Проблемой пересадки участков хромосом от одного организма к другому

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

Генетический анализ и диагностика

Каждая из 100 триллионов клеток в организме человека (за исключением красных кровяных клеток) содержит весь человеческий геном. Хромосомы – это струноподобные элементы внутри ядра (в центре) каждой клетки вашего тела. Они содержат генетическую информацию, ДНК. Ген занимает определенное место на хромосоме. В норме, есть 23 идентичных пары хромосом (2 метра ДНК) в каждой клетке, в общей сложности 46 хромосом. Каждый партнер во время оплодотворения обычно предоставляет 23 хромосомы. Если яйцеклетка или сперматозоид имеют аномальную упаковку хромосом, эмбрион, который они создают, также будет иметь хромосомные аномалии. Иногда это связано с перестройкой хромосом, или недостатком части хромосомы. В некоторых случаях есть отсутствующие хромосомы, или дополнительная хромосома (анеуплоидии), ведущие к наследственным заболеваниям. Любой эмбрион, в котором отсутствует хромосома (моносомия) перестанет расти до имплантации (фатальная аномалия). Если анеуплоидии включают хромосомы 13, 18, 21, Х или Y, беременность может дойти до родов. Наиболее распространенной из этих несмертельных аномалий является трисомия 21, или синдром Дауна, при которой присутствует дополнительная 21-я хромосома. Другие включают синдром Тернера у женщин и синдром Клайнфельтера у мужчин.

История преимплантационной генетической диагностики (ПГД)

Как передаются по наследству генетические заболевания

В диаграммах ниже, D или d представляет дефектный ген, а N или n представляет нормальный ген. Мутации не всегда приводят к болезни.

Доминантные заболевания:

Один из родителей имеет один дефектный ген, который доминирует над своей нормальной парой. Так как потомки наследуют половину своего генетического материала от каждого из родителей, есть 50% риск наследования дефектного гена, и, следовательно, заболевания.

Доминантнные генетические заболевания

Рецессивные заболевания:

Оба родителя являются носителями одного дефектного гена, но при этом имеют нормальную пару гена. Для наследования заболевания необходимы две дефектных копии гена. Каждый потомок имеет 50% шанс быть носителем, и 25% шанс унаследовать заболевание.

Рецессивные заболевания

X-сцепленные заболевания:

Нормальные женщины имеют XX хромосомы, а нормальные мужчины XY. Женщины, которые имеют нормальный ген на одной из Х-хромосом, защищены от дефектного гена на их другой Х-хромосоме. Однако, у мужчины отсутствует такая защита в связи с наличием только одной Х-хромосомы. Каждый мужской потомок от матери, которая несет в себе дефект, имеет 50% шанс унаследовать дефектный ген и заболевание. Каждый женский потомок имеет 50% шанс быть носителем, как и ее мать. (на рисунке ниже X представляет нормальный ген а X представляет дефектный ген)

X-сцепленные заболевания

Возможные преимущества генетического анализа

Преимплантационная генетическая диагностика позволяет отобрать и перенести не измененные (хромосомно нормальные) эмбрионы, которые могут привести к большей частоте имплантации на эмбрион, сокращению потерь беременности и рождению большего числа здоровых детей. Генетическая диагностика предлагает парам альтернативу мучительному выбору по поводу того, чтобы прервать пострадавшую беременность после пренатальной диагностики, производимой путем амниоцентеза или биопсии ворсин хориона (CVS) на более поздних стадиях беременности. Почти все генетически связанные заболевания, которые могут быть диагностированы в перинатальном периоде либо амниоцентезом или CVS, могут быть обнаружены и ПГД. Процедура должна уменьшить психологическую травму для пар, которые несут повышенный риск генетических заболеваний для потомства.

Преимущества преимплантационной генетической диагностики (ПГД) могут включать в себя:

  • Была выдвинута гипотеза, что негативный отбор анеуплоидных эмбрионов позволит улучшить частоту имплантации, из-за корреляции между старшим возрастом матери и хромосомно аномальными эмбрионами. Хромосомно нормальные эмбрионы имеют в перспективе более высокие шансы на развитие. При переносе только хромосомно нормальных эмбрионов в матку, ваши шансы на невынашивание могут уменьшиться, а ваши шансы забеременеть могут увеличиться. Двадцать один процент спонтанных абортов обусловлены численными хромосомными нарушениями, и основным фактором риска является возраст матери. Трисомии увеличиваются с 2% у женщин 25 лет до 19% у женщин старше 40 лет. По данным ASRM-SART, 52% циклов ЭКО в США осуществляется для женщин 35 лет и старше, что показывает, что популяция ЭКО может получить большую пользу от скрининга хромосомных анеуплоидий. Важно отметить, что вероятность наступления беременности и родов здоровым ребенком, однако, снижается у пациентов старше 34 лет (как правило, менее 50%) из-за проблем, связанных с процедурой ЭКО.
  • ПГД в состоянии идентифицировать большинство хромосомных аномалий с риском развития до родов. В настоящее время применяется ПГД хромосомных аномалии для X, Y, 13, 14, 15, 16, 18, 21 и 22 хромосом. Это составляет 70% анеуплоидий, обнаруживаемых при спонтанных абортах.
  • Вполне возможно, что некоторая информация о ваших собственных яйцеклетках и эмбрионах может быть полезной для вас в случае дальнейших попыток ЭКО, или поможет объяснить прошлые неудачи при естественном зачатии или ЭКО.
  • Будущие пациенты могут извлечь выгоду из информации, полученной от ПГД о связи между хромосомами, неразвивающимися или неимплантирующимися эмбрионами.

Возможные риски генетического анализа

  • В лучшем случае, с помощью методов ПГД могут быть обнаружены около 90% от аномальных эмбрионов.
  • Относительно большое число яйцеклеток или эмбрионов могут быть признаны ненормальными и поэтому для переноса останется только несколько эмбрионов. В некоторых случаях (11%), может не быть нормальных яйцеклеток или эмбрионов. В этих случаях перенос эмбриона не рекомендуется. Хотя это и разочаровывающий результат, вполне вероятно, что цикл ЭКО без ПГД не привел бы к беременности или привел бы к аномалиям у плода.
  • Клетки, которые будут удалены, изучаются с помощью специализированных новых методов. Такие процедуры иногда не могут быть проведены из-за технических сложностей.
  • Не все хромосомные или генетические отклонения могут быть определены пир помощи данных методов, так как в ходе одной процедуры может быть диагностировано только ограниченное число хромосом.
  • Вполне возможно, что нормальный эмбрион может быть неправильно определен как ненормальный, и не перенесен, или что аномальный эмбрион неправильно определен как нормальный и будет перенесен в матку. (ПГД в настоящее время не является заменой для пренатальной диагностики. Рекомендуется проведение пренатальной диагностики для подтвердения диагноза).
  • При удалении клеток может случайно произойти повреждение эмбриона (0,1%).
  • Неявные технические обстоятельства в лаборатории могут привести к неудаче процесса тестирования, что приводит к отсутствию результатов. Неудача процесса тестирования не оказывает никакого влияния на ваш эмбрион. В этом случае, эмбрионы для переноса будут отобраны на основе существующих критериев.
  • Анализ одной клетки имеет свои ограничения. Иногда, хромосомные аномалии находятся в одной клетке, но не в других клетках того же эмбриона, или наоборот, что выражается мозаицизмом. Это может привести к переносу аномального эмбриона, или к отказу от нормального эмбриона.
  • ПГД для определения транслокаций может определить наличие или отсутствие определенных хромосомных нарушений, но не может ни определить генетическое заболевание, ни предсказать генетические уродства.
  • Даже после успешной процедуры ПГД беременность может не наступить.

Кандидаты для биопсии эмбриона и ПГД

Кандидаты для биопсии эмбриона и ПГД включают в себя:

  • Женщины старше 34 лет: женщины рождаются со всеми яйцеклетками, которые они будут когда-нибудь иметь, и по мере старения женщины ее яйцеклетки подвергаются также воздействию этого процесса старения. Таким образом, вероятность зачатия хромосомно аномального потомство с возрастом увеличивается. В целом риск анеуплоидии увеличивается с 1 на 385 в возрасте 30 лет, до 1 на 179 в возрасте 35 лет, до 1 на 63 в возрасте 40 лет, и в возрасте до 45 лет возможность рождения больного ребенка составляет 1 к 19. В результате использования ПГД при ЭКО стало известно, что в действительности больее чем 20% эмбрионов у женщин в возрасте от 35 до 39 анеуплоидны, и страдают почти 40% эмбрионов у женщин старше 40 лет. Большинство из этих эмбрионов в случае переноса в матку либо не имплантируются или приводят к невынашиванию. Это считается основной причиной низкой частоты наступления беременности и родов женщин в возрасте 40 лет и старше. До внедрения ПГД, для увеличения шансов на зачатие в матку переносилось большее число эмбрионов. По-прежнему настоятельно рекомендуется проведение пренатальной диагностики после цикла ЭКО, поскольку это подтверждает прогноз нормального потомства. Возможно также, что аномальные эмбрионы могут быть ошибочно определены как нормальные и перенесены в матку.
  • Женщины с рецидивирующей потерей беременности (привычным невынашиванием): мужчина или женщина пары может иметь ненормальную упаковку хромосом, что может вызвать фатальные аномалии в некоторых беременностях, но не в других.
  • Пары с транслокациями: транслокации – это изменения в конфигурации хромосом, при которых хромосомы прикрепляются друг к другу (робертсоновские) или участки разных хромосомах меняются местами (взаимные или реципрокные). Примерно 1 из 900 человек имеет робертсоновские транслокации с участием хромосом 13, 14, 15, 21, 22. Примерно 1 из 625 человек имеет взаимные транслокации. Для выявления наличия транслокаций может быть проведено кариотипирование обоих партнеров. Пары с транслокациями могут иметь периодические потери беременности, или потомство с психическими или физическими проблемами. При сбалансированной транслокации, когда нет дополнительного или отсутствия хромосомного материала, и разрыв в хромосоме не нарушает функции генов, человек не страдает. Носители сбалансированных транслокаций могут быть затронуты сложными врожденными пороками развития, которые могут или не могут быть связаны с наследственным заболеванием. При несбалансированной транслокации, при которой существует или отсутствует дополнительный материал хромосом, отдельные личности, как правило, не будут затронуты, хотя у некоторых будет наблюдаться снижение фертильности. Однако существует риск того, что яйцеклетки или сперматозоиды от такого человека могут иметь несбалансированные транслокации, в результате чего эмбрион будет несбалансированным. Это может привести к неудаче имплантации, повторному невынашиванию, или потомству с психическими или физическими проблемами.
  • Пары с аутосомно-доминантными заболеваниями, при которых будут затронуты 50% эмбрионов. Пары, которые имеют данные нарушения в семейном анамнезе, или являются носителями, или страдают от наследуемых заболеваний.

Пары с повторными неудачами ЭКО.

  • Пары с историей бесплодия могут быть в состоянии определить этиологию, и, следовательно, выбрать соответствующее лечение.
  • Парам из группы риска для наследования потомством болезни с угрозой для жизни, болезни с поздним началом (болезнь Хантингтона), предпочтительно планировать, выбрать соответствующие методы лечения, или ускорить процесс диагностики (например, ранней диагностики рака молочной железы)
  • Пары, желающие потомство для производства HLA-совпадающих стволовых клеток, для страдающего ребенка со смертельным заболеванием.

Используемые методы

Для анализа на наличие генетических дефектов эмбриона, из него необходимо удалить либо первое полярное тельце из неоплодотворенной яйцеклетки и/или 1 или 2 клетки от каждого эмбриона. Это называется биопсией яйцеклетки или эмбриона и обычно делается перед тем, как происходит оплодотворение, или через 3 дня после оплодотворения. Биопсия на 6-10 клеточной стадии не оказывает отрицательного влияния на преимплантационное развитие. На этом этапе каждая клетка имеет полный набор хромосом. Обычно из эмбриона удаляется только одна клетка, так как ожидается, что будут одинаковыми со всеми другими клетками в эмбрионе. Иногда необходимо удалить вторую клетку из эмбриона, например, если сигнал в первой не обнаружен. Для диагноза предрасположенности с помощью первого и второго полярных телец, как показателей генетического статуса яйцеклетки, используется анализ методом FISH. Недостатком анализа полярных телец заключается в том, что он не принимает во внимание отцовские анеуплоидии.

Анализ биопсированной клетки использует один из двух методов:

  • Флуоресцентная гибридизация in situ (FISH): биопсированная клетка фиксируется на предметном стекле, нагревается и охлаждается, и ее ДНК "помечается" цветными флуоресцентными красителями, называемыми зондами (маленькие кусочки ДНК, которые соответствуют исследуемым хромосомам), по одному для каждой определяемой хромосомы. В настоящее время может быть идентифицировано 8 из 23 хромосом. После завершения эмбриолог учитывает цвета под мощным микроскопом и в состоянии, в большинстве случаев, отличить нормальные от аномальных клеток. Этот процесс занимает около суток. Нормальные эмбрионы будут либо перенесены в матку на 4-й день после поиска яйцеклеток, или подвергнутся продленному культивированию и будут перенесены на 5-й день, как бластоцисты. Клетки, использовавшиеся для ПГД, больше не жизнеспособны, и не будут возвращены в эмбрион, но могут быть сохранены для будущих исследований.
  • Полимеразная цепная реакция (ПЦР): методика, которая увеличивает количество копий специфичных регионов ДНК, чтобы произвести достаточное для анализа количество ДНК. ДНК является двухцепочечной (за исключением некоторых вирусов), и две цепи соединяются очень специфическим образом. "Последовательность кирпичиков" генов представляет собой определенный порядок появления 4-х различных дезоксирибонуклеотидов в сегменте ДНК. Эти 4 компонента: аденин (А), тимидин (T), цитозин (C), и гуанин (G). Последовательность этого 4-буквенного алфавита генерирует состав гена. При этой методике ДНК нагревают (денатурируют), чтобы разделить 2 нити. Далее добавляются праймеры и ДНК охлаждается, с тем чтобы опять образовались двойные нити. Затем в циклы добавляют ферменты, которые могут "прочитать" последовательность гена, что приводит к умножению ДНК. ПЦР используется для диагностики ген-специфических заболеваний, так же как и для выявления болезнетворных вирусов и/или бактерий, или в криминалистике в связи с подозрением в совершении преступления.

Вся информация носит ознакомительный характер. Если у вас возникли проблемы со здоровьем, то необходима консультация специалиста.

Что такое ДНК, и из чего она состоит? Кто и когда открыл эту молекулу в клетках человека и других живых организмов? Чем уникален открытый учеными механизм наследования, и какие последствия ждал весь мир после этого открытия? Всю необходимую информацию Вы можете узнать, прочитав эту статью.

ДНК и хромосомы

Иоганнес Фридрих Фишер – врач и биолог-исследователь родом из Швейцарии, стал первым в мире ученым, выделившим нуклеиновую кислоту. Открытие случилось в 1869 году, когда он занимался изучением животных клеток, а именно лейкоцитов, которых много содержалось в гное. Совершенно случайно молодой ученый заметил, что при отмывании лейкоцитов с гнойных повязок от них остается загадочное соединение. Под микроскопом Иоганн обнаружил, что оно содержится в ядрах клеток. Это соединение Мишер назвал нуклеином, а в процессе изучения его свойств переименовал в нуклеиновую кислоту, из-за наличия свойств, как у кислот.

Роль и функции только открытой нуклеиновой кислоты были неизвестны. Однако многие ученые того времени уже высказывали свои теории и предположения о существовании механизмов наследования.

Нынешние взгляды на состав молекулы ДНК ассоциируются у людей с именами английских ученых Джорджа Уотсона и Фрэнсиса Крика, которые открыли структуру данной молекулы в 1953 году. За несколько лет до этого, в тридцатые годы, ученые из советского союза А.Н. Белозерский и А.Р. Кезеля доказали наличие ДНК в клетках во всех живых организмах, тем самым они опровергли теорию о том, что молекула ДНК находится только в клетках животных, а в клетках растений присутствует только РНК. Лишь спустя несколько лет, в 1944 году, группой освальдских ученых было установлено, что молекула ДНК является механизмом сохранения наследственной информации клетки. Таким образом, благодаря совместным усилиям и трудам исследователей человечество познало тайну процесса эволюции и его основных принципов.

ДНК в медицине

Открытие состава молекулы дезоксирибонуклеиновой кислоты позволило перейти медицине на новый уровень развития. Появилось большое количество новых направлений практической медицины, стали доступны новые методы лечения, диагностики. Благодаря этому фундаментальному открытию для науки и современным технологиям, человечеству стали доступны:

  • Возможность поставить диагноз на ранней стадии заболевания, когда оно еще находится в скрытом периоде, и никаких симптомов не проявляется. у человека.
  • Тесты на наличие у человека аллергии или непереносимости некоторых пищевых продуктов. Индивидуальные исследования помогут выявить, какая пища хорошо усваивается организмом, а какая плохо или вообще не усваивается, и что может стать причиной аллергической реакции у исследуемого. Возможность узнать, какие этносы формируют Вашу внешность, и из каких народов были Ваши далекие предки
  • Тест на наличие врожденных заболеваний, передающиеся через поколения, оценка риска их возникновения у тестируемого человека.

И это еще не все доступные для людей услуги, которые может предложить медицина, изучающая генетику. Выше были представлены только самые популярные среди людей тесты. Перспективой для многих ученых-генетиков является создание таких лекарств, способных победить все болезни на Земле и даже смертность.

Строение молекулы ДНК

Молекула ДНК состоит из органических соединений - нуклеотидов, которые скручиваются в две спиралевидные цепи. Нуклеотиды в этих цепях – это базовые элементы, с помощью которых потом будут кодироваться и выстраиваться гены. В составе одного гена возможны несколько вариантов расположения некоторых нуклеотидов, поэтому вместе с тем, как меняется структура гена, меняется и его функциональность.

От цепочки к хромосоме

В каждом живом организме находится миллионы клеток, а внутри этих клеток находится ядро. Клетки, содержащие в себе ядро, называются эукариотами или ядерными. У древних одноклеточных нет оформленного ядра. К таким безъядерным одноклеточным, или прокариотам, относятся бактерии и археи, например, кишечная палочка или серая анаэробная бактерия. Также ядро отсутствует в клетках вирусов и вироидов, однако причисление вирусов к живым организмам – вопрос спорный, о котором по сей день дискуссируют ученые.

В ядре находятся хромосомы – структурный элемент, в котором содержится молекула ДНК в виде спирали, хранящая внутри себя всю генетическую информацию клетки.

Процесс упаковки ДНК спиралей

Количество нуклеотидов в ДНК велико, и нужны длинные цепочки, чтобы вместить все их число, поэтому нити ДНК закручиваются в две спирали, что позволяет укоротить цепочки в 5 раз, сделав их более компактными. Нити ДНК могут также закручиваться в форму суперспирали. Двойная спираль пересекает свою ось и накручивается на специальные гистоновые белки – гиразы, образуя при этом супервитки. Таким образом, двойная спираль закручивается в спираль более высокого порядка. Сокращение цепочек в этом случае произойдет в 30 раз.

Как гены связаны с ДНК

Ген – самый изученный на сегодняшний день участок ДНК. Гены являются структурной единицей наследственности всех живых организмов. Цепочки нуклеотидов в ДНК состоят из генов, которые определяют генотип особи, например, цвет и разрез глаз, тип кожи, рост, группу и резус фактор крови и другие физиологические качества и особенности внешности.

Еще много отраслей генетики до конца не изучены, и до конца не раскрыты все функции генома, но ученые до сих пор продолжают изучение генов, чтобы добиться новых открытий в области генетики.

Хромосома: определение и описание

Хромосомы

Хромосомы – структурный элемент клетки, находящийся внутри ядра. Они содержат в себе молекулы ДНК, в которых содержится вся наследственная информация.

Строение и виды хромосом:

Отсюда возникают различные типы хромосом:

  • Равноплечая – центромера перетягивает хроматиды точно посередине;
  • Неравноплечая – центромера неточно перетягивает хроматиды, из-за чего одно плечо хромосомы будет длиннее, а другое – короче. К этому типу относится Y-хромосома;
  • Палочковидная – центромера перетягивает хроматиды практически на их концах, из-за чего по форме хромосома напоминает палочку;
  • Точковые – очень мелкие хромосомы, форму которых трудно определить. В науке существуют 3 основные формы хромосом:
  • Х-хромосома, встречающаяся у особей женского и мужского пола;
  • Y-хромосома, встречающаяся только у мужских особей;
  • В-хромосома, которая очень редко встречается в клетках растений. Обычно их число доходит до 6, редко – до 12. Ее наличие обуславливает различные болезни и побочные эффекты в организме

Всего в клетке человека находится 46 хромосом: 22 пары аутосом, встречающиеся у обоих полов, и одна пара половых хромосом: XY – у мужчин, XX – у женщин. Забавно, что если прибавить к количеству хромосом хотя бы одну пару, то человек мог бы быть шимпанзе или тараканом, а если отнять, то – кроликом.

Еще интересно то, что человек и ясень имеют одинаковое количество хромосом, несмотря на принадлежность к разным видам и царствам.

Генетический код – система записи генетической информации в ДНК и РНК в виде определенной последовательности в цепочке нуклеотидов. Он должен сохранять наследственную информацию в первоначальном виде, восстанавливая повреждения цепочки в последующем поколении с помощью ДНК. Однако ген может каким-то образом быть поврежден, либо в нем может произойти мутация.

Генные мутации – изменение в последовательности нуклеотидов, например выпадение, замена, вставка другого нуклеотида в цепочку. Последствия этих мутаций могут быть полезные, вредные или нейтральные. Примером полезных мутаций является устойчивость к минусовым температурам, увеличенная плотность костей, меньшая потребность во сне, устойчивость к ВИЧ и другие. Примером вредных мутаций является аллергия на солнечный свет, глухота слепота и так далее. К нейтральным мутациям относятся те мутации, которые не влияют на жизнеспособность, например, гетерохромия.

Существуют также летальные и полулетальные мутации. Летальные мутации несовместимы с жизнью и приводят к гибели организма на ранних этапах его развития, например, при рождении у особи отсутствует головной мозг. Полулетальные мутации не приводят к смерти особи, но значительно уменьшают ее жизнеспособность. К таким мутациям относятся заболевания человека, передающиеся по наследству. Например, наличие 47-й хромосомы может вызвать у человека синдром Дауна, а, наоборот, отсутствие 46-й парной хромосомы – сидром Шерешевского-Тернера.

Расшифровка цепочки ДНК

Расшифровка цепочки ДНК в клетке – это исследование всех известных генов в клетках человека. Хоть цена за такую услугу значительно упала за последние десять лет, однако такое исследование по-прежнему остается дорогим удовольствием, и не каждый человек сможет позволить себе оплатить такую услугу. Чтобы уменьшить цену этого исследования, расшифровку ДНК стали делить по тематикам. Таким образом, появились различные тесты, которые исследуют интересующую человека группу генов и ее функции.

Как происходит расшифровка цепочки ДНК?

  • Взятые на пробу образцы ДНК нагревают, чтобы двойная спираль раскрутилась и распалась на две нити.
  • К интересующему участку цепочки генов прилепляется полимераза - фермент, синтезирующий полимеры нуклеиновых кислот. Процедура проходит при низких температурах.
  • С помощью полимеразы в интересующих участков происходит синтезов генов, необходимых для изучения.
  • Участки пропитывают светящейся краской, которая светится при лазерном воздействии.

Таким образом, ученые получают картину гена, которую можно изучить и расшифровать. Синтез РНК Нуклеотиды делятся на четыре базовых элемента, служащими основой для формирования генов: АТГЦ, или аденин, тимин, гуанин, цитозин. В их состав входят фосфорные остатки, азотистые основания и пептоза.

В ДНК эти нуклеотиды располагаются строго по парам параллельно друг другу строгими парами: аденин - с тимином, гуанин - с цитозином.

Важно, что молекула дезоксирибонуклеиновой кислоты не должна выходить за пределы мембраны ядра. С помощью РНК, которая играет роль копии участка цепи с генетическим кодом, генетическая цепочка может покинуть ядро, попасть вовнутрь клетки и воздействовать на ее внутренние процессы.

Как это происходит:

  • Один конец генной спирали раскручивается, формируя две развернутые нити с цепочкой генов.
  • К развернутому участку спирали подходит специальный фермент-строитель и поверх этого участка синтезирует его копию.
  • У копии в структуре нуклеотидов тимин во всех парах заменяется на урацил, что позволяет копии генетической цепи покинуть ядро клетки. Синтез белка при помощи генов Основное взаимодействие, происходящее между генами и клеткой, состоит в том, что различные гены могут заставлять клетку производить синтез разных белков с самыми непредсказуемыми свойствами.

Итак, группа генов, участвующих в процессе старения клеток может, как заставить процесс старения идти быстрее, так и вовсе его остановить и запустить процесс омолаживания. То есть, каждый из генов может спровоцировать синтез нескольких видов белка.

Генетик Сутягина Дарья

Сутягина Дарья Сергеевна

Эксперт-генетик

В нашей ДНК содержится очень много информации, но пока мы можем расшифровать лишь небольшой процент генов. Добавлю несколько интересных фактов о ДНК: возможность двойной ДНК у человека. Такое явление случается, когда при беременности в утробе развиваются близнецы, но в процессе развития плода они сливаются в одного человека. Длина одной молекулы ДНК человека равна 2 метрам, а общая длина цепочки ДНК всех клеток тела человека равна 16 млрд. километрам, что равно расстоянию от Земли до Плутона. ДНК человека и кенгуру всего лишь 150 млн. лет назад были одинаковыми. Все знания и информация во всем мире могла бы уместиться всего лишь в 2 граммах дезоксирибонуклеиновой кислоты.

rishataminev

Знайти період власних електромагнітних коливань, якщо індуктивність котушки 2мГн, а ємність конденсатора 45мкФ.

Расположи последовательно процессы, происходящие при оогенезе. (Запиши в ответе последовательность букв. Пример: АВГБЖД.) А. Первое деление мейоза. Б. … Образование одной яйцеклетки и полярного тельца. В. Гибель направительных телец. Г. Второе деление мейоза. Д. Деление оогоний митозом. Ж. Образование ооцитов первого порядка.​

У матері ІІІ група крові, а у батька І група. Яких нащадків слід чекати у першому поколінні. Розглянути всі можливі випадки.

Изображение

Исследование проводится в рамках применения программы вспомогательной репродукции у пар, которые имеют высокий риск передачи генетических патологий или появления хромосомных нарушений у потомства. В результате в полость матки переносятся только эмбрионы, не имеющие аномалий в генетическом статусе.

ПГД – это реально работающий метод , позволяющий снизить риски спонтанных абортов и способствующий уменьшению неудачных попыток ЭКО.

История преимплантационной генетической диагностики (ПГД)

В норме генетический материал человека закодирован в 44 аутосомных хромосомах. Полный хромосомный набор представлен 22 соматическими парами и одной половой парой (у мальчиков ХУ, а у девочек ХХ). Однако нередки ситуации, когда количество хромосом может уменьшиться или, наоборот, увеличиться в результате сбоя в процессе деления клеток. Это приводит либо к рождению детей с хромосомными синдромами и множественными пороками развития, либо к подсадке нежизнеспособного эмбриона (такая беременность прерывается в первом триместре), либо к отсутствию имплантации. Чтобы снизить подобные неудачи ЭКО до этапа переноса эмбриона в маточную полость, было предложено проводить преимплантационную генетическую диагностику. Чуть позже выяснилось, что с помощью такой технологии можно также избежать передачи моногенного заболевания, носителем которого может оказаться один из родителей. Подсаживаться будут только те эмбрионы, в структуре которых нет этого аллеля.

Интересно отметить, что идея проведения подобного исследования зародилась еще до эры вспомогательных репродуктивных технологий у человека. Произошло это в 1967 году, когда ученые провели забор материала кроличьих эмбрионов, чтобы определить пол еще до подсадки. В репродуктивной медицине человека проведение генетического тестирования стало возможно с 90-х годов XX столетия, и связано с более широким распространением ЭКО и изобретением метода полимеразной цепной реакции.

Сначала в 1989 году перед имплантацией определили пол будущего ребенка. Для родителей это было важно, т.к. Х-хромосома одного из супругов содержала дефектный ген, и риск рождения больного ребенка был высок. В 1990 году уже удалось идентифицировать эмбрионы с моногенными нарушениями, в частности это касалось муковисцидоза. Позже ПГД шагнула еще дальше, предоставив возможность лечить больного брата или сестру с помощью пересадки костного мозга, свободного от мутации и полностью совместимого по системе HLA.

Как передаются по наследству генетические заболевания

Генетические заболевания, в отличие от хромосомных, связаны с изменением структуры генетического кода, когда один или несколько его участков являются патологическими. Подобные нарушения могут затрагивать как соматические хромосомы, так и половые. Стоит отметить, что мутантный аллель может быть доминирующим, то есть его влияние в паре всегда превалирует, или рецессивным, то есть патологический признак не проявится, если будет здоровый доминант. Этим определяются типы наследования генетических заболеваний. Хромосомный набор в норме всегда парный. Поэтому возможны следующие варианты:

  • пара определенного генетического не имеет никаких мутаций – ребенок здоров;
  • пара содержит один мутантный аллель, но он рецессивный, а доминантный аллель здоровый – заболевания нет, но ребенок является носителем патологии (может передавать ее потомству);
  • пара содержит 2 мутантных аллеля и оба рецессивные – заболевание проявится;
  • пара содержит 1 мутантный аллель доминантного типа – заболевание проявится, даже если рецессивный аллель здоровый;
  • пара содержит 2 мутантных аллеля доминантного типа – генетическая патология проявится.

Типы наследования могут быть следующими:

  • аутосомно-доминантные;
  • аутосомно-рецессивные;
  • Х-сцепленные доминантные;
  • Х-сцепленные рецессивные;
  • У-сцепленные (голандрические) – на У-хромосоме в целом мало генов, поэтому такие заболевания редкие и практически не передаются потомству, т.к. в большинстве случаев такие мужчины стерильны (гены У-хромосомы отвечают за сперматогенез и развитие яичек);
  • митохондриальные – наследуются только по материнской линии (если мать больна, то будут больны все дети). Для выявления митохондриальных болезней обследование должна пройти женщина до зачатия с помощью секвенирования митохондриальной ДНК. Это выходит за рамки ПГД.

Отнесение болезни к той или иной группе позволяет генетику предположить, с какой вероятностью она проявится у потомства и составить оптимальный репродуктивный план для пары.

Доминантные заболевания

В случае доминантного наследования патологический признак превалирует над здоровым. Поэтому при его наличии (хоть в одной, хоть в 2 хромосомах) ребенок всегда болен. Здоровые дети не являются носителями мутантного аллеля.

По аутосомно-доминантному типу наследуются болезнь Марфана (поражение соединительной ткани), боковой амиотрофический склероз (поражение структур спинного мозга), нейрофиброматоз (из нервной ткани образуются опухоли), семейная гиперхолестеринемия и др.

Рецессивные заболевания

При рецессивном типе наследования заболевание проявляется только в том случае, если патологический участок присутствует одновременно в 2 хромосомах из пары. Здоровые дети от больных родителей могут быть как носителями патологического гена (одна из хромосом имеет повреждение), так и не иметь его в своем наборе (2 хромосомы в паре абсолютно нормальны).

Рецессивный тип передачи наследственного заболевания часто встречается при близкородственных браках. Основными представителями этой группы являются анемия Фанкони, лизосомные болезни накопления, фенилкетонурия, синдром Жильбера, наследственная тугоухость и другие.

Для генетики справедливо правило – если у двух здоровых родителей ребенок болен, то такой тип наследования считается рецессивным.

Х-сцепленные заболевания

Чаще всего в популяции встречаются Х-сцепленные заболевания, намного реже – У-сцепленные. В последнем случае патологический признак выявляется только у мужчин и передается по мужской линии всем сыновьям.

Х-сцепленное наследование может быть доминантным и рецессивным.

  • В случае доминантного Х-сцепленного наследования от матери пораженная Х-хромосома передается как сыновьям, так и дочерям. Отцы с мутантной Х-хромосомой передают ее только дочерям (сыновья здоровы, т.к. нормальную Х-хромосому наследуют от матери). По таком механизму передается пигментный дерматоз, гипоплазия зубной эмали, устойчивый к витамину Д рахит.
  • Х-сцепленное рецессивное наследование приводит к тому, что у сына проявляется заболевание. Если же передается дочери больная Х-хромосома, то ребенок, как правило, здоров (болезнь развивается только, если и вторая хромосома от отца тоже повреждена). По такому типу передаются гемофилия, глазной альбинизм, куриная слепота, дальтонизм, миодистрофия Дюшена.

Возможные преимущества генетического анализа

Что значит ПГД эмбриона? Это высокотехнологичное исследование помогает решать сразу несколько важных задач, связанных с улучшением репродуктивных и медико-генетических исходов беременности. Благодаря генетическому анализу, удается достигать следующих целей:

  • уменьшать число неэффективных переносов;
  • уменьшать вероятность спонтанного прерывания беременности;
  • повышать шансы успешной беременности у женщин из групп повышенного генетического риска;
  • предотвращать передачу по наследству генетически обусловленных заболеваний;
  • уменьшить риск хромосомной патологии у новорожденных;
  • снизить риск резус-конфликта.

В результате проведения ПГД снижается риск рождения больного ребенка, риск невынашивания и многоплодия, увеличиваются шансы на успешную имплантацию (в среднем на 10%) и на благополучное рождение ребенка (примерно на 15-20%).

Что дает ПГД эмбриона еще? Если брат или сестра от одних родителей имеют заболевание, связанное с мутацией, требующее пересадки костного мозга, и в базе данных подобрать совместимого донора не удается, то на помощь приходит ЭКО с преимплантационным скринингом. Что показывает ПГД в этом случае? Благодаря этому исследованию удается подобрать эмбрион, который не только не содержит мутации, но и полностью совместим по тканевым антигенам. Такое направление в терапии применяется в США и Европе уже более 15 лет, а в России с 2016 года, когда девочке с синдромом Шахванда-Даймонда пересадили здоровые стволовые клетки от ее родного брата, зачатого путем ЭКО.

Показания к преимплантационной генетической диагностике

Метод ПГД в первую очередь предназначен для выявления количественных нарушений в хромосомном наборе эмбриона, которые не являются летальными, но могут приводить к рождению ребенка с пороками развития. Это касается 13,18, 21-й пары аутосом и половых хромосом – Х- и У.

Стоит отметить, что риск генетических нарушений у плода возрастает с увеличением возраста матери. Так, Всемирная организация здравоохранения приводит такие данные статистики. Вероятность рождения ребенка с трисомией (состояние, когда вместо 2 одинаковых хромосом, имеется 3) у женщины в возрасте до 30 лет составляет 1 случай на 385 беременностей, в возрасте 40 лет – 1 случай на 63 беременности и возрасте 45+ - 1 случай на 19 беременностей. А женщины, которые вступают в программу ЭКО, зачастую перешагнули рубеж в 35-40 лет.

К тому же, некоторые хромосомные аномалии являются летальными, то есть несовместимыми с жизнью. Клинически это проявляется самопроизвольными выкидышами на ранних сроках беременности. Частота их по причине хромосомных аномалий в первом триместре доходит до 60%. Поэтому чтобы вам подсадили наиболее качественный эмбрион (без генетических поломок), и проводится ПГД.

Что показывает ПГД эмбриона еще? Это исследование позволяет также идентифицировать носительство конкретных мутантных аллелей и выбрать для подсадки здоровые эмбрионы, которые лишены патологического гена.

Таким образом, ПГД работает и в отношении выявления хромосомных синдромов, и в отношении генетических заболеваний.

Кому показано ПГД

Европейское общество репродуктологов и эмбриологов рекомендует проводить преимплантационный тест при наличии следующих показаний:

  • у пары в анамнезе 1 или несколько беременностей, которые самостоятельно прервались;
  • 2 и более попытки искусственного оплодотворения, которые закончились неудачей;
  • возрастная категория женщины 35+;
  • наличие подтвержденного мужского фактора бесплодия;
  • наличие беременностей с объективно подтвержденной хромосомной патологией плода;
  • мужчина и/или женщина из пары – носители структурных хромосомных перестроек (выявлено с помощью соответствующего генетического анализа).

Помимо этого ПГД эмбриона при ЭКО рекомендуется женщинам со сниженным овариальным резервом. Уменьшение численности фолликулов в яичниках практически всегда ассоциировано с плохим качеством яйцеклеток, в которых увеличивается риск спонтанных мутаций. Поэтому чтобы подсадить в полость матки здоровый эмбрион, проводится преимплантационный скрининг. Это же исследование показано также парам, у которых в анамнезе были случаи пузырного заноса, неразвивающейся и биохимической (уровень ХГЧ был повышен, но дальше гестационный процесс прервался на очень раннем сроке) беременности.

Состояния, диагностируемые с помощью ПГД

Анализ ПГД эмбриона – что это? Данное исследование позволяет провести генетическое изучение эмбрионов на нулевые сутки, 3-и или 5-ые. С помощью этого теста выявляют различные хромосомные аномалии еще до подсадки эмбриона в полость матки для того, чтобы предотвратить рождение ребенка с генетическими отклонениями и наследственными заболеваниями.

ПГД эмбриона позволяет объективно диагностировать носительство конкретных генетических патологий. В свою очередь преимплантационный генетический скрининг в медицине репродукции направлен на выявление общих изменений количества хромосом (увеличение или уменьшение).

Условно все нарушения в строении генетического аппарата будущего ребенка можно разделить на 3 категории:

  • хромосомные изменения;
  • генетические мутации, которые затрагивают один или несколько генов;
  • спонтанное возникновение мутаций в половых клетках (родители здоровы, а проблема появляется впервые у ребенка).

Заболевания, сцепленные с полом

Практически все заболевания, которые сцеплены с полом, наследуются через патологически измененную Х-хромосому. Поэтому женщины могут быть как больными, так и здоровыми носителями. Мужчины всегда проявляют заболевание. Патологии, сцепленные с полом, возникают при наличии мутаций в половых хромосомах родительских организмов и связаны с нарушением генетических процессов.

Наиболее распространенными патологиями этой группы являются:

  • гемофилия;
  • дальтонизм;
  • фосфат-диабет;
  • мышечная дистрофия Дюшена, Леша-Найхана и другие.

Одиночные дефекты гена

Одиночные дефекты гена могут приводить к развитию моногенных заболеваний у потомства. Благодаря ПГД удается подсадить эмбрион, который не имеет соответствующей мутации. Так наследуются:

  • муковисцидоз – заболевание, при котором образуется густой секрет, приводящий к закупорке выводных протоков желез (чаще поражаются легкие, бронхи, поджелудочная железа);
  • несиндромальная нейросенсорная тугоухость – снижение слуха вследствие повреждения нервных рецепторов внутреннего уха;
  • наследственные миопатии – слабость мышц, связанная с нарушением их развития или нарушением иннервации, приводящая к обездвиженности.

Хромосомные расстройства

Хромосомные заболевания не зависят от генетического аппарата родителей, а возникают при нарушениях расхождения хромосом в процессе мейотического деления.

Наиболее частые хромосомные заболевания, связанные с изменением численности хромосом, это:

Кандидаты для биопсии эмбриона и ПГД

Биопсия эмбриона и преимплантационное генетическое тестирование проводится в тех ситуациях, когда риск хромосомных и генных нарушений достаточно высок. В первую очередь это определяется возрастом родителей. Задуматься о возможных генетических поломках стоит женщинам старше 35 лет и мужчинам старше 40 лет. Помимо этого есть определенные клинические ситуации, когда повышена вероятность генетических нарушений. Последние могут быть причиной привычного невынашивания беременности, многократных неудачных попыток ЭКО. ПГД рекомендуется и в тех случаях, когда имеется мужское бесплодие, связанное с хромосомными аномалиями, или же кто-то из потенциальных родителей имеет доказанное носительство хромосомных перестроек, транслокаций, инверсий и других хромосомных патологий.

Пары с повторными неудачами ЭКО

Повторные неудачи ЭКО нередко связаны с наличием генетических аномалий у эмбриона/плода. Преимплантационная диагностика позволяет отбирать только здоровые эмбрионы. Это в разы повышает результативность цикла ЭКО, снижает вероятность рождения ребенка с хромосомными аномалиями, а также риск спонтанных прерываний беременности.

Используемые методы

Как делают ПГД эмбриона? Состояние будущего плода изучают в самые ранние сроки его развития. Материалом для исследования могут служить полярные тельца, бластомеры и клетки трофэктодермы. Оптимальным вариантом является исследование трофэктодермы, т.к. это самый малотравматичный вариант биопсии, а биопсийный материал, который получают на 5-е сутки, наиболее информативен. Генетику удается получить большее количество эмбриональных клеток, а значит, и большее количество копий ДНК. В рамках тестах изучается последовательность нуклеиновых кислот.

Раньше изучались единичные хромосомы. Как правило, те, в которых чаще всего встречаются проблемы. На сегодня микроматричная сравнительная геномная гибридизация позволяет исследовать все пары хромосом (как соматические, так и половые).

Читайте также: