С помощью клеточной инженерии получают и размножают ценные сорта растений

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Это использование биологических систем и процессов в сельском хозяйстве и промышленности. Изначально биотехнологией называли микробиологическое производство – промышленное культивирование бактерий и грибов для получения продуктов их жизнедеятельности (например, антибиотиков). Сейчас биотехнология включает в себя генную и клеточную инженерию.

Генная инженерия

Это перенос генов в клетки другого организма (получение трансгенных организмов). Техпроцесс:
1) Получение гена. Из клетки выделяют иРНК, затем получают из них ДНК путем обратной транскрипции.
2) Получение рекомбинантной плазмиды. Плазмида – небольшая кольцевая молекула ДНК, характерная для прокариот. В неё вставляют ген, который необходимо перенести.
3) Перенос. Бактерии, например, сами поглощают ДНК из окружающей среды. В природе это является одним из механизмов изменчивости у бактерий.
4) Отбор. Отбирают организмы, в которых пересаживаемый ген содержится и работает.

Примеры использования генной инженерии:

  • Инсулин получают из бактерии кишечной палочки с пересаженным человеческим геном инсулина.
  • В культурное растение пересаживают ген устойчивости к гербициду, при обработке поля гербицидом все сорняки погибают, а культурное растение – нет.
  • В культурное растение пересаживают ген яда, убивающего некоторые виды насекомых. Поле, засеянное этими растениями, не нужно обрабатывать инсектицидами.
  • В рапс пересажен ген устойчивости к засолению почвы из другого растения.

Клеточная инженерия

Еще можно почитать

Задания части 1

БИОТЕХНОЛОГИЯ
1. Выберите два верных ответа. Методы биотехнологии позволяют
1) изучить превращение веществ в процессе жизнедеятельности организмов
2) получить растения с генетически изменёнными признаками
3) обнаружить изменения, возникшие в организме в результате онтогенеза
4) изучить микроскопические структуры клеток
5) изменить наследственность микроорганизмов путём клеточной инженерии


4. Выберите два верных результата из пяти и запишите цифры, под которыми они указаны. Вклад биотехнологии в медицину состоит в
1) использовании химического синтеза для получения лекарственных препаратов
2) создании лечебных сывороток на основе плазмы крови иммунизированных животных
3) синтезе гормонов человека в бактериальных клетках
4) изучении родословных человека для выявления наследственных заболеваний
5) культивировании штаммов бактерий и грибков для производства антибиотиков в промышленных масштабах

МИКРОБИОЛОГИЯ
Выберите два верных ответа. Микробиологическое производство как область биотехнологии занимается
1) созданием генетически модифицированных растений
2) изучением клеток бактерий
3) получением антибиотиков и витаминов
4) систематикой вирусов
5) синтезом кормового белка

ГЕННАЯ ИНЖЕНЕРИЯ
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генная инженерия, в отличие от клеточной, включает исследования, связанные с
1) культивированием клеток высших организмов
2) гибридизацией соматических клеток
3) пересадкой генов
4) пересадкой ядра из одной клетки в другую
5) получение рекомбинантных (модифицированных) молекул РНК и ДНК

ГЕННАЯ - ПОСЛЕДОВАТЕЛЬНОСТЬ
Установите последовательность этапов получения штамма бактерий, содержащих ген животного, с использованием метода генной инженерии. Запишите в таблицу соответствующую последовательность цифр.
1) встраивание фрагмента ДНК в плазмиду
2) подбор животного, содержащего необходимый аллель
3) размножение прокариотической клетки с гибридной плазмидой
4) введение гибридной плазмиды в клетку бактерии
5) выделение нужного фрагмента ДНК из клетки животного

Установите последовательность этапов генноинженерного получения животного белка в бактериальных клетках. Запишите в таблицу соответствующую последовательность цифр.
1) встраивание фрагмента ДНК (гена) в плазмиду
2) разрушение клеточных мембран животных клеток, выделение молекул ДНК
3) синтез животного белка
4) разрезание молекул ДНК на отдельные фрагменты, выделение гена
5) внедрение плазмид со вставкой в бактериальную клетку

Установите последовательность действий исследователя, получающего бактериальные клетки методом рекомбинантных плазмид. Запишите соответствующую последовательность цифр.
1) введение рекомбинантной плазмиды в бактериальную клетку
2) получение фрагмента молекулы ДНК с нужным геном
3) деление бактериальных клеток с рекомбинантной плазмидой
4) внедрение гена в плазмидную ДНК
5) получение нового штамма бактерий

ГЕННАЯ - КЛЕТОЧНАЯ
1. Установите соответствие между достижениями и направлением биологии: 1) клеточная инженерия, 2) генная инженерия. Запишите цифры 1 и 2 в правильном порядке.
А) Клонирование
Б) Получение вакцин в культуре клеток
В) Отдаленная гибридизация растений
Г) Трансгенные организмы
Д) Создание банков генов
Е) Получение безвирусного посадочного материала

2. Установите соответствие между характеристиками и методами биотехнологии: 1) генная инженерия, 2) клеточная инженерия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) использование рекомбинантных плазмид
Б) гибридизация протопластов
В) трансплантация ядер
Г) выращивание культуры клеток
Д) соматическая гибридизация

СОБИРАЕМ
1) изменение участка ДНК, кодирующего первичную структуру белка
2) микроклональное размножение растений

КЛЕТОЧНАЯ ИНЖЕНЕРИЯ
1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В клеточной инженерии используют следующие методы:
1) клонирование
2) культура клеток и тканей
3) микробиологический синтез
4) пересадка природных генов в ДНК бактерий или грибов
5) центрифугирование

3. Выберите два верных ответа. Какие приёмы используют в клеточной инженерии?
1) слияние соматических клеток
2) скрещивание организмов
3) пересадка хлоропластов из клетки в клетку
4) синтез гена инсулина в пробирке
5) получение рекомбинантной ДНК

КУЛЬТУРА ТКАНИ
Установите последовательность этапов размножения растений с помощью культуры ткани. Запишите соответствующую последовательность цифр.
1) деление выделенных клеток и получение клеточной массы
2) отделение клеток образовательной ткани растения и помещение их в питательную среду
3) пересадка молодого растения в грунт
4) дифференцировка тканей и органов
5) обработка клеточной массы фитогормонами для дифференцировки клеток


Урок знакомит учащихся с основными методами селекции и биотехнологии. В данном уроке приводятся следующие понятия: массовый и индивидуальный отбор, близкородственная гибридизация, инбредные линии, чистые линии, гетерозис, отдалённая гибридизация, полиплоидия, искусственный мутагенез, биотехнология, клеточная инженерия, генная инженерия.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Основные методы селекции и биотехнологии"

В человеческую жизнь селекция вошла много тысячелетий назад. Опираясь на здравый смысл и многовековой опыт, человек отбирал только лучшие семена. И вот результат ― великое множество культурных растений.

Человек выбирал только лучших животных. Дикие муфлоны стали родоначальниками домашних овец. Домашняя лошадь существенно отличается от дикой. Домашние утки, разучившиеся летать, лишь отдалённо похожи на своих предков.

Многообразие пород… И каждая порода отвечает либо практическим интересам, либо эстетическим устремленям человека.

Сортом, породой и штаммом называют популяцию организмов (растений, животных и микроорганизмов), искусственно созданную человеком, которая характеризуется определённым генофондом, наследственно закреплённым морфологическими и физиологическими признаками, определённым уровнем и характером продуктивности.


Используя отбор, человек оставляет и допускает к размножению только особи в наибольшей степени наделённые желательными для человека признаками. Наследственность закрепляет эти признаки в потомстве.

Выведением новых и совершенствованием существующих сортов растений, пород животных и штаммов микроорганизмов с необходимыми человеку свойствами, занимается наука селекция.

Селекция — и наука, и отрасль сельскохозяйственной практики. Её задачи многообразны.

Многообразны и методы селекции.

Основные методы селекции — это отбор, гибридизация, полиплоидия, искусственный мутагенез, а также клеточная и генная инженерия.

Начнём с отбора ― самого простого, но очень важного метода селекции.

Как вы знаете, в природе действует естественный отбор, его мы изучали на предыдущих уроках. Больные, слабые, не приспособленные организмы погибают, а сильные и здоровые размножаются и дают начало новому поколению.

А вот искусственный отбор совершает не природа, а человек. Он отбирает наиболее ценных в хозяйственном или декоративном отношении особей животных и растений для получения от них потомства с желаемыми свойствами.

Различают два вида искусственного отбора: массовый и индивидуальный.

При массовом отборе отбраковывают особей, которые по своему фенотипу не отвечают хозяйственным интересам. При этом свойство генотипа во внимание не принимается.


Не-смотря на простоту и древнее происхождение, массовый отбор позволяет успешно решать практические задачи.

Для поддержания генетический стабильности многих сортов вполне достаточно массового отбора. При регулярном и тщательном его проведении сорта сохраняют все свои качества в течение десятилетий.

Как правило, массовый отбор — это первый шаг при других, более сложных, методах селекции.

При индивидуальном отборе лучших особей, отбирают не по фенотипу, а по генотипу.

Прослеживается, как-то или иное качество, например длинношёрстность, проявляется у потомства. Оценка по потомству — основной приём при инициальном отборе.

Когда эти ягнята подрастут, продуктивность их настрига — позволит оценить генетические достоинство родителей.

Таким образом, при индивидуальном отборе выделяют единичные особи с ценными качествами и отдельно выращивают их потомство.

При последующем близкородственном скрещивании у животных выводят чистые линии.

Чистая линия — эта группа генетически однородных (гомозиготных) организмов, представляющих ценный исходный материал для селекции.


Все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена.

Одним из путей увеличения разнообразия материала для селекции является гибридизация.

Она бывает: близкородственная, неродственная и отдалённая.

Близкородственная гибридизация (инбридинг) позволяет перевести рецессивные гены в гомозиготное состояние.

При инбридинге родители являются родственниками и поэтому имеют много одинаковых аллелей, в результате чего гомозиготность увеличивается с каждым поколением.

Близкородственные скрещивания производят в целях количественного приумножения животных с наилучшими индивидуально отобранными генотипами. Так возникают имбредные линии, или чистые линии.

Животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар. Чистые линии по большинству генов гомозиготные и не дают расщепления признаков в поколениях.

Благодаря родственному скрещиванию асканийских овец обеспечивается генетическая стабильность и высокопродуктивность пород.

Чемпионы асканийской породы дают при стрижке до 12 кг шерсти. Этого хватает на 12 шерстяных костюмов.

При создании этой мясо-шёрстной породы использовался и другой метод —неродственное скрещивание (аутбридинг).

Обычно такие особи не имеют ближайших общих предков и происходят из разных популяций.

В отличие от близкородственного скрещивания, где повышается степень гомозиготности организмов, при неродственной гибридизации у потомства уменьшается вероятность присутствия одинаковых аллелей генов, то есть повышается уровень гетерозиготности.

Гетерозиготные особи часто обладают более ценными биологическими признаками, чем гомозиготные.


Черно-пёстрая порода коров славится высокой удойностью, а красная степная — жирностью молока. Произвели межпородное скрещивание у коров новой гибридной популяции почти в 1,5 раза увеличилась жирность молока — один из важных показателей его качества.

Применяя неродственное скрещивание, получают гетерозисные формы, превосходящие по ряду желаемых признаков родительские организмы. В этом случае проявляется эффект гетерозиса.

Гетерозис — это увеличение жизнеспособности гибридов вследствие унаследования определённого набора аллелей различных генов от своих разнородных родителей.

Причиной гетерозиса служит объединение у гибридного поколения доминантных генов и устранение действия рецессивных генов.


Между двумя разными имбредными линиями кукурузы на поле происходит скрещивание, при этом в следующем поколении проявится эффект гетерозиса. Гетерозисная кукуруза больше обычной, и зерна у неё крупнее.

Первое гибридное поколение обладает повышенной урожайностью и жизнеспособностью. Однако уже начиная со второго поколения эффект гетерозиса обычно снижается.

Эффект гетерозиса широко применяют не только для получения высокоурожайных гибридов кукурузы, но и других культурных растений (сахарной свёклы, например).

Скрещивание двух мясных пород домашних кур (Корниш и белый плимутрок) даёт гибридное потомство цыплят-бройлеров, отличающихся от родительских форм интенсивным ростом, низкими затратами корма на выращивание и питательным мясом.

В промышленном звероводстве комплексно используются все упомянутые нами методы селекции. Например, самая ценная сапфировая норка с голубой окраской меха была получена путём гибридного скрещивания от норок совсем иной окраски —алеутской (темно-серой с голубым оттенком) и серебристо-голубой (голубовато- серой).

Престижный цвет и другие свойства, придающие меху особую ценность, достигаются кропотливым трудом селекционеров.

Межсортовую гибридизацию широко применяют и в селекции растений, например тюльпанов и роз. Межсортовая гибридизация даёт возможность вывести новые сорта, которые отличаются окраской и формой цветков.

Отдалённая гибридизация — это скрещивание особей, принадлежащих к разным видам, а иногда и разным родам.

При этом потомки скрещиваемых видов в большинстве случаев оказываются бесплодными из-за нарушения процессов гаметогенеза.

Так, например, при скрещивании лошади с ослом получается выносливый, сильный и долгоживущий гибрид — мул.

Отличаются большой силой и выносливостью нары — гибриды одногорбого и двугорбого верблюдов.

Отдалённая гибридизация широко используется и в растениеводстве. Например, гибрид яблони и груши.

Полиплоидия — ещё один метод селекции. Полиплоидами называют формы с кратно увеличенным числом хромосом исходного вида.


В зависимости от того, во сколько раз у полиплоидных форм увеличено число хромосом, их называют тетраплоидами (четырёхкратный набор хромосом), гексаплоидами (шестикратный) или октоплоидами (восьмикратный).

Например, у картофеля исходное число хромосом равно 12, но в результате полиплоидизации возникли виды с хромосомными наборами равными 24, 48 и 72.

Полиплоидами также являются 42-хромосомные виды пшеницы, хлопчатника, люцерны, овса. Полиплоиды у растений, по сравнению с диплоидами часто характеризуются более мощным ростом, большим размером, массой семян и плодов и т. п.

Следующий метод селекции — искусственный мутагенез.

Данный метод применяют в селекции с целью повышения доли наследственной изменчивости у организмов.

Мутации вызывают действием различных физических и химических факторов.

Так, гамма-лучи и некоторые химические вещества (иприт, например) в десятки раз увеличивают частоту мутационной изменчивости у организмов.

В лабораториях получают хромосомные мутации путём химического воздействия на растение.

Благодаря растительному яду колхицину — получают полиплоидные растения.

Добавим его в чашку Петри. А поверх положим фильтровальную бумагу, на которой пророщены зерна гречихи.

Колхицин вызывает различные изменения в хромосомах, нарушается процесс деления клетки. Он разрушает веретено деления. В результате чего гомологичные хромосомы при делении клетки не расходятся. При этом получаются гаметы, содержащие по 2n хромосом. Помним, что гаметы содержат гаплоидный набор хромосом. При слиянии диплоидных гамет в зиготе окажется 4n хромосом.

Семена высадили… Кисти полиплоидной гречихи по сравнению с обычной имеют больше цветков, из которых сформируется больше плодов.

Получение искусственных мутантных форм важно и в медицине. Облучение и химия дали полезных мутантов пеницилла. Он является источником пенициллина, первого в истории антибиотика.


В этих чашках растут колонии бактерий. Мутантная форма пеницилиума более энергично истребляет микробов. Лекарство, что было когда-то на вес золота, теперь стало доступно всем.

Во второй половине XX в. стали применять принципиально новые методы экспериментальной биологии — клеточную и генную инженерию. Это направление легло в основу новой области биологии — биотехнологии.

Биотехнология — это промышленное использование биологических процессов и систем на основе получения высокоэффективных форм микроорганизмов, культур клеток и тканей растений, животных с заданными свойствами.

Клеточная инженерия основана на культивировании отдельных клеток или тканей на искусственных питательных средах. Такие клеточные культуры используются для синтеза ценных веществ необходимых человеку, например лекарств, а также для получения клеточных гибридов.

Генная инженерия — это целенаправленный перенос нужных генов от одного вида живых организмов в другой, часто очень далёких по своему происхождению.

Это, как считают учёные, перспективное направление, которое позволяет целенаправленно улучшать наследственные качества организмов, получать в неограниченном количестве ценные биологически активные вещества.

Итак, используя различные методы селекции, учёные-селекционеры улучшают существующие и выводят новые сорта культурных растений и породы домашних животных.


Селекция – наука о создании новых и улучшении существующих сортов растений и пород животных. Она возникла на основе практической деятельности человека в области сельского хозяйства. Существующие ныне культурные растения и домашние животные – результат одомашнивания их диких предков человеком. Культуры выводятся с определенной целью получить необходимое хозяйственное качество, важное для человека.

Самым древнейшим методом селекции следует считать бессознательный отбор. Человек, желая культивировать растения или размножить животных в качестве семенного материала выберет наиболее плодовитых и жизнеспособных особей, с наиболее важными для него хозяйственными качествами (например, среди яйценосных кур он для размножения отберет самых плодовитых здоровых родителей; при выборе растения для получения от него семян он выберет самое крупное растение, с обильным урожаем и т. д.).

Попытки выведения новых пород животных и сортов растений предпринимались еще в древности. В Египте и Месопотамии задолго до новой эры выводили мулов путем искусственного скрещивания осла и лошади, переопыляли финиковую пальму и получали первые гибриды, которые давали большие урожаи по сравнению с их дикими предками.

Селекция приобрела статус науки в 19 веке. Предпосылки этому послужили работы Ч. Дарвина о движущих силах эволюции.

Глубокий анализ мировых растительных ресурсов в свое время был проведен советским генетиком Н.И. Вавиловым. Многочисленные экспедиции дали основания определить центры происхождения многих культурных растений. Вавилов установил 8 таких центров:

Индийский – родина риса, сахарного тростника, цитрусовых;

Среднеазиатский – родина мягкой пшеницы, гороха, бобовых;

Китайский – родина хлебных злаков, проса, гречихи, сои;

Переднеазиатский – родина пшеницы, ржи, многих видов фруктовых деревьев;

Средиземноморский – родоначальник многих овощей;

Абиссинский (Африка) – родина твердых пшениц, ячменя, кофе;

Южноамериканский – дает начало расселению кукурузы, хлопчатника, какао;

Южномексиканский – дал миру картофель и табак.

В этих центрах сосредоточено наибольшее количество сортов, разновидностей, мутаций. Трудами экспедиций Н.И. Вавилова была собрана коллекция, насчитывающая несколько сотен тысяч мировой коллекции растений, что послужило прекрасной базой для выведения новых сортов.

Новые породы домашних животных также выводились с древнейших времен от диких предков. Человек вывел многочисленные виды животных из небольшого числа их предков:

Волки и шакалы – родоначальники собак;

Европейский тур – дал начало крупному рогатому скоту;

Европейский муфлон – предок овец;

Дикий кабан – предок свиней;

Дикая лошадь – предок современных пород лошадей

Индийский петух – родоначальник современных пород кур;

От дикой утки произошли все существующие домашние виды уток и т. д.

В настоящее время селекция животных проводится по тем же принципам, что и селекция растений.

Большой вклад в селекцию растений внес выдающийся селекционеров И.В. Мичурин. В своих работах он использовал три основных форм воздействия на растительные организмы: гибридизацию, воспитание гибрида и отбор.

Гибридизация – метод скрещивания двух сортов растений, с целью получения гибрида, обладающего ценными хозяйственными качествами обоих родителей. Естественно, что в природных условиях возникновение гибрида невозможно (разные виды в природе не скрещиваются между собой), поэтому приходилось преодолевать нескрещиваемость различными методами (например, опыление рыльца пестика смесью пыльцы). И.В. Мичурин скрещивал подобным образом уссурийскую дикую грушу (мелкие плоды, но зимостойкая) и южный сорт (плоды крупные, сочные, но растение теплолюбивое). У гибрида появились нужные селекционеру качества: полученный сорт Бере зимняя выдерживает температуру атмосферы до – 36 °С, давая в осенний период времени хороший урожай крупных плодов. Кроме скрещивания близкородственных форм И.В. Мичурин применял метод отдаленной гибридизации – т. е. скрещивание разных видов и родов растений. Таким образом были получены церападусы (гибриды вишни и черемухи), тернослива (гибрид сливы и терновника) и др. интересные разновидности гибридов.

При воспитании гибридов растительных культур И.В. Мичурин адаптировал молодые саженцы растений к изменениям условий окружающей среды (например воспитание теплолюбивых растений к условиям низких температур). Чаще всего в воспитании использовался метод прививки: сеянец воспитуемого растения прививался к растению-ментору (ментор – растение-воспитатель заданных качеств). Таким образом удалось получить некоторые сорта южных растений, адаптированных к условиям северных регионов.

Отбор – это древнейший метод, который применялся человеком бессознательно и давал хорошие результаты. И.В. Мичурин применял этот метод к семенам гибридов (отбирались семена самые крупные и правильной формы) от самых жизнеспособных и плодовитых растений.

Таким образом, применяя методы гибридизации, воспитания и отбора, Мичурин вывел сотни новых сортов растений, приспособленных к различным климатическим зонам и обладающих поразительной урожайностью, устойчивостью к заболеваниям и высокими вкусовыми качествами плодов.

Методы гибридизации, воспитания и отбора существуют также и в селекции животных. Пример соблюдения этих принципов в селекции животных – работы М.Ф. Иванова по выведению и адаптации новых пород свиней. Применение искусственного осеменения при отдаленной гибридизации позволили получить сильных и выносливых мулов (гибрид кобылицы и осла), архаромериносов (гибрид тонкорунных овец и горных архаров), гибридов яка и крупного рогатого скота, гибридов кур, обладающих поразительной яйценоскостью и т. д., а воспитание способности противостоять местным неблагоприятным факторам окружающей среды дало возможность расселять таких гибридов повсеместно.

Открытия генетики и молекулярной биологии широко применяются для получения новых форм растений, животных, микроорганизмов. В настоящее время применяют 4 основных метода: метод гетерозиса, метод полиплоидии, мутагенез, генная инженерия.

1. Метод гетерозиса

Под гетерозисом подразумевают усиление жизнеспособности за счет скрещивания разных пород животных (или разных сортов растений). В первом поколении гибридов наблюдается мощное развитие. Оно объясняется взаимодействием благоприятных доминантных генов. Подобным образом получено множество сортов растений, обладающих рядом ценных свойств. Метод гетерозиса широко применяется и в селекции животных. Межпородное скрещивание приводит к резкому подъему продуктивности гибридов.

Полиплоидией называют увеличение гаплоидного набора хромосом. На клетки растений, подготовленные к делению, воздействуют специальными веществами. Клетки перестают делиться, однако число хромосом в них увеличивается вдвое, вчетверо и т. д. Такие крупные клетки дают начало полиплоидным растениям: тетраплоиды (4n), гексаплоиды (6n) и т. д. В результате были получены полиплоидные яблони, груши, гречиха, рожь, пшеница, томат и многие другие сорта, приносящие удивительно крупные плоды. Урожайность с одного растения-полиплоида во много раз превышала урожайность его дикого предка.

Метод полиплоидии используется только в селекции растений.

Мутагенез – это метод воздействия на клетки растений различными мутагенами: химические вещества, облучение радиацией и т. д. Эти воздействия изменяют структуру ДНК, и, соответственно, свойства организма. Вредные изменения выбраковываются, а полезные закрепляются и используются в селекции.

В селекции микроорганизмов в основе своей применяют метод мутагенеза. Мутагены изменяют структуру ДНК прокариот, появляются мутантные бактерии с новым характером белков, а значит и признаков.

4. Генная инженерия

Генная инженерия – это совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии.

Биотехнология – использование живых организмов и биохимических процессов в производстве.

С древних времен человек использовал микроорганизмы в таких видах производств, как: хлебопечение, пивоварение, сыроварение, виноделие и др.

В настоящее время, помимо пищевой промышленности, достижения биотехнологии с успехом применяются в сельском хозяйстве – как экологически безопасное средство борьбы с вредителями выращиваемых культур, сорняками, болезнями растений. Разработаны промышленные методы получения аминокислот и белков, используемые в качестве кормовых добавок в животноводстве. Кроме того, специфические штаммы[41] используются для очистки сточных вод: благодаря особому виду бактерий полностью очищаются сточные воды городских канализаций. Возможна очистка вод и от синтетических неразлагающихся отходов за счет специальных искусственных штаммов микроорганизмов, полученных в результате мутагенеза.

В медицине благодаря биотехнологии получены многие разновидности антибиотиков (производятся бактериями и грибами), гормонов, ферментов и других биоактивных веществ. Получение вакцин и антител позволяют предупредить и излечить многие опасные заболевания.

Развитие биотехнологии и генной инженерии позволяют получать ранее недоступные препараты, как например: инсулин, гормон роста человека, интерферон и др. Широкое распространение получили так называемые гибридомы (гибридные клетки) и продуцируемые ими антитела, используемые в качестве уникальных реагентов. Их применение позволяет получать новые данные о функционировании генетического аппарата клеток.

Биотехнология и генная инженерия – науки, которые в современном мире продолжают активно развиваться, постоянно создавая новые открытия и достижения во благо человечеству.

1. Что такое селекция и что она изучает?

2. Приведите примеров центров возникновения современных культурных сортов растений и пород животных.

3. Какими методами селекции (сознательными и бессознательными) пользовались люди в прошлые времена?

4. Какие методы селекции используются в современное время?

5. Какие методы селекции являются новейшими? Какие методы, на ваш взгляд, являются наиболее перспективными в селекции будущего?

6. Что такое биотехнология и генная инженерия? Какие вещества получают при помощи достижений этих наук?

Современные направления биотехнологии предполагают внедрение в клетку, в процессы метаболизма, перестройку генов. За использованием подобных манипуляций стоит желание человека добиться создания необходимых продуктов питания и химических веществ. Биотехнология – наука затратная, которая требует не только финансовых вложений, но и фундаментальных знаний в области биологии.

Клеточная инженерия

Клеточная инженерия предполагает создание клеток нового типа путем их культивирования, гибридизации и реконструкции. Клетки видоизменяют, вводя в них новые хромосомы, ядра, клеточные органоиды.

Направления деятельности клеточной инженерии

Направления деятельности клеточной инженерии:

Клеточная инженерия научилась культивировать (выращивать) изолированные клетки и ткани на специально подобранной питательной среде в контролируемых условиях (влажность, температура, освещенность). Из одной клетки таким путем получают полноценное растение или клеточную массу (каллус). Такие эксперименты проводят благодаря способности растительной клетки к регенерации и чаще всего применяют для с/х растений и лекарственных трав.

Селекция и клеточная инженерия относятся к неразделимым понятиям. В селекции применяют новые, не стандартные методики:

  • соматическая гибридизация;
  • гаплоидия;
  • селекция на уровне клеток;
  • преодоление не скрещиваемости сортов или видов растительных культур.

Такие способы позволяют экспериментировать и создавать новые гибриды и сорта, которые невозможно получить традиционными путями, используя только методы селекции.

Генетическая инженерия

Генетическая инженерия

Фрагмент молекулы ДНК - носителя наследственной информации в клетке

Генная инженерия, соединив достижения химии и генетики, помогает:

  • расшифровывать структуру гена;
  • синтезировать новые гены;
  • вставлять в живые клетки синтезированные гены, с заранее продуманной программой, для изменения их наследственных свойств.

Внедрение гена из одного организма в другой требует выполнение цепочки последовательных действий:

Внедрение гена из одного организма в другой

Выращены трансгенные животные, содержащие геном с не родными генами. Уже получены трансгенные мыши, кролики, свиньи, овцы. Они содержат ДНК, в которой работают чужеродные гены разного происхождения. Животные и растения в качестве наследственного материала получают гены бактерий, дрожжей, млекопитающих, человека.

Важно! Трансгенные организмы устойчивы к факторам внешней среды, вредителям и болезням, наделены теми чертами, которые запрограммировал в них человек.

Клонирование

Клонирование

Удачные эксперименты по клонированию, проведенные на овцах

К сведению: Иногда клонирование путают с искусственным оплодотворением, когда оплодотворенную яйцеклетку вводят в матку будущей матери (родной или суррогатной). Это метод решения проблемы бесплодия, но он не относится к клонированию.

Читайте также: