют на две группы.
1. Теплолюбивые - тропические и большая часть субтропических, растений, для которых необходима температура выше 20° С.
2. Растения умеренных температур, хорошо растущие при 16-18° С. В большинстве это травянистые цветочные растения, кустарники и некоторые декоративно-лиственные, происходящие из субтропиков.

При нарушении теплового режима растения долго не зацветают, а если и цветут, то имеют неполноценные цветки, а декоративно-лиственные формы не достигают должной декоративности.

Имеются группы растений, которые растут как в теплых, так и в прохладных помещениях (алоэ, фикус, аспидистра, драцена, кливия, филлокактус, эпифиллюм).

В жаркие летние, дни может происходить перегрев некоторых растений, хотя многие из них способны выдержать значительные повышения температуры в тканях своего организма. У отдельных видов под влиянием высокой температуры свертываются белки цитоплазмы, в результате чего они гибнут. Поэтому растения, страдающие от перегрева, чаще опрыскивают, притеняют, усиливают проветривание помещений и т. д.

Устойчивость растений к колебаниям температуры может меняться в зависимости от условий выращивания. Например, рассада многих видов летников, полученная в теплицах и парниках, при посадке в грунт без соответствующей подготовки погибает при температуре 0° минус 0,5° С, тогда .как всходы тех же растений, посеянные в открытый грунт или предварительно подготовленные для посадки, переносят заморозки 2-3° С. Следовательно, закаливание рассады - необходимый рациональный прием выращивания растений. Чем моложе сеянцы, тем выше эффект от закаливания.

В последнее время появилась возможность использования временных (на 4-6 недель) культивационных помещений. Постановка их с начала вегетации или посадки рассады астры, циннии, колокольчика, гладиолусов, ирисов, тюльпанов дает возможность получить в ранние сроки более качественную срезку.

Большое значение для нормального роста и цветения растений имеет и температура почвы. В открытом грунте ее можно в небольшой степени регулировать следующими агротехническими приемами: мульчированием (навозом, торфом, пленкой различной окраски и другими материалами), внесением органических удобрений, рыхлением и др. Использование для мульчирования черной полиэтиленовой пленки при выращивании тюльпанов и гладиолусов ведет к ускорению цветения, увеличению высоты цветоносов, повышению выхода клубнелуковиц крупного размера. "В закрытом грунте почву можно подогревать при помощи специально проложенных труб отопления.

Источник: Учебная книга цветовода. А. А. Чувикова, С. П. Потапов, А. А. Коваль, Т. Г. Черных. М.: Колос, 1980

Читайте также: