Посев на цитратную плазму

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Современные возможности ПЦР диагностики COVID-19 в лаборатории ДИЛА позволяют ответить на несколько действительно важных вопросов:

  • ЕСТЬ или НЕТ вирусные частицы в исследуемом материале путем выявления РНК вируса;
  • определить вирусную нагрузку (ВН) – какое количество вирусов находится в 1 мл биоматериала (в соскобе со слизистых носо- и ротоглотки).

От показателя ВН (высокая, средняя, низкая) напрямую зависит заразность инфицированного человека для окружающих.

Интенсивнее всего вирус размножается за 1-3 дня до появления симптомов и в первые 5-7 дней после первых проявлений. В этот период количество вирусов в 1 мл выделений из носоглотки может составлять сотни тысяч и миллионы частиц, что соответствует среднему и высокому показателю вирусной нагрузки и делает пациента максимально заразным для окружающих. Затем количество вирусов, выделяемых человеком начинает снижаться. Обычно начиная с 7-10 дня от начала клинических проявлений человек перестает быть заразным, что соответствует снижению показателей вирусной нагрузки. В этот период вирусная РНК в анализе еще может выявляться (ПЦР позитивный с низким уровнем ВН), однако большинство исследований показывает, что после 10 дня клинических проявлений вирус теряет свою способность к репликации (размножению), а значит, и способность заражать других людей.

Как определяется ВН и что значит показатель Сt*

Как понимать полученный результат исследования


Если значение Ct низкое (5-15), это говорит о том, что вирусная нагрузка высокая и вирус SARS COV-2 передает свою генетическую информацию и размножается очень активно, образуя новые вирусные РНК в большом количестве и тем заразнее человек.

Если вирусных частичек мало, для их выявления нужно большее количество циклов. Чем выше значение порогового цикла (Ct=30-35-40), тем меньше вирусных частиц находится в образце.

Результат ПЦР отрицательный в том случае, если РНК вируса выявить не удается даже при самом высоком пороговом цикле чувствительности прибора – более 40 циклов амплификации (Сt больше 40: РНК SARS COV-2 не выявлена).

Сt 5-27.
Высокая ВН

  • обратиться к врачу для наблюдения за состоянием (симптомы могут появиться позже);
  • повторить ПЦР тест через 10-14 дней;
  • для определения иммунного ответа сдать тест на Ig М или суммарные антитела через 7-10 дней, Ig G через 2-3 недели.

Человек болен COVID-19, есть риск заражения окружающих.

Рекомендуется:

Человек заражен COVID-19, есть риск заражения окружающих.

Рекомендуется:

  • обратиться к врачу для наблюдения за состоянием (симптомы могут появиться позже);
  • повторить ПЦР тест через 10-14 дней;
  • для определения иммунного ответа провести тест на Ig М или суммарные антитела через 7-10 дней, Ig G через 2-3 недели.

Ct 35-40.
Низкая ВН

Человек болен COVID-19, риск заражения окружающих сохраняется, но он вероятно низок. Возможно самое начало заболевания.

Рекомендуется:

Человек заражен COVID-19. Чаще всего это может быть в период выздоровления (выведения вируса).

Рекомендуется (если был контакт с больным COVID-19):

  • повторить ПЦР тест через 5-7 дней;
  • для определения иммунного ответа провести тест на Ig М или суммарные антитела через 7-10 дней, Ig G через 2-3 недели.

Риск заражения окружающих отсутствует.

Возможно:

  • человек инфицирован другим возбудителем ОРВИ;
  • вирус концентрируется не в носоглотке, а в тканях легких или кишечника;
  • повторное взятие мазка через короткий промежуток времени (день в день или через день) уменьшает количество биоматериала в образце и в свою очередь может приводить к отрицательным результатам.

Для уточнения диагноза рекомендуется:

  • для определения иммунного ответа провести тест на Ig М или суммарные антитела через 7-10 дней, Ig G через 2-3 недели;
  • провести тест для исключения других инфекций (Скрининг респираторных инфекций, ПЦР, 21 показатель, FTD (высокочувствительный);
  • при тяжелом состоянии нужно провести RT-ПЦР исследования на определение вируса с другим биоматериалом (мокрота, смывы из бронхов, кал).

Риск заражения окружающих отсутствует.

  • человек здоров или выздоровел. Тест на иммуноглобулины класса G поможет уточнить, переболели ли вы коронавирусной инфекцией раньше

Тест на імуноглобуліни класу G допоможе уточнити, чи перехворіли ви на коронавірусну інфекцію раніше.


При обнаружении любого из определяемых генов коронавируса результат теста является положительным, что означает присутствие вируса в организме.

Важно помнить, что клинические проявления заболевания могут отсутствовать при любом уровне вирусной нагрузки. При положительном результате ПЦР с высоким уровнем вирусной нагрузки и отсутствии симптомов заболевания (бессимптомном течении) вы высоко заразны для окружающих, поскольку из носоглотки выделяется много вирусов при дыхании, разговоре. Для контроля снижения заразности можно провести повторное ПЦР-тестирование с определением уровня вирусной нагрузки через 7-10 дней

Средства контроля и вспомогательные устройства. Аппаратура, материа­лы, реактивы по ГОСТ 9225 со следующими дополнениями:

Питательные среды. Гидролизованное и стерильное обезжиренное молоко по ГОСТ 10444.11.

Желточную эмульсию готовят следующим образом. Свежее куриное яйцо моют водопроводной водой, затем протирают ваткой, смоченной в спирте, и обсушивают. Отделяют желток и вносят его в 100 см 3 сте­рильного раствора хлористого натрия по ГОСТ 9225. Тщательно пере­мешивают. Приготовленная эмульсия может храниться при темпера­туре 0–5 °С не более 72 ч.

Солевой бульон (допускается применение солевого бульона, который готовится согласно указанию на этикетке). Состав: натрий хлористый (NaCl) – 7,5 г; питательный сухой бульон – 1,5 г (или гидролизован­ное молоко – 100 см 3 ).

Приготовление: в 100 см 3 дистиллированной воды вносят 1,5 г сухо­го питательного бульона, кипятят 1–2 мин, фильтруют через ватный тампон, добавляют 7,5 г NaCl, устанавливают рН (6,9 ± 0,1).

Разливают в пробирки или колбы и стерилизуют при температуре (121 ± 1) °С в течение(10 ± 1) мин.

Или к 100 см 3 гидролизованного молока добавляют 7,5 г NaCl, уста­навливают рН (6,9 ± 0,1), разливают и стерилизуют, как указано выше.

Желточно-солевой агар [1] . Состав: питательный агар [2] для культи­вирования микроорганизмов (на основе гидролизата кильки) – 35 г или питательный агар II 8 (на основе гидролизата кормовых дрожжей) 24 г; натрий хлористый (NaCl) – 75 г; эмульсия желточная – 50,0 см 3 ; вода дистиллированная – 1 дм 3 .

Приготовление: в 1 дм 3 дистиллированной воды вносят 36 г пита­тельного агара для культивирования микроорганизмов или 24 г пи­тательного агара сухого II, добавляют 75 г хлористого натрия (NaCl), кипятят до полного расплавления агара, фильтруют через ватный там­пон, разливают во флаконы или колбы и стерилизуют при температуре (121 ± 1) °С в течение (20 ± 1) мин. После стерилизации охлаждают до температуры (45 ± 1) °С и добавляют 50 см 3 предварительно под­готовленной желточной эмульсии. Смесь тщательно перемешивают и разливают в чашки Петри. Чашки со средой хранят в холодильнике не более 5 сут.

Молочно-солевой агар [3] . Состав: питательный агар [4] для культиви­рования микроорганизмов (на основе гидролизата кильки) – 35 г; или питательный агар II 10 (на основе гидролизата кормовых дрож­жей) – 24,0 г; натрий хлористый (NaCl) – 75,0 г; молоко обезжирен­ное – 100 см 3 ; вода дистиллированная – 1 дм 3 .

Приготовление: среду готовят, как указано выше, но после охлажде­ния до температуры (45 ± 1) °С добавляют вместо желточной эмульсии 100 см 3 стерильного обезжиренного молока. Смесь тщательно перемешивают и разливают в чашки Петри. Чашки со средой хранят в холодильнике не более 5 сут.

Агар Байрд-Паркера. Среда готовится согласно указанию на этикет­ке. Состав. Основа среды: триптон – 10,0 г; дрожжевой экстракт – 1,0 г; мясной экстракт – 5,0 г; литий хлористый гексагидрат – 5,0 г; агар – 12,0–20,0 г; вода дистиллированная – 1 дм 3 .

Раствор пирувата натрия: пируват натрия – 20,0 г; вода дистилли­рованная –100 см 3 .

Раствор глицина: глицин – 20,0 г; вода дистиллированная – 100,0 см 3 .

Приготовление основы среды: в 1 дм 3 дистиллированной воды вно­сят 10 г триптона, 5 г мясного экстракта, 1 г дрожжевого экстракта, 5 г хлористого лития, 20 г агара.

При отсутствии мясного экстракта, триптона и дрожжевого экстрак­та вместо дистиллированной воды применяют 1 дм 3 мясопептонного бульона или питательный агар для культивирования микроорганизмов сухой или питательный агар сухой II.

Все компоненты, внесенные в 1 дм 3 дистиллированной воды (мясопептонный бульон), нагревают и перемешивают до полного рас­творения, охлаждают до температуры 50–60 °С. Устанавливают рН (7,2 ± 0,1), разливают в колбы или бутылки по 90 см 3 и стерилизуют при температуре (121 ± 1) °С в течение (20 ± 1) мин.

При использовании сухой среды в 1 дм 3 дистиллированной воды вносят 36 г питательного агара для культивирования микроорганиз­мов или 24 г питательного агара сухого II, добавляют 5 г хлористого лития. Нагревают до полного растворения, охлаждают до температуры 50–60 °С, устанавливают рН (7,2 ± 0,1), разливают и стерилизуют как указано выше.

Готовую основу среды хранят не более 30 сут при температуре (6 ± 2) °С.

Перед использованием к 90 см 3 расплавленной основы среды добав­ляют асептически стерилизованные фильтрованием через мембран­ный фильтр растворы: 6,3 см 3 раствора глицина, 5 см 3 раствора пирува­та натрия; 1 см 3 раствора теллурита калия; 5 см 3 желточной эмульсии.

Допускается растворы глицина, пирувата натрия, теллурита калия и желточную эмульсию готовить в асептических условиях на стериль­ной дистиллированной воде.

После тщательного перемешивания приготовленную среду разлива­ют в чашки Петри. Чашки со средой можно хранить не более 48 ч.

Порядок подготовки к проведению контроля. Приготовление раство­ров и реактивов . Раствор плазмы кроличьей цитратной готовится со­гласно инструкции по применению плазмы, прилагаемой к упаковке.

Растворы и реактивы для окраски препаратов готовят по ГОСТ 9225.

Приготовление реактивов для окраски по Грaму . Приготовление реак­тива 1: в 100 см 3 этилового спирта растворяют 0,5 г кристаллического фиолетового.

Приготовление реактива 2: к 96 см 3 спиртового раствора йодисто­го калия массовой концентрацией 5 г/дм 3 добавляют 2 см 3 спиртового раствора основного фуксина массовой концентрацией 50 г/дм 3 и 2 см 3 спиртового раствора йода массовой концентрацией 50 г/дм 3 .

Йодистый калий растворяют в спирте на водяной бане при темпера­туре (45 ± 5) °С при постоянном помешивании.

Отбор и подготовка проб по ГОСТ 9225.

Метод определения количества Staphylococcus aureus с предварительным обогащением

Подготовка и проведение контроля. Из навески продукта готовят ряд де­сятикратных разведений по ГОСТ 9225 так, чтобы можно было опре­делить наличие или отсутствие Staphylococcus aureus в определенной массе (объеме), указанной в нормативном документе на конкретный продукт.

Навеску продукта или его разведения засевают по 1 см 3 в пробирки или колбы с солевым бульоном.

Соотношение между количеством высеваемого продукта или его эк­вивалентным разведенной питательной средой 1:10.

Пробирки и колбочки с посевами выдерживают в термостате при температуре (37 ± 1) °С в течение 24 ч.

Для подтверждения принадлежности микроорганизмов, выросших на солевом бульоне, к Staphylococcus aureus делают пересев петлей из бульона для получения изолированных колоний или на чашки Петри с подсушенными средами типа Байрд-Паркера, желточно-солевой агар или молочно-солевой агар.

Чашки с посевами выдерживают в термостате при температуре (37 ± 1) °С в течение 24-48 часов.

После термостатирования посевы просматривают и отмечают рост характерных колоний.

На желточно-солевом агаре колонии Staphylococcus aureus имеют форму плоских дисков диаметром 2–4 мм белого, желтого, кремового, лимонного, золотистого цвета с ровными краями; вокруг колоний об­разуется радужное кольцо и зона помутнения среды.

На молочно-солевом агаре колонии Staphylococcus aureus растут в виде непрозрачных круглых колоний, окрашенных от белого до оранжевого цвета, диаметром 2–4 мм, слегка выпуклых.

На среде Байрд-Паркера колонии Staphylococcus aureus растут в виде черных, блестящих, выпуклых колоний диаметром 1–1,5 мм, окруженных зоной просветления среды шириной 1–3 мм.

С каждой чашки Петри отбирают не менее пяти характерных коло­ний и пересеивают на поверхность скошенного питательного агара, 1 см желточно-солевого агара, но без добавления хлористого натрия и желточной эмульсии.

Посевы выдерживают в термостате при температуре (37 ± 1) °С в те­чение 24 часов.

У выросших колоний определяют отношение к окраске по Граму и коагулированию плазмы кролика.

Из пяти изолированных, характерных для Staphylococcus aureus, колоний делают препараты, окрашивают по Граму и микроскопируют.

Для приготовления препарата на чистое и охлажденное после фламбирования предметное стекло наносят петлей каплю дистиллирован­ной воды, в которую вносят петлей небольшое количество агаровой культуры, не размешивая в воде. Затем вносят петлей каплю реакти­ва 1, для окраски по Граму.

Смесь распределяют на участке примерно 1 см 2 , просушивают при температуре (20 ± 2) °С, фиксируют, медленно пронося предметное стекло над пламенем горелки. На одном стекле можно готовить по шесть-восемь мазков, отделяя их один от другого линиями, проведен­ными с лицевой стороны стекла.

Препарат ополаскивают водой и тщательно просушивают фильтро­вальной бумагой.

После просушивания на препарат наносят с избытком реактив 2 для окрашивания по Граму так, чтобы жидкость покрыла всю поверхность стекла. Продолжительность окрашивания 0,5–1 мин. После окрашива­ния препарат быстро ополаскивают проточной водой, направляя струю под углом на стекло, помещенное вертикально. Препарат просушива­ют фильтровальной бумагой и просматривают под микроскопом с иммерсионной системой. Микробы, красящиеся по Граму, будут темно-фиолетового цвета, не красящиеся по Граму – красного цвета.

Стафилококки окрашиваются по Граму положительно (темно-фиолетового цвета), имеют шарообразную форму и располагаются скоплениями, чаще всего напоминающими гроздья винограда.

Постановка реакции плазмокоагуляции. В пробирку с 0,5 см 3 разве­денной кроличьей плазмы вносят петлю суточной агаровой культуры. Внесенную культуру тщательно размешивают. Одну пробирку с плаз­мой оставляют незасеянной, в другую засеивают контрольный штамм Staphylococcus aureus (коагулазоположительный стафилококк).

Пробирки помещают в термостат и выдерживают при температу­ре (37 ± 1) °С в течение 3–6 ч. Если через 6 ч коагуляции плазмы не произошло, то оставляют эти пробирки до 24 ч. Если через 24 ч плазма не свернулась, то испытуемую культуру стафилококка относят к коагулазоотрицательной.

При определении коагулазной активности реакцию считают отри­цательной в тех случаях, когда в плазме не образуются отдельные нити или сгустки, или в тех случаях, когда в плазме появились отдельные нити (реакцию плазмокоагуляции оценивают на один плюс).

Реакцию считают положительной, если:

+++ – сгусток, имеющий небольшой отсек;

++ – сгусток в виде взвешенного мешочка.

Все три варианта являются положительным результатом.

При получении положительной реакции считают, что в посевах об­наружен Staphylococcus aureus.

Обработка результатов контроля. Результаты оценивают по каждой пробе отдельно.

Оформление результатов контроля. Морфологические, культуральные свойства и положительная реакция плазмокоагуляции свидетель­ствуют о присутствии коагулазоположительных стафилококков в за­сеянной массе продукта.

Метод определения количества Staphylococcus aureus без предварительного обогащения

После термостатирования подсчитывают количество характерных колоний на каждой чашке Петри (желточно-солевой агар, молочно-солевой агар и агар Байрд-Паркера, см. предыдущий метод). С каж­дой чашки Петри отбирают не менее пяти характерных и/или подо­зрительных колоний Staphylococcus aureus, а в случае роста менее пяти – все колонии, характерные для Staphylococcus aureus, и пере­севают на поверхность скошенного питательного агара, разлитого в пробирки (см. желточно-солевой агар), но без добавления хлористо­го натрия и желточной эмульсии. Пробирки с посевами выдерживают в термостате при температуре (37 ± 1) °С в течение 24 ч.

У выросших культур определяют отношение к окраске по Граму и коагулированию плазмы кролика как в предыдущем методе.

Обработка результатов контроля. Результаты оценивают по каждой пробе отдельно.

Оформление результатов контроля. Количество колоний Staphylococ­cus aureus в 1 г или 1 см 3 после определения его в определенной наве­ске продукта вычисляют по формуле:

Количество колоний

где Σn1, Σn2 – количество колоний, выросших на всех чашках Петри в пределах одного разведения или засеянного объема; n – число деся­тикратных разведений.

Пример. Подсчитываем количество колоний Staphylococcus aureus, выросших на трех засеянных чашках при посевах продукта или его разведений:

1 г или 1 см 3 продукта: 84 96 72
10 -1 разведение: 9 10 7

Подсчитываем количество 1

10 -1 разведение: 84 96 72
10 -2 разведение: 99 10 7

Подсчитываем количество 2

[1] Допускается использовать солевой агар, который готовится согласно ука­занию на этикетке и к которому после стерилизации добавляется желточная эмульсия или обезжиренное молоко.

[2] При изменении заводом-изготовителем количества вносимой среды на 1 дм 3 дистиллированной воды, количество среды вносится согласно указа­нию на этикетке.

[3] Допускается использовать солевой агар, который готовится согласно ука­занию на этикетке и к которому после стерилизации добавляется желточная эмульсия или обезжиренное молоко.

[4] При изменении заводом-изготовителем количества вносимой среды на 1 дм 3 дистиллированной воды, количество среды вносится согласно указа­нию на этикетке.

Компоненты и препараты крови, кровезаменители

Разработчик сайтов, журналист, редактор, дизайнер, программист, копирайтер. Стаж работы — 25 лет. Область интересов: новейшие технологии в медицине, медицинский web-контент, профессиональное фото, видео, web-дизайн. Цели: максимально амбициозные.

  • Запись опубликована: 04.06.2019
  • Время чтения: 1 mins read

Не будет преувеличением сказать, что выделение отдельных компонентов (составных частей) крови — огромное достижение современной медицины. Широкое внедрение их в практику сыграло большую роль в разработке лечения многих болезней.

Компоненты крови: эритроциты, лейкоциты, тромбоциты

Пациенты, которым требуется переливание крови, часто даже не знают о том, что в медицине часто используются отдельные компоненты.

  • Эритроциты. Прежде всего следует остановиться на выделенных из крови эритроцитах (эритроцитной массе) по возможности лишенных плазмы, содержащей лейкоциты и тромбоциты. Такая эритроцитная масса применяется в борьбе с малокровием у больных, в крови которых содержатся антитела против лейкоцитов и тромбоцитов, наблюдается повышенная чувствительность организма (сенсибилизация) к белкам.
  • Лейкоциты. Другая составная часть крови — лейкоцитная масса используется с хорошим эффектом в случаях резкого уменьшения числа лейкоцитов.
  • Тромбоциты. Тромбоцитная масса переливается при кровотечениях, обусловленных значительным снижением количества тромбоцитов в крови.

Дифференцированное применение отдельных компонентов крови уменьшает возможность образования антител к клеткам крови и предотвращает развитие реакций на переливание.

Кровезаменители: плазма и ее компоненты

Наилучший естественный кровезаменитель — плазма, жидкая часть крови, богатая белками и содержащая вещества, способствующие остановке кровотечения. При шоковых состояниях без кровопотери или при кровотечениях с небольшой потерей крови переливание плазмы может оказать полноценное лечебное действие.

Плазма, заготовленная в условиях строгой стерильности, сохраняется длительное время, не портясь. Высушенная особым способом, она может храниться месяцами и даже годами. Перед переливанием ее разводят дистиллированной водой.

Плазма крови

Плазма крови

Стало возможным приготовление и целенаправленное применение отдельных, белков плазмы, обладающих специфическим, присущим каждому из них, действием.

Альбумин. Наиболее ценный препарат для белкового питания тканей и органов. Он поддерживает так называемое коллоидно-осмотическое давление, удерживающее жидкость в кровяном русле. С этим связано его противоотечное действие.

Привлекая тканевую жидкость в кровяное русло, альбумин повышает кровяное давление, если оно почему-либо падает (например, при шоке). Раствор альбумина является высоко эффективным белковым препаратом при травматических и операционных шоках.

Он весьма полезен при недостатке в организме белка. Белковая недостаточность может явиться следствием многих заболеваний, ведущих к потере белка с мочой, мокротой, гноем, ожоговой жидкостью, либо из-за нарушения всасывания пищевых белков (болезни желудочно-кишечного тракта) или от расстройства белкового обмена (болезни печени).

Вследствие этого протеин является более дешевым и доступным препаратом, чем чистый альбумин. От плазмы же он отличается не только более высоким содержанием альбумина, но и тем, что его, как и альбумин, можно прогревать при высокой температуре для уничтожения вируса гепатита, иногда проникающего в кровь. Протеин применяется и оказывает хорошее действие при тех же заболеваниях, что и альбумин.

Знание механизмов свертывания крови и уточнение факторов, вызывающих их нарушение, позволяет применить переливание отдельных недостающих в организме больного действующих веществ.

Фибриноген. Это тот белок крови, который при ее свертывании переходит в нерастворимый фибрин, образующий основу сгустка. Иногда при некоторых патологических родах возникает сильное кровотечение, вызванное недостаточностью одного из белков, необходимых для свертывания фибриногена. Тогда выручает лечебный препарат фибриноген.

Он быстро останавливает фибринолитическое кровотечение в послеродовом периоде, после операций на внутренних органах, при операциях с искусственным кровообращением.

Фибринная пленка применяется местно, при операциях на органах для предотвращения кровотечений мелких сосудов, а также как рассасывающийся материал при ожогах, нейрохирургических операциях на мозге и др.

Тромбин. Тромбин в виде порошка, растворяемого в физиологическом растворе, применяется только местно, на мелких сосудах: при оперативных вмешательствах на паренхиматозных органах (печени, легких, селезенке и др.), кровотечениях из десен, носа и т. д.

Антигемофильный глобулин. Останавливает кровотечение у больных гемофилией, в организме которых он отсутствует. Он быстро разрушается в консервированной крови и содержится в свежезаготовленной, а также в особо приготовленной антигемофильной плазме и в препаратах фибриногена.

Фибринолизин. Существуют заболевания при которых нарушения свертываемости крови ведут к кровоточивости. Но существуют некоторые болезненные состояния, в возникновении которых играет роль повышенная свертываемость.

Если переливание крови, плазмы и некоторых ее препаратов оказывает хорошее кровоостанавливающее действие, то имеется и такой белковый ферментативный препарат крови, как фибринолизин, который уменьшает свертывание, растворяет свежие фибриновые сгустки и применяется в лечении от тромбозов: при тромбофлебитах, инфаркте, тромбозах, легочной артерии, мозговых и периферических сосудов.

В медицинской практике широко используется отдельно выделенный один из компонентов сывороточных белков — гамма-глобулин, обладающий защитными свойствами: с ним связывают образование антител. Поэтому этот препарат, повышающий сопротивляемость организма, с успехом применяется не только при разнообразных инфекционно-воспалительных процессах, но и профилактически у здоровых людей, соприкасающихся с некоторыми инфекционными больными (корь, гепатит и др.).

Несколько слов о гамма-глобулинах направленного действия

У доноров на введение ослабленных, абсолютно безвредных микробов вырабатываются антитела. Взятая у них в определенные сроки кровь богата такими антителами. Приготовленный из этой крови гамма-глобулин обладает специфической направленностью действия против соответствующих микробов.

И в тех случаях, когда с помощью бактериологического исследования удается распознать возбудителя инфекции наряду с применением антибиотиков с успехом используются специфические гамма-глобулины (противокоревой, противостафилококковый, противогриппозный, противококлюшный и др.). Применение противостафилококкового гамма-глобулина иногда оказывает при стафилококковом сепсисе почти чудодейственный эффект.

Как получают плазму крови: плазмаферез

Необходимость удовлетворения растущих потребностей лечебных учреждений в плазме и ее препаратах заставило ученых искать пути получения больших количеств плазмы без вреда для донора. Теперь широко применяется так называемый плазмаферез. Его сущность заключается в разделении полученной от донора крови на плазму и форменные элементы (путем центрифугирования) и возвращении обратно донору эритроцитов.

Дело в том, что хотя кроветворные органы при взятии крови у донора восполняют потерю эритроцитов, но это занимает известное время и для полной безвредности кроводачи у каждого донора берут кровь не чаще пяти раз в год.

Всего за год можно от одного донора получить не более 1 литра плазмы. Если же вернуть донору эритроциты, то он теряет только плазму, а восстановление ее составных частей (в основном белков) при здоровой печени занимает всего несколько дней (а донорами могут быть только вполне здоровые люди!).

Поэтому процедуру плазмафереза можно повторять каждые 1—2 недели и за год получить 6—7 литров плазмы от одного донора без всякого вреда для его здоровья. Это значительно увеличивает ресурсы для заготовки препаратов из плазмы.

Плазмаферез

Плазмаферез

Искусственные кровезаменители

Большим достижением медицины является открытие и применение искусственных кровезаменителей, т. е. жидкостей, введение которых может в одних случаях заменить переливание крови, а в других временно его отсрочить. Конечно, полностью кровь не может быть заменена ни плазмой, ни каким-либо из кровезамещающих растворов, потому что в них отсутствуют переносчики кислорода — эритроциты.

Однако применение некоторых кровезаменителей может вывести больного или раненого из тяжелого шокового состояния даже при большой кровопотере. Этим устраняется непосредственная угроза для его жизни. Переливание крови, если оно все же требуется, может в таком случае быть отложено.

  • Солевые растворы. Предложенные с этой целью солевые растворы содержат все те соли, которые обычно входят в состав плазмы крови. В связи с тем, что солевые растворы довольно быстро покидают сосудистое русло, для более длительного их пребывания в крови больного к ним прибавляются коллоидные вещества. Исключительно ценным и важным для практики является синтетический, высокомолекулярный кровезаменитель — полиглюкин. Введение полиглюкина повышает кровяное давление и надежно выводит из шокового состояния при травматическом, послеоперационном и ожоговом шоках и при острой кровопотере.
  • Поливинилпирролидон. При интоксикациях, вызванных отравлениями, инфекциями или ядами, хорошее действие оказывает поливинилпирролидон. Препарат поливинилпирролидона — гемодез — применяется при токсических формах острых желудочно-кишечных заболеваний (диспепсии, дизентерии, пищевом отравлении), тяжелых ожогах, непроходимости кишечника, токсикозах беременных, некоторых инфекциях и отравлениях.
  • Белковые гидролизаты. При состояниях белковой недостаточности, о которой мы говорили раньше, переливание плазмы и ее препаратов иногда может быть заменено вливаниями так называемых белковых гидролизатов. Они представляют собой продукты обработки белков различного происхождения не только крови животных, но и, например, белка молока—казеина.

Гидролизаты содержат не целые белки, а полученные путем гидролиза составные их части— аминокислоты. Из них организм строит (синтезирует) собственные белки. Они могут вводиться в больших количествах и покрывать тяжелую недостачу белков или даже на время удовлетворять потребность организма в пищевых белках.

Поэтому гидролизат казеина с успехом применяется при заболеваниях или операциях, повлекших за собой прекращение или затруднение приема пищи через рот (ожоги глотки и пищевода, вмешательства на пищеводе и желудочно-кишечном тракте, челюстно-лицевые операции), а также при подготовке к операциям ослабленных больных, в послеоперационном периоде и др.

Переливание не донорской крови: утильная, плацентарная, фибринолизная кровь

Конечно, ни плазма, ни кровезаменители не могут целиком заменить переливания крови, так как в них не содержатся переносчики кислорода — эритроциты, введение которых раненому, больному необходимо при обильной кровопотере или тяжелом хроническом малокровии.

Идея С. И. Спасокукоцкого оказалась весьма плодотворной, но использование такого источника получения не донорской крови не вошло в широкую практику, встретив некоторые затруднения. М. С. Малиновский в 1933 г. предложил брать для переливания плацентарную кровь, т. е. ту, что можно взять из последа (плаценты) после родов.

Ученые и врачи Санкт-Петербурга (тогда Ленинграда) и других городов страны осуществили множество переливаний плацентарной крови еще в довоенное время, но повсеместного распространения этот метод не получил. Главным образом из-за трудности уберечь плацентарную кровь от попадания в нее инфекции в момент извлечения. Ныне плацентарная кровь весьма широко используется с целью получения весьма ценных лечебных препаратов: протеина, гамма-глобулина и др.

В чем суть такого метода? Кровь, взятая в первые шесть часов после внезапной гибели от несчастного случая (закрытой травмы) или мозгового удара, сохраняет все ценные биологические свойства, по существу является живой. Исходя из этого переливание ее применяется в хирургии, а впоследствии вошло и в терапевтическую практику.

Ученые сделали следующее интересное наблюдение. Такая кровь, набранная в сосуд без противосвертывающего вещества, либо вовсе не свертывается, либо, сначала свернувшись, затем вновь переходит в жидкое состояние. Объясняется это происходящим в ней фибринолизом.

Теперь, когда различные органы погибших современная наука все шире использует для спасения живых, уже не кажется удивительным переливание подобной крови. И следует подчеркнуть, что сама эта идея была впервые осуществлена в нашей стране еще в середине прошлого века.

Как переливание крови явилось первой успешной пересадкой живой ткани другому человеку, так и переливание фибринолизной крови — первым удачным использованием для этой цели тканей и органов умершего.

Как быстро восстанавливается кровь у донора

Обычно к концу первых суток после отбора крови у донора восполняется объем крови. Это происходит в результате перехода в кровяное русло жидкости из тканей и мобилизации крови из резервов.

Переливание крови - донор

Переливание крови – донор

Сразу же после отбора крови усиливается деятельность органов кроветворения: число эритроцитов в крови начинает увеличиваться, а процессы разрушения приостанавливаются. Постоянное обновление красных кровяных клеток способствует сохранению неизменного состава крови.

Обновление эритроцитов — естественный процесс. Каждую минуту из костного мозга в кровь поступает около 115 миллионов молодых красных кровяных клеток. Соответствующее число отживших эритроцитов удаляется из кровеносного русла. Частично они поглощаются клетками селезенки и печени, частично используются костным мозгом при образовании новых красных кровяных клеток.

Компенсаторные возможности костного мозга очень велики. При большой потере крови интенсивность образования эритроцитов возрастает по сравнению с нормой в 6—7 раз.

Если донор сдал 225 миллилитров крови (то есть половинную дозу), процесс восстановления ее состава заканчивается примерно на пятнадцатый день. Если была взята полная доза — 450 миллилитров, то, как показали исследования, число эритроцитов возвращается к исходному уровню через семь-восемь недель. Важно подчеркнуть, что у доноров, сдающих кровь повторно, процессы регенерации (восстановления) происходят быстрее.

Таким образом, здоровый человек без всякого для себя вреда может отдавать кровь 5 раз подряд, соблюдая интервал в 60 дней, потом необходим трехмесячный перерыв.

Тысячи доноров, сохраняя отменное здоровье, имеют стаж двадцать — двадцать пять лет. Они пользуются заслуженным почетом в нашей стране, и каждый из них по праву может гордиться спасением многих и многих жизней.

Донорство должно быть основано на твердом принципе: максимальная польза больному и никакого вреда тому, кто дает свою кровь.

На сайте указан максимально возможный срок выполнения исследования. Он отражает время выполнения исследования в лаборатории и не включает время на доставку биоматериала до лаборатории.

Подготовка к исследованию

Взятие биологического материала проводится строго до начала примения антибактериальных и химиотерапевтических препаратов или не ранее, чем через 10-14 дней после их отмены.

Описание

Диагностика сепсиса и бактериемии (фунгемии), заключающаяся в посеве пробы крови пациента в питательные среды, обеспечивающие рост аэробных и анаэроных микроорганизмов — бактерий и грибов. Микробиологическое исследование крови проводят при пневмонии, инфекционном эндокардите, остеомиелите, менингите, инфекциях мочеполовых путей, тогда, когда возможно проникновение микроорганизмов в кровяное русло. Флаконы с питательными средами инкубируют в термостате; при обнаружении микробного роста выделяют культуру микроорганизма, определяют его этиологическую значимость и производят определение его чувствительности к антимикробным препаратам. Выявление возбудителя в исследуемом материале позволяет поставить точный этиологический диагноз заболевания и назначить адекватную терапию.
На данное исследование скидки не предоставляются (см. Положение о скидках)

Показания к назначению

подозрение на бактериальную и/или грибковую природу воспаления;
определение возбудителя и подбор адекватной антибактериальной/антимикотической терапии;

Интерферирующие факторы

Причины отклонения показателей от нормы (повышенные значения)

Выделение представителей патогенной флоры свидетельствует об этиологическом факторе выделенного возбудителя в клинической картине. Решение вопроса о постановки чувствительности к антибактериальным препаратам осуществляется врачом микробиологом и регламентируется методическими указаниями. R-возбудитель, S возбудитель чувствителен I- возбудитель умеренно устойчив к антибактериальному препарату. Выявление условно-патогенной флоры и ее значимость в развитии заболевания зависит от количества выделенного возбудителя для данной локализации

Причины отклонения показателей от нормы (сниженные значения)

Отсутствие патогенной флоры-норма. Присутствие условно- патогенной флоры в количестве не превышающем диагностического значения-норма для данной локализации

Метод:

Анализатор:

Система идентификации микроорганизмов методом масс-спектрометрии VITEK MS, bioMerieux, Франция; Автоматизированная система для окрашиванию по Граму PREVI Color Gram, bioMerieux, Франция; Бактериологический анализатор Adagio, Bio-Rad Laboratories, США; Бактериологический автоматический анализатор VITEK 2, bioMerieux, Франция; Автоматический бактериологический анализатор культур крови BACT/ALERT® 3D, bioMerieux, Франция;

Читайте также: