Перегрузка при посадке самолета

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

(a) Для случаев посадки, указанных в параграфах 25.479 - 25.485, предполагается, что самолет касается земли:

(1) В положении, определенном в 25.479 и 25.481.

(2) При расчетном посадочном весе и:

(i) эксплуатационной скорости снижения, задаваемой в 25.473(a*) (условия, определяющие эксплуатационную энергию при расчетном посадочном весе);

(ii) максимальной скорости снижения, равной 1,225 величины, задаваемой в 25.473(a*) (условия, определяющие максимальную энергию при расчетном посадочном весе).

(3) При расчетном взлетном весе и эксплуатационной скорости снижения, равной 0,8 скорости, задаваемой в 25.473(a*) (условия, определяющие эксплуатационную энергию при расчетном взлетном весе).

(4) Предписанные скорости снижения могут быть изменены, если будет показано, что конструктивные особенности самолета делают невозможным достижение таких скоростей.

(b) Может быть принято, что подъемная сила не превышает веса самолета, если только наличие систем или процедур не влияет существенно на подъемную силу.

(c) Метод определения нагрузок на самолет и шасси должен учитывать по крайней мере следующее:

(1) Динамические характеристики шасси.

(2) Раскрутку колес и упругую отдачу.

(3) Реакцию самолета как твердого тела.

(4) Динамическую реакцию конструкции, если она существенна.

(d) Динамические характеристики шасси, принятые в расчетах посадки при условиях, заданных в 25.473(a), должны быть подтверждены при испытаниях согласно 25.723.

(e) Коэффициент трения между пневматиком и землей может быть определен с учетом скорости проскальзывания и давления в пневматике. Однако не требуется принимать этот коэффициент более 0,8 при поглощении эксплуатационной энергии и более 0,5 при поглощении максимальной энергии. Следует также рассмотреть нагружение самолета при коэффициенте трения, равном нулю.

(a*) Для определения эксплуатационной скорости снижения самолета при расчетном посадочном весе устанавливаются следующие условия:

(1) Приведенная вертикальная составляющая скорости самолета во время посадочного удара должна определяться как

VL - посадочная скорость самолета в момент касания земли основными стойками шасси, принимаемая не менее 1,25VL1 [см. 25.479(a)(1)], м/с;

VV - вертикальная составляющая скорости самолета в момент касания земли, равная 1,5 м/с.

Допускается определение величины VV на основании специальных расчетов.

Для аэродромов с искусственным покрытием принимается (2) Величину VЭV во всех случаях, указанных в пункте (a*) данного параграфа, менее 3,05 м/с принимать не следует.

Примечание. Для самолетов, у которых величина вертикальной скорости по формуле 25.473(a*)(1) превышает минимальное значение, указанное в 25.473(a*)(2), разрешается принимать VЭV = 3,05 м/с. Однако в этом случае должны быть определены дополнительные ограничения по применению самолета на различных аэродромах в зависимости от характеристик неровностей ВПП.

(b*) Для случаев поглощения максимальной энергии [см. 25.473(a)(2)(ii)] при определении расчетных нагрузок допускается принимать пониженный вплоть до 1,0 коэффициент безопасности. Если этот коэффициент принимается меньшим, чем 1,3, должно быть показано объективными данными, что при действии расчетных нагрузок не будут иметь место разрушения конструкции самолета и шасси или такое снижение их прочности, которое может привести к опасным последствиям.

Сел писать ответ. Но потом подумал, что, возможно, это будет интересно и другим читателям-НЕлётчикам, интересующимся авиацией.
Больно от пилотажа (перегрузки) не становится никогда. Больно пытаются сделать, когда тебе начинают грязно и мелко мстить за твоё творчество, за твой какой-нибудь рассказ, который не понравился какой-либо мелкой душонке, мрази, которая со смаком собирает сплетни о том, что могло быть или вообще не было, но рассказывает с видом знатока, что якобы было. К сожалению, таких оказалось из Борисоглебского училища многовато… Но не на того напали!
А перегрузка? С чего она, боль, будет-то? Перегрузка – это коэффициент, показывающий, во сколько раз вес вашего тела превышает то, что в нормальном состоянии. В виде формулы можно представить так:

На первом фото то, что видит курсант перед собой до создания большой перегрузки. На втором: создана большая перегрузка, пилот не успел сильно напрячь мышцы всего тела, кровь отлила от головного мозга, пелена во взгляде обступила со всех сторон, ещё немного инструктор потянет ручку на себя и курсант потеряет сознание.

ППК не работает при отрицательных перегрузках, когда наоборот кровь большим потоком приливает к мозгу. Но с отрицательными перегрузками (когда повисаешь на ремнях, головой упираешься в остекление фонаря кабины, а пыль с плохо убранного пола попадает в лицо, глаза) воздушные бои и не ведут. Я знаю только одного лётчика, который мог уходить из-под атаки противника отрицательной перегрузкой, прицельно стрелять и сбивать самолёты из любого положения своего истребителя, в т.ч. перевёрнутого – обер-лейтенант Эрих Хартман. В годы войны совершил 1404 боевых вылета, в 802 воздушных боях одержал 352 воздушные победы, из них 344 над советскими самолётами. Про 802 воздушных боя можно говорить только условно. Э. Хартман, как правило, атаковывал противника со стороны солнца и уходил, а когда ему навязывали воздушный бой он 11 раз был сбит менее именитыми советскими истребителями – выбрасывался с парашютом или шёл на вынужденную посадку. Но этим своим умением (поражать цель из любого положения) он удивлял своих лётчиков-инструкторов даже ещё будучи курсантом, обучаясь в Ц-флюгшулле (лётное училище, которое готовило к выпуску истребителей).
Врачи рекомендуют при возникновении усталости в полёте вручную создавать давление в камерах ППК, нажимая на кнопку автомата, который и подаёт воздух в костюм. Обжатие всего тела – это воздействие на акупунктуры нервной системы, где-нибудь да на нужное место и будет воздействие. Сам этим методом пользовался неоднократно! Обжал себя – через 3-5 секунд стравливание воздуха, потом ещё. И так 3-4 раза. И как огурчик! Правы авиационные медики! Усталость снимает, как рукой! А настроение и работоспособность повышаются!

Это лётчик смотрит не вверх, это он смотрит на горизонт!

Обновлено 04.04.2016 в 03:41 Юрий Ф.


Лениво пока фотографии из командировки выкладывать. Потому - продолжу "умничать".

Расчет любой конструкции на прочность, необязательно самолёта, начинается с определения собственно нагрузки на эту конструкцию. Необходимо определить, что мы в итоге хотим получить от изделия, какие нагрузки оно должно выдерживать. Понятное дело, я буду говорить об нагрузках на самолет.

Очевидно, что при полете крыло самолета нагружено распределенной нагрузкой - подъемной силой. На заглавном рисунке эта эпюра нагрузки показана на правой консоли и обозначена буквой q.

Интенсивность этой распределенной нагрузки должна быть такой, чтобы общая результирующая подъемной силы была равна:
Y = f*Ny*m, где:
f - коэффициент безопасности (не путать с запасом прочности)
Ny - максимальная эксплуатационная перегрузка (та, которая записана в РЛЭ в разделе ограничения)
m - масса летательного аппарата.

По порядку об этих трех параметрах.
Коэффициент безопасности f показывает во сколько раз разрушающая нагрузка (перегрузка в общем случае) больше максимальной эксплуатационной. Авиационные конструкции расчитываются не по допускаемым напряжениям, как в общем машиностроении, а по разрушающим. Потому что, понятно - культура веса, минимизация массы - основное направление деятельности инженеров при проектировании самолетов. Относительная близость к разрушающим нагрузкам компенсируется высокой точностью определения нагрузок на самолет и применением различных методов расчета, для получения уверенного результата расчета.

Диапазон величин коэффициента безопасности для многоразового летательного аппарата лежит в пределах f = 1.5. 2.5 в зависимости от режима полета и типа конструктивного элемента. Максимальные коэффициенты безопасности применяют к герметичным конструкциям, которые нагружены избыточным давлением - баллоны высокого давления, гермокабины, пассажирские салоны. Почему минимальное значение коэффициента безопасности равно 1.5 для самолетов? Одним из требований к авиационной конструкции гласит, что в самолете должны отстутствовать необратимые пластические деформации материала. То есть при достижении предельных эксплуатационных перегрузок самолет не должен, грубо говоря, потерять форму безвозвратно. Это уже завязано на параметр материала - предел текучести. Т.е. такие напряжения, при которых материал возвращается к своим первоначальным размерам полностью и деформируется упруго после снятия нагрузки. А разрушающие напряжения для большинства металлов примерно в 1.5 раза больше предела текучести.

Максимальная эксплуатационная перегрузка Ny зависит от типа проектируемого летательного аппарата. Различают несколько групп самолетов, разделенных по величине максимальной эксплуатационной перегрузки:

1. Неманевренные самолеты. Это самолеты с максимальной Ny не более 2.5 ед.
Это все пассажирские и транспортные самолеты.

2. Ограниченно маневренные самолеты с максимальной экслуатационной Ny лежащей в интервале от 2.5 до 6 единиц. Сюда относятся фронтовые бомбардировщики, штурмовики, тяжелые перехватчики (Су-24, Су-25, МиГ-25, МиГ-31)

3. Маневренные самолеты. Самолеты с максимальной эксплуатационной перегрузкой от 6 до 9 единиц. Это - все современные истребители.

4. Спортивно-пилотажные самолеты. Этот те экстремальные самолеты, которые могут выходить на перегрузки до Ny=+12 единиц - Су-29, Су-31, Як-55, наверное зарубежные аналоги - всякие Extra 300.

Исходя из класса самолета определяется и природа возникновения максимальных эксплуатационных перегрузок. Для неманевренных самолетов выход на максимальные перегрузки связан с полетом в неспокойном воздухе, для остальных - максимальные перегрузки достигаются в следствии, естессна, криволинейного полета - маневрирования.

Масса самолета. Было бы просто сказать, что мол самолет должен без проблем выходить на максимальную перегрузку при максимальной взлетной массе. И на значительном числе самолетов такое условие выполняется. Правда порой такие жертвы ни к чему и дабы не перетяжелять конструкцию вводятся некоторые ограничения на максимальные массы и максимальные перегрузки.

Вернусь обратно к заглавному рисунку. Если на правой консоли я нарисовал распределение подъемной силы по размаху крыла, то на левой консоли я нарисова эпюру изгибающего момента. Наугад, примерно. Но общую картину она отражает. Следует также заметить, что крыло, помимо изгиба нагружается еще и крутящим моментом, так как линия действия резуьтирующей аэродинамической силы и линия жесткости крыла не совпадают.

Распределение подъемной силы по размаху и по хорде крыла зависит от режима полета самолета. В некоторых случаях максимальным будет изгибающий момент, в некоторых - крутящий, а могут быть и такие случаи, когда вроде и изгибающий момент не максимален, и крутящий тоже. Однако совместное их действие вызывает максимальные напряжения в элементах конструкции. Такие предельные режимы полета называются расчетными случаями (loadcase). Предствляют они собой крайние точки эксплуатационных ограничений самолета (flight envelope). Расчетных случаев - великое множество, к отдельным элементам конструкции и агрегатам могут применяться дополнительные комбинации нагрузок и для них количество расчетных случаев может исчисляться десятками, а то и сотнями.

В таблице ниже приведены несколько основных полетных случаев:


В шапке таблицы названия расчетных случаев - А, А-штрих, B, C, D и D-штрих, слева - параметры полета самолета:
Су - коэффициент подъемной силы крыла
ny - перегрузка
q - скоростной напор.
f - коэффициент безопасности принимаемый для данного расчетного случая.

Случай А - полет самолета при максимальной эксплуатационной перегрузке на углах атаки соответствующих максимальному коэффициенту подъемной силы (близких к критическому углу атаки для самолета). Скоростной напор при этом не будет максимальным, а будет зависить от описаного в таблице соотношения. Этот расчетный случай возможен при энергичном вводе самолета в вертикальный маневр, действие на самолет вертикального порыва воздуха.

Случай А-штрих - криволинейный полет самолета при предельном скоростном напоре и максимальной эксплуатационное перегрузке. Подъемная сила одинакова в двух этих случаях, она равна весу самолета умноженому на ny. Другое дело, что в расчетном случае А перегрузка реализуется за счет максимального угла атаки, путем быстрого выхода самолета на него и интенсивным торможением, а в случае А-штрих перегрузка реализуется на малых углах атаки при максимальном скоростном напоре. Реализация расчетного случая А-штрих возможна, например при выводе самолета из пикирования. Коэффициент безопасности равен тоже 1.5.

Основная разница - в распределении подъемной силы по размаху и хорде крыла. В случае А распределение будет таким, каким я его нарисовал на заглавной картинке - плавно увеличивающимся от законцовок к фюзеляжу. В случае А-штрих, который характеризуется меньшими углами атаки на диаграмме распределения подъемной силы будут наблюдаться провалы в местах крепления двигателей, внешних подвесок и фюзеляжа. Эти элементы не столь совершенны аэродинамически как профиль крыла, а потому вклад в формирование подъемной силы заметен только на больших углах атаки, коих не наблюдается в случае А-штрих.

Различным будет и распределение нагрузки по хорде крыла. Проще рисунок показать:


Расчетный случай В - полет при перегрузке, примерно в половину от максимальной эксплуатационной, но с отклоненными элеронами. На максимальном скоростном напоре. Это комбинация совместного действия на крыло изгибающего и крутящих моментов умереной величины. f=2

Расчетный случай С - полет на углах атаки соответсвущих нулевой подъемной силе с отклоенными элеронами. Случай характеризуется практически нулевыми изгибающими моментами и максимальным крутящим. Пример - восходящая или нисходящая вертикальная бочка. f=2

Помимо полетных случаев есть еще и различные варианты расчетных случаев при посадке - посадки на основные опоры, посадки на переднюю опору, посадки с боковой перегрузкой, посадки на воду, посадки с убраным шасси. Помимо всего прочего есть уж совсем специальные расчетные случаи. К примеру при расчете нервюр на передней кромке 787 есть такой сучай - заклинивание привода выпуска предкрылка. А привод предкрылка - это такой вал, который идет через переднюю кромку и выпускает секции предкрылка посредством зубчатой передачи. Так вот в этом расчетном случае предполагается, что этот вал заклинивает и весь крутящий момент дожен быть уравновешен узлами крепления двигателя, который и вращает вал. То есть болты должны выдержать перерезывающую силу, да и нервюра сама, будучи довольно ажурной не должна потечь или сломаться. Но это - уже дебри.

Вернемся к картинке, которая была выложена в предыдущем лекционном рассказе. С деформацией крыла 787. Я нашел более красивый вариант:

На этой картинке показана зависимость прогиба крыла в зависимости от величины нагружения.

Neutral - понятное дело, крыло не нагружено.

10 feet In Flight - это положение крыла при полете с перегрузкой Ny = 1G, то есть - равномерный прямолинейный полет.

Limit Load - Этого пункта на картинке нет. А зря. Limit (Maximal) load - это как раз прогиб крыла при действии максимальной эксплуационной перегрузки, Ny = 2.5G Предельная, максимальная нагрузка (перегрузка) - так ее правильно называть.

150% Max Load - это ни что иное как разрушающая нагрузка. Она - это предельная перегрузка умноженая на коэффициент безопасности - те самые 150%. Корректные названия - расчетная нагрузка, разрушающая. По нерусски - ultimate load.

Когда в репортажах или статьях про статиспытания нового самолета говорят, что самолет выдержа 150% расчетной нагрузки - это неверно. 150% максимальной нагрузки - это верно.

Таким образом сравнительно легко можно прикинуть разрушающую перегрузку для любого самолета - достаточно открыть РЛЭ, найти там максимально допустимую перегрузку и умножить ее на 1.5. Для неманевренных самолетов с Ny = 2.5G разрушающая перегрузка будет равна не менее чем 3.75G. Сознательно написал не менее, потому что идеально точно спроектировать самолет не получается, прочнисты всегда перестраховываются и чуть добавляют материала в запас.

В диапазоне от нулевой нагрузки до предельной дожно выполняться требование отсутствия необратимых пластических деформаций в планере самолета. (1G = 3.75G)

Вот известная уже картинка. На ней как раз планер 787 нагружен расчетной нагрузкой:

Часто, да почти всегда, коэффициент безопасности ошибочно называют запасом прочности. Это не так. О различии этих параметров - в следующий раз.

Прочность самолётов. Нагрузки, коэффициент безопасности и запас прочности Авиация, Самолет, Прочность, Длиннопост

В честь первого подписчика продолжу неспешно переносить записи из своего ЖЖ про свою работу. Вопросы прочности самолётов периодически появляются в комментариях под видеозаписями жёстких посадок и прочностных испытаний тут, потому - думаю интересующимся будет интересно. Постарался максимально упрощённо, но текста получилось многовато.

Расчет любой конструкции на прочность, необязательно самолёта, начинается с определения собственно нагрузки на эту конструкцию. Необходимо определить, что мы в итоге хотим получить от изделия, какие нагрузки оно должно выдерживать. Понятное дело, я буду говорить об нагрузках на самолет.

Очевидно, что при полете крыло самолета нагружено распределенной нагрузкой - подъемной силой. На заглавном рисунке эта эпюра нагрузки показана на правой консоли и обозначена буквой q.

Интенсивность этой распределенной нагрузки должна быть такой, чтобы общая результирующая подъемной силы была равна:

f - коэффициент безопасности (не путать с запасом прочности)

Ny - максимальная эксплуатационная перегрузка (та, которая записана в РЛЭ в разделе ограничения)

m - масса летательного аппарата.

По порядку об этих трех параметрах.

Коэффициент безопасности f показывает во сколько раз разрушающая нагрузка (перегрузка в общем случае) больше максимальной эксплуатационной. Авиационные конструкции расчитываются не по допускаемым напряжениям, как в общем машиностроении, а по разрушающим. Потому что, понятно - культура веса, минимизация массы - основное направление деятельности инженеров при проектировании самолетов. Относительная близость к разрушающим нагрузкам компенсируется высокой точностью определения нагрузок на самолет и применением различных методов расчета, для получения уверенного результата расчета.

Диапазон величин коэффициента безопасности для многоразового летательного аппарата лежит в пределах f = 1.5. 2.5 в зависимости от режима полета и типа конструктивного элемента. Максимальные коэффициенты безопасности применяют к герметичным конструкциям, которые нагружены избыточным давлением - баллоны высокого давления, гермокабины, пассажирские салоны. Почему минимальное значение коэффициента безопасности равно 1.5 для самолетов? Одним из требований к авиационной конструкции гласит, что в самолете должны отстутствовать необратимые пластические деформации материала. То есть при достижении предельных эксплуатационных перегрузок самолет не должен, грубо говоря, потерять форму безвозвратно. Это уже завязано на параметр материала - предел текучести. Т.е. такие напряжения, при которых материал возвращается к своим первоначальным размерам полностью и деформируется упруго после снятия нагрузки. А разрушающие напряжения для большинства металлов примерно в 1.5 раза больше предела текучести.

Максимальная эксплуатационная перегрузка Ny зависит от типа проектируемого летательного аппарата. Различают несколько групп самолетов, разделенных по величине максимальной эксплуатационной перегрузки:

1. Неманевренные самолеты. Это самолеты с максимальной Ny не более 2.5 ед.

Это все пассажирские и транспортные самолеты.

2. Ограниченно маневренные самолеты с максимальной экслуатационной Ny лежащей в интервале от 2.5 до 6 единиц. Сюда относятся фронтовые бомбардировщики, штурмовики, тяжелые перехватчики (Су-24, Су-25, МиГ-25, МиГ-31)

3. Маневренные самолеты. Самолеты с максимальной эксплуатационной перегрузкой от 6 до 9 единиц. Это - все современные истребители.

4. Спортивно-пилотажные самолеты. Этот те экстремальные самолеты, которые могут выходить на перегрузки до Ny=+12 единиц - Су-29, Су-31, Як-55, наверное зарубежные аналоги - всякие Extra 300.

Исходя из класса самолета определяется и природа возникновения максимальных эксплуатационных перегрузок. Для неманевренных самолетов выход на максимальные перегрузки связан с полетом в неспокойном воздухе, для остальных - максимальные перегрузки достигаются в следствии, естессна, криволинейного полета - маневрирования.

Масса самолета. Было бы просто сказать, что мол самолет должен без проблем выходить на максимальную перегрузку при максимальной взлетной массе. И на значительном числе самолетов такое условие выполняется. Правда порой такие жертвы ни к чему и дабы не перетяжелять конструкцию вводятся некоторые ограничения на максимальные массы и максимальные перегрузки.

Вернусь обратно к заглавному рисунку. Если на правой консоли я нарисовал распределение подъемной силы по размаху крыла, то на левой консоли я нарисова эпюру изгибающего момента. Наугад, примерно. Но общую картину она отражает. Следует также заметить, что крыло, помимо изгиба нагружается еще и крутящим моментом, так как линия действия резуьтирующей аэродинамической силы и линия жесткости крыла не совпадают.

Распределение подъемной силы по размаху и по хорде крыла зависит от режима полета самолета. В некоторых случаях максимальным будет изгибающий момент, в некоторых - крутящий, а могут быть и такие случаи, когда вроде и изгибающий момент не максимален, и крутящий тоже. Однако совместное их действие вызывает максимальные напряжения в элементах конструкции. Такие предельные режимы полета называются расчетными случаями (loadcase). Предствляют они собой крайние точки эксплуатационных ограничений самолета (flight envelope). Расчетных случаев - великое множество, к отдельным элементам конструкции и агрегатам могут применяться дополнительные комбинации нагрузок и для них количество расчетных случаев может исчисляться десятками, а то и сотнями.

В таблице ниже приведены несколько основных полетных случаев:

Прочность самолётов. Нагрузки, коэффициент безопасности и запас прочности Авиация, Самолет, Прочность, Длиннопост

В шапке таблицы названия расчетных случаев - А, А-штрих, B, C, D и D-штрих, слева - параметры полета самолета:

Су - коэффициент подъемной силы крыла

q - скоростной напор.

f - коэффициент безопасности принимаемый для данного расчетного случая.

Случай А - полет самолета при максимальной эксплуатационной перегрузке на углах атаки соответствующих максимальному коэффициенту подъемной силы (близких к критическому углу атаки для самолета). Скоростной напор при этом не будет максимальным, а будет зависить от описаного в таблице соотношения. Этот расчетный случай возможен при энергичном вводе самолета в вертикальный маневр, действие на самолет вертикального порыва воздуха.

Случай А-штрих - криволинейный полет самолета при предельном скоростном напоре и максимальной эксплуатационное перегрузке. Подъемная сила одинакова в двух этих случаях, она равна весу самолета умноженому на ny. Другое дело, что в расчетном случае А перегрузка реализуется за счет максимального угла атаки, путем быстрого выхода самолета на него и интенсивным торможением, а в случае А-штрих перегрузка реализуется на малых углах атаки при максимальном скоростном напоре. Реализация расчетного случая А-штрих возможна, например при выводе самолета из пикирования. Коэффициент безопасности равен тоже 1.5.

Основная разница - в распределении подъемной силы по размаху и хорде крыла. В случае А распределение будет таким, каким я его нарисовал на заглавной картинке - плавно увеличивающимся от законцовок к фюзеляжу. В случае А-штрих, который характеризуется меньшими углами атаки на диаграмме распределения подъемной силы будут наблюдаться провалы в местах крепления двигателей, внешних подвесок и фюзеляжа. Эти элементы не столь совершенны аэродинамически как профиль крыла, а потому вклад в формирование подъемной силы заметен только на больших углах атаки, коих не наблюдается в случае А-штрих.

Различным будет и распределение нагрузки по хорде крыла.

Прочность самолётов. Нагрузки, коэффициент безопасности и запас прочности Авиация, Самолет, Прочность, Длиннопост

Расчетный случай В - полет при перегрузке, примерно в половину от максимальной эксплуатационной, но с отклоненными элеронами. На максимальном скоростном напоре. Это комбинация совместного действия на крыло изгибающего и крутящих моментов умереной величины. f=2

Расчетный случай С - полет на углах атаки соответсвущих нулевой подъемной силе с отклоенными элеронами. Случай характеризуется практически нулевыми изгибающими моментами и максимальным крутящим. Пример - восходящая или нисходящая вертикальная бочка. f=2

Если представить вышеперечисленные расчётные случаи на картинке, в системе координат "скорость-перегрузка", то область допустимых полётных параметров неманевренного самолёта выглядит вот так:

Прочность самолётов. Нагрузки, коэффициент безопасности и запас прочности Авиация, Самолет, Прочность, Длиннопост

Область максимальных эксплатационных полётных параметров, ограниченных инструкцией к летательному аппарату лежит внутри многоугольника 0-А-А'-B-C-D'-D. Внутри и на границе этой области самолёт может летать сколь угодно часто и долго - достигаемые при этом перегрузки от -1G до 2.5G не вызовут необратимых последствий в конструкции. Тем не менее по статистике только один самолёт из трёх за всю свою долгую жизнь приближается к эксплуатационным ограничениям. Зачастую перегрузки и скорости в типовом полёте лежат в диапазоне величин, ограниченных на графике синим прямоугольником. "Кардиограммой" внутри этого прямоугольника я показал всякие типовые воздушные ямы и турбулентности, встречающиеся в полёте.

Пунктирная линия показывает расчетные нагрузки, которые являются и разрушающими.

Таким образом сравнительно легко можно прикинуть разрушающую перегрузку для любого самолета - достаточно открыть РЛЭ, найти там максимально допустимую перегрузку и умножить ее на 1.5. Для неманевренных самолетов с Ny = 2.5G разрушающая перегрузка будет равна не менее чем 3.75G. Сознательно написал не менее, потому что идеально точно спроектировать самолет не получается, прочнисты всегда перестраховываются и чуть добавляют материала в запас.

В диапазоне от нулевой нагрузки до предельной дожно выполняться требование отсутствия необратимых пластических деформаций в планере самолета. (1G = 3.75G)

Очень часто коэффициент безопасности f = 1.5 путают с запасом прочности. Фраза "самолёты делают с запасом прочности 1.5" неверна. Это два принципиально разных параметра.

Коэффициент безопасности, как было показано выше, задаётся при начале расчёта руководящими документами, в частности - АП-25 Раздел С п. 25.303 и представляет собой соотношение между нагрузками.

Умножая эксплуатационные нагрузки на коэффициент безопасности инженер-прочнист получает расчётные нагрузки, которые он прикладывает к проектируемой конструкции. Применяя знания сопромата и прочих дисциплин инженер находит напряжения в элементах конструкции и сравнивает их с разрушающими напряжениями материала элемента. То есть запас прочности - это отношение разрушающих напряжений (сигма временное) к действующим напряжениям в элементе, вызваных действием расчётной нагрузки.

В России если полученый запас прочности больше единицы, стало быть конструкция считается достаточно прочной. Если запас прочности меньше единицы - конструкцию необходимо усилить.

В Боинге немного другая формула, там из соотношения ещё вычитают единицу и получается, что если запас прочности (margin of safety по-ихнему) больше нуля - конструкция выдерживает, меньше нуля - не выдерживает, равна нулю - конструкция идеальна, но так не бывает.

Читайте также: