Определение аскорбиновой кислоты в плодах шиповника

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Классификация витаминов. Сейчас известно около 30 витаминов, и возникает проблема их классификации. Существуют несколько классификаций витаминов: по растворимости, по действию на организм (фармакологическая), буквенная (обозначаемая буквами и цифрами латинского алфавита), химическая (по их принадлежности к группам химических соединений, в частности, к ациклическому (алифатическому) ряду, к алициклическому ряду, ароматическому ряду и к гетероциклическому ряду). Химическая классификация получает все более широкое распространение и признание в фармакологии, в частности, она используется в учебных и справочных изданиях.

Классификация витаминов по их растворимости исходит из их физико-химических свойств, в частности, на водо- и жирорастворимости витаминов, образующих 2 основные группы, в форме которых эти вещества и содержатся в ЛРС. Именно поэтому эта классификация очень удобна и чрезвычайно популярна в фармакогнозии, и мы также будем широко ее использовать. Назовем основные витамины каждой группы.

К водорастворимым относятся: аскорбиновая кислота (витамин С), тиамин (витамин В1), рибофлавин (витамин В2), никотиновая кислота (витамин В3, РР), холин (витамин В4), пантотеновая кислота (витамин В5), пиридоксин (витамин В6), инозит (витамин В8), фолиевая кислота (витамин В9), цианокобалоамин (витамин В12), оротовая кислота (витамин В13), пангамовая кислота (витамин В15), карнитин (витаминоподобное вещество – В7), липоевая кислота (витамин В10), а также биотин (витамин Н), флавоноиды (витаминоподобные вещества группы Р (от permeate – проникать: например, рутин; но эти вещества неточно называют водорастворимыми, скорее это спирторастворимые), метилметионин (витаминоподобное вещество U-S).

К жирорастворимым относятся провитамины группы А (ретинола) – каротиноиды (например, ликопин) и каротины (α, β, γ); провитамины группы D (эргокальциферолы) – эргостерол и другие фитостеролы; витамины группы Е – токоферолы α, β, γ, δ; витамины комплекса F – высоконепредельные жирные кислоты и простагландины.

По химической структуре витамины объединяют в 4 группы:1. Алифатические: а) производные лактонов ненасыщенных полиоксикарбоновых кислот – в частности, аскорбиновая кислота – витамин С;б) алифатические ненасыщенные жирные кислоты – витамин F1: линолевая, арахидоновая, эйкозопентодиеновые и др.

2. Алициклические:а) ретинолы (циклогексановые соединения – витамины А (А1, А2); б) провитамины (каротиноиды);

3. Ароматические:Нафтохиноны (витамины К: филлохинон, менахинон, менадион);

4. Гетероциклические:а) токоферолы – витамин Е;б) эргокальциферолы – витамин D1 и D2;в) биофлавоноиды – витамин Р (например, рутин, кверцетин);г) никотиновая кислота – витамин РР (=В3);д) тиамин (=В1);е) рибофлавин (=В2);ж) пиридоксин (=В6);з) фолиевая кислота (=В9);

и) цианокобалоамин (=В12).

Физико-химические свойства витаминов заметно варьируют.

Аскорбиновая кислота – белый кристаллический порошок кислого вкуса, легко растворимый в воде, спиртах, нерастворимый в неполярных органических растворителях, таких как эфир, хлороформ, бензол. Окисляясь, она превращается в дегидроаскорбиновую кислоту:

Каротиноиды – кристаллические вещества или масла от красного до желтого цветов. Хорошо растворимы в неполярных органических растворителях (хлороформ, петролейный эфир, бензол), спиртах, ацетоне.

Каротины являются производными ликопина – наиболее распространенного в растениях каротиноида. Каротин может быть в форме трех изомеров: α, β и γ. β-каротин имеет 2 ионовых кольца, соединенных непредельной цепью жирной кислоты, α – 1 ионовое кольцо, а γ – 2 псевдоионовых кольца. При превращении в витамин А наиболее ценен β-каротин, образующий 2 молекулы ретинола:

Витамин А (ретинол)

В растениях каротиноиды находятся в хромопластах плодов, цветков и иногда корней (морковь), а также вместе с хлорофиллом в хлоропластах в белковых комплексах или в капельках масла. В организме, в кишечнике происходит ферментативный гидролиз молекул β-каротина на 2 симметричные половины, в результате чего образуются 2 молекулы витамина А.

Каротин легко окисляет разные вещества, образуя перекиси по своим многочисленным двойным связям. Поэтому соседство с каротином может предохранять эти другие вещества от окисления (антиоксидант).

Флавоноиды – бесцветные или желтые кристаллические вещества, подвергающиеся ферментному или кислотному гидролизу. В воде лучше растворимы гликозиды с 3 и более числом гликозильных остатков.

Рутин Фитостеролы (сито-, сигма-, кампфа-стеролы) – предшественники витаминов группы D. При поступлении с пищей в организм животного фитостеролы превращаются в холестеролы, из которых и формируются витамины этой группы. Например, эргостерол, находящийся в дрожжах, в животном организме превращается в витамин D2 (эргокальциферол). Природные витамины D2 и D3 в значительных количествах накапливаются в печени и жировой ткани трески, сопутствуя в них витамину А и часто действуя синергично. То есть это – природные антиоксиданты и компоненты мембран, они также участвуют в построении костного скелета.

Витамины группы Е – α-, β-, γ- и δ-формы токоферола, производные хромана (бензо-γ-дигидро-пропана) – природные антиоксиданты, поступают в организм с пищей. Токоферолы хорошо растворимы в неполярных органических растворителях, хуже в спиртах, нерастворимы в воде. Наиболее активен β-токоферол. β-токоферол, как и α-токоферол, встречаются во многих растениях, часто вместе с каротиноидами, аскорбиновой кислотой, флавоноидами и действуют с ними синергично, защищая мультиферментные комплексы мембран от быстрого окисления.

Витамины группы К – антигеморрагические факторы, необходимые для нормального свертывания крови. При недостатке витамина К прекращается биосинтез протромбина и других компонентов тромбоцитов, наступает лопание капилляров и усиливается кровоточивость. По химической природе витамины К – производные 2-метил-1,4-нафтохинона. У витамина К1 (филлохинона) в положении С3 стоит цепь фитола; у витамина К2 (менахинона) – цепь из 4-9 С-атомов. Филлохинон образуется в высших растениях люцерне, шпинате, цветной капусте, хвое, томатах; менахинон – бактериями, в том числе живущими в желудочно-кишечном тракте. Синтетический аналог витамина К – викасол.

Витамин К1 (филлохинон)

Выделение витаминов из ЛРС и их качественный и количественный анализ. Методы выделения витаминов из ЛРС основаны на их физико-химических свойствах. Так, для выделения водорастворимых витаминов используют экстракцию водой, водными растворами кислот, буферными растворами с последующей ферментацией – для освобождения связанных форм витаминов. Для выделения жирорастворимых витаминов используются органические растворители: ацетон, этанол, хлороформ, петролейный эфир.

Для очистки витаминов от сопутствующих веществ используют различные виды хроматографии: тонкослойную, колоночную, ионообменную.

Для качественного обнаружения витаминов наиболее часто используют хроматографию в тонком слое. Витамины на хроматограмме обнаруживают по окраске в видимом свете (у каротиноидов), на флуоресценции в УФ-лучах как до, так и после проявления специальными реактивами. В качестве реагентов для проявления витаминов используют:

- водный раствор 2,6-дихлорфенолиндофенолята Na: витамин С выявляется в виде бесцветного пятна на розовом фоне (розовым фон становится от подкисленного 2,6-дихлорфенолиндофенолята Na, а бесцветные пятна – от окисления индикатора аскорбиновой кислотой);

- спиртовой раствор форфорномолибденовой кислоты с последующим нагреванием при 60-80ºС: каротиноиды обнаруживаются в виде синих пятен;

- длительное УФ-облучение – первично нефлуоресцирующий витамин К начинает флуоресцировать желто-зеленым цветом.

Количественное определение содержания витаминов в ЛРС проводят методом титриметрии, спектрофотометрии, флуореметрии.

Заготовка и сушка ЛРС, содержащего витамины. ЛРС заготавливают в период наибольшего содержания в нем витаминов. Например:

- листья, травы (например, крапивы) срезают во время цветения;

- кукурузные столбики с рыльцами – во время созревания початков;

- плоды (шиповника, смородины) – в период полной зрелости;

- кору (калины) – весной до распускания почек.

Витаминсодержащее ЛРС, в случае превалирования витамина С, сушат быстро – в сушилках при 80-90ºС, так как при более медленной сушке происходит быстрое разрушение аскорбиновой кислоты. В случае превалирования жирорастворимых витаминов ЛРС сушат без доступа солнечных лучей при 40-50ºС: листья крапивы, кукурузные столбики с рыльцами сушат при температуре не выше 40ºС, цветки календулы – не выше 45ºС, кору калины – при 50-60ºС, плоды калины – при 60-80ºС.

Fruits of sweet-brier. Specifications

ОКП 93 7621 0191; 93 7622 0191

Дата введения 1995-01-01

1 РАЗРАБОТАН Госстандартом России

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 21 октября 1993 г.

За принятие проголосовали:

Наименование национального органа по стандартизации

Главная государственная инспекция Туркменистана

3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 2 июня 1994 г. N 160 межгосударственный стандарт ГОСТ 1994-93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1995 г.

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Настоящий стандарт распространяется на высушенные зрелые плоды кустарников различных видов шиповника (розы) - Rosa семейства розоцветных - Rosaceae:

шиповника майского (шиповника коричного) - R. majalis Herrm. (R. cinnamomea L.);

шиповника иглистого - R. acicularis Lindl.;

шиповника даурского - R. davurica Pall.;

шиповника Беггера - R. Beggeriana Schrenk;

шиповника Федченко - R. Fedtshenkoana Regel;

шиповника собачьего - R. canina L.;

шиповника щитконосного - R. corymbifera Borkh.;

шиповника мелкоцветкового - R. micrantha Smith;

шиповника кокандского - R. kokanica (Regel) Regel ex Juz.;

шиповника песколюбивого - R. psammophila Chrshan.;

шиповника войлочного - R. tomentosa Smith;

шиповника зангезурского - R. zangezura P. Jarosch.;

шиповника морщинистого - R. rugosa Thunb.

и других видов розы, предназначенных для использования в качестве лекарственного сырья для изготовления холосасов, каротолина, сиропов, масла шиповника и в пищевой промышленности.

Обязательные требования к продукции, направленные на обеспечение ее безопасности для жизни, здоровья населения, изложены в таблице 1, пункты 2, 3, 4, 10, 11 и 12.

Характеристика и норма для сырья

используемого в качестве лекарственного средства и в пищевой промышленности

используемого для изготовления холосаса, каротолина, сиропа и масла

Цельные, очищенные от чашелистиков и плодоножек ложные плоды разнообразной формы: от шаровидной, яйцевидной или овальной до сильно вытянутой веретеновидной; длина плодов 0,7-3 см, диаметр - 0,6-1,7 см. На верхушке плода имеется небольшое круглое отверстие или пятиугольная площадка. Плоды состоят из разросшегося цветоложа (гипантия) и заключенных в его полости многочисленных плодиков-орешков. Стенки плодов твердые, хрупкие, наружная поверхность блестящая, реже матовая, более или менее морщинистая. Внутри плоды обильно выстланы длинными, очень жесткими щетинистыми волосками. Орешки мелкие, продолговатые, со слабо выраженными гранями.


Аскорбиновая кислота относится к группе водорастворимых витаминов. В природе этим витамином богаты клетки многих растений и некоторых животных. В организме человека аскорбиновая кислота является незаменимым химическим соединением, которое участвует во многих реакциях обмена веществ, но при этом витамин С не образуется в клетках тканей человека и потому необходимо постоянное поступление данного соединения из вне [7].

Недостаток аскорбиновой кислоты называют цинга. Впервые это заболевание было описано ещё в древности. Развитие цинги стали наблюдать у мореходов, и потому наиболее яркое описание этой витаминной недостаточности было получено в те времена, когда люди стали совершать длительные морские плавания [7, 8]. В тяжёлых океанских плаваниях ослабленные цингой люди нередко прекращали борьбу со стихией, так как не имели сил ей противостоять и нередко оставались потерянными без вести. В средние века эту болезнь приравнивали к чуме и считали проклятием. В знаменитом морском путешествии в 1497–1499 году вокруг африканского материка Васко да Гама из 160 членов экипажа от цинги потерял 100 моряков. Всё изменилось, когда в 1747 году шотландский врач Джеймс Линд во время длительного морского плавания совершенно случайно открыл противоцинготный эффект цитрусовых. В эти же годы капитан Джеймс Кук ввёл в рацион своих матросов кислую капусту и цитрусовый сироп, что позволило ему сохранить жизнь всей своей команды, что в те времена было настоящим достижением [5, 10].

Люди стали бороться с цингой, но оставалась неясной причина её развития. Отправной точкой для поиска ответа на этот вопрос стали работы российского учёного Н. И. Лунина, который в 1880 году в своих экспериментах с питанием и питательными веществами на животных пришёл к выводу, что в пище содержаться не только белки, жиры и углеводы, необходимые для построения тела и его правильной работы, но также имеются дополнительные вещества, не менее важные для поддержания жизни. На основе его работ в конце XIX начале XX века были открыты причины не только цинги, но и других болезней, связанных с недостатком витаминов [1, 2, 6].

Химическое строение витамина С впервые было установлено Ч. Г. Кингом в 1923 году. Это соединение он выделил из сока капусты. В 1928 году биохимик А. Сент-Дьёрди получил этот витамин в чистом виде и назвал его гексуроновой кислотой. В 1933 году швейцарским учёным удалось синтезировать аскорбиновую кислоту, идентичную природному витамину С, и сейчас мы широко применяем это соединение для предупреждения и лечения гиповитаминоза С [2].

Аскорбиновая кислота — органическое соединение, которое присутствует в живых клетках в виде двух форм: L-аскорбиновая кислота (С6Н8О6) и дегидроаскорбиновая кислота (С6Н6О6). L-аскорбиновая кислота (витамина С) является активным соединением. В отличие от этого дегидроаскорбиновая кислота образуется из аскорбиновой в процессе её окисления под действием фермента аскорбатоксидазы, и не обладает витаминными свойствами. Окисление аскорбиновой кислоты в клетках растений происходит при механическом воздействии и повреждении клеток в присутствии кислорода и потому считают, что механическая и термическая обработка растительных продуктов питания приводит к значительному снижению содержания данного витамина [2, 5, 9]. При этом в биохимических системах описаны ряд соединений (глутатион, дигидроаскорбинредуктаза) которые могут привести к восстановлению аскорбиновой кислоты из дегидроаскорбиновой, но такие реакции восстановления возможны только в неповреждённых клетках живых организмов [2].

Участие витамина С в биохимических обменных процессах очень разнообразно. Она является частью окислительно-восстановительной системы, необходимой для синтеза белка. Этот витамин участвует в образовании коллагена, который является важным компонентом связок, хрящей, костей и дентина зубов. Аскорбиновая кислота необходима для нормальной работы нервной ткани, она способствует всасыванию железа в пищеварительном тракте с последующим формированием гемоглобина, поддерживает в клетках организма активную (восстановленную) форму фолиевой кислоты, которая незаменима при синтезе белков и нуклеиновых кислот. Витамин С участвует в обмене углеводов, он ускоряет усвоение и разрушение глюкозы и пировиноградной кислоты, необходимых для получения энергии в клетках [6, 7]. Аскорбиновая кислота стимулирует антибактериальную активность лейкоцитов и усиливает фагоцитоз, при этом способствует выработке противовоспалительных веществ и обладает противоаллергическим действием [10]. Повышая активность дыхательных ферментов клеток печени, витамин С ускоряет разрушение токсических продуктов, улучшает обмен веществ и обеспечивает синтез белков системы свёртывания крови [5].

В наши дни полное отсутствие витамина С (авитаминоз) встречается очень редко, но умеренное снижение уровня этого соединения (гиповитаминоз) отмечается достаточно часто. К гиповитаминозу С могут приводить тяжёлые инфекционные болезни, заболевания обмена веществ и органов пищеварения, длительное голодание, а также нерациональное питание с большим содержанием углеводов. Недостаток витамина может встречаться у маленьких детей, которые не получают его в необходимом количестве с пищей или очень интенсивно растут, быстро потребляя весь его поступающий объём [2, 7]. При этом суточная потребность в витамине С для взрослых людей составляет 75–100 мг, для девушек 14–17 лет — 70 мг, а для юношей этого возраста — 80 мг. Дети младшего и среднего возраста должны ежедневно получать от 20 мг до 50 мг витамина С [7].

Среди растений, которые современный человек использует в своей повседневной жизни, можно насчитать около 1–2 десятков овощей, фруктов и пряных трав, которые являются источником витамина С. При этом по современным данным десятки лекарственных трав и цветов также содержат витамин С, но используются в повседневной жизни намного реже [9]. Среди лекарственных растений в наши дни выделяют две основные группы: 1) официально признанные лекарственные растения, входящие в Фармакопею того или иного государства, 2) растения, применяемые в народной медицине.

Официально признанные лекарственные растения, как правило, содержат сильнодействующие вещества и их сложно использовать для восполнения дефицита или профилактики недостаточности витамина С [3, 4, 9]. С другой стороны растения, применяемые в народной медицине, не содержат сильных алкалоидов, обладают более мягким лечебным действием и нередко, по данным справочников, в их химическом составе можно встретить наличие аскорбиновой кислоты, но без указания конкретных уровней её содержания [1]. Отсутствие подобной информации сохраняет актуальность исследований в этой области и открывает возможности для изучения и поиска лекарственных растений, наиболее богатых аскорбиновой кислотой, которые можно было бы использовать в целях профилактики и лечения гиповитаминоза С, наряду с привычными растительными продуктами питания и применением лекарственных препаратов витаминов, синтезированных искусственно.

Цель исследования — произвести сравнительных анализ содержания витамина С в различных продуктах питания растительного происхождения и в лекарственных растениях, произрастающих на территории Челябинской области и определить возможность использования растений для профилактики и лечения гиповитаминоза С.

Задачи исследования:

  1. Освоить методику йодметрического способа определения содержания витамина С в биологических пробах.
  2. Оптимизировать методику оценки содержания витамина С в лекарственных растениях.
  3. Произвести оценку уровня и выполнить сравнительный анализ содержания витамина С в лекарственных растениях, произрастающих на территории Челябинской области.
  4. Определить наиболее богатые витамином С лекарственные растения, которые можно безопасно применить для профилактики и лечения гиповитаминоза С.

Материалы исследования. Проведено определение содержания аскорбиновой кислоты в пробах из 46 лекарственных растений, произрастающих в Челябинской области. При выборе лекарственных растений для исследования уровня витамина С учитывали сведения справочников и энциклопедий по фитотерапии о возможности использования трав в качестве сезонных (весенне-летних, осенних) добавочных компонентов питания. Кроме того, отдавали предпочтение травам и цветам, не содержащим сильнодействующих лечебных или токсических веществ, которые рекомендуется использовать с лечебной целью внутрь в виде сока, отваров, настоев или в чистом виде.

Учитывая данные о том, что витамин С может содержится не только в жидкой части клеток растений, но и в плотных тканях плодов, семян, листьев и стеблей, исследование его содержания в растительном сырье потребовало приготовления нескольких видов проб и включало ряд этапов и способов. Первоначально в течение весенне-летнего сезона 2017 года произвели сбор лекарственных растений в различных частях территории Челябинской области. На втором этапе растения высушивали в естественных условиях, располагая в тени на хорошо проветриваемом остеклённом балконе. После этого из сухого сырья получали 2 вида настоя: 1) светлый настой (НС), 2) настой с взвесью (НВ).

Светлый настой (НС) получали методом водно-термической экстракции растительных химических компонентов. С этой целью 1–3 грамма сухого растительного сырья заливали 100 мл воды кипящей воды (температура 100С) и настаивали в фарфоровой посуде в течение 2 часов с дополнительной термоизоляцией путём укутывания в 4 слоя хлопчатобумажного полотенца. По истечении времени экспозиции настой фильтровали через 4 слоя марли с тонкой ватной прослойкой для получения прозрачного светлого настоя (НС). После получения фильтрата измеряли его объём.


Рис. 1. Внешний вид исследуемых проб — настоев из листьев берёзы

Методы исследования. Обнаружение аскорбиновой кислоты в пробах из растительного сырья производили методом окисления витамина С йодом в присутствии крахмала. В качестве реагентов готовили 0,1 % раствор йода и 2 % раствор крахмала. Раствор крахмала получали путём смешивания 2,0 сухого крахмала с 10 мл тёплой воды с последующим введением полученной водной взвеси в 190 мл кипящей воды до получения полупрозрачного жидкого гелеобразного раствора. Для постановки реакции раствор крахмала охлаждали до комнатной температуры. В последующем его хранили в холодильнике при температуре 8ºС в течение не более 5–7 суток. 0,1 % раствор йода получали путём растворения 2 мл 5 % спиртовой настойки йода, содержащих 0,1 грамм йода, в 100 мл дистиллированной воды. Для выполнения титрования исследуемых растворов опытным путём было подсчитано, что 1 мл раствора соответствует 100 каплям, получаемым при использовании стандартной инъекционной иглы и одноразового шприца Люэре, объёмом 10 мл. Согласно полученным результатам, в 1 капле 0,1 % раствора йода содержится 10 мкг йода.

Суть йод-метрической методики определения витамина С сводится к постепенному окислению аскорбиновой кислоты в дегидроаскорбиновую кислоту под действием йода с образованием йодоводорода, что представлено в уравнении реакции [2]:

После инактивации всей, имеющейся в пробе аскорбиновой кислоты, добавляемый к раствору йод начинает действовать с крахмалом, образуя соединение синего цвета. Появление синей окраски исследуемого раствора, указывает на полную инактивацию витамина С. Для расчёта абсолютного содержания аскорбиновой кислоты в пробе мы использовали данные по соотношению молярных масс реагентов, исходя из уравнения химической реакции, подкрепляя полученные результаты серией экспериментов. Согласно уравнению химической реакции (1) для окисления 1 моля аскорбиновой кислоты (М=176,12) необходимо потратить 1 моль йода (М=253,8). Из этого следует, что для инактивации 1 г аскорбиновой кислоты необходимо потратить 1,44 г йода: mйода= 1х253,8 / 176,1 = 1,44.

На начальном этапе для определения затрат объёма 0,1 % раствора йода на 1 мг витамина С были произведены несколько серий опытов с аптечным раствором аскорбиновой кислоты. 2 мл 5 % аскорбиновой кислоты, содержащей 100 мг витамина С растворили в 100 мл дистиллированной воды, после чего выполнили серию из 5 опытов, помещая по 1,0 мл 0,1 % раствора витамина С в 5 отдельных пробирок, добавляли в каждую аналогичный объём 2 % раствора крахмала и производили титрование полученных растворов 0,1 % йодом до получения его стойкого (сохраняющегося более 20 секунд) светло-синего окрашивания. Первоначально, описанную серию опытов повторили 5 раз, после чего было рассчитано среднее количество капель 0,1 % раствора йода, необходимое для окисления 1 мг витамина С. Учитывая несовершенство метода дозирования раствора с помощью одноразового шприца и погрешностей при подсчёте капель разброс значений получился достаточно широким от 130 до 160 капель, что соответствовало 1,3–1,6 мл 0,1 % раствора йода. Средний объём 0,1 % раствора йода, необходимый для окисления 1 мг витамина С составил 1,45 мл (145 капель), что соответствовало 1,45 мг йода и получилось достаточно близким к расчётным показателям (1,44 мг йода), полученным согласно уравнению химической реакции. Контрольное исследование активности раствора йода производили ежедневно перед выполнением серии опытов с растительными пробами и настоями.

При исследовании настоев из растительных проб мы получали серию результатов затраченных объёмов раствора йода (в каплях) и для расчёта содержания витамина С использовали пропорцию:

1 мг витамина С — 144 капли

[X] мг витамина С — n капель,

[X] = 1 мг вит С х n капель / 144 капли (2)

Исследование содержания витамина С в одной растительной пробе производили в виде 1 серии, состоящей из 5 опытов. При этом в каждую из 5 пробирок помещали соответственно по 0,2 мл, 0,4 мл, 0,6 мл, 0,8 мл, 1,0 мл настоя и крахмала и затем, при постоянном взбалтывании, добавляли 0,1 % раствор йода до появления отчётливой (более 20 секунд) светло-синей окраски раствора (рис. 2).


Рис. 2. Динамика качественной реакции на витамин С в серии из 5 опытов со светлым настоем крапивы

Далее производили расчёт содержания витамина С ([Cv]) в 5 разных объёмах пробы (Vn(0,2–0,8)): [С0,2], [С0,4], [С0,6], [С0,8], [С1,0]. После этого рассчитывали содержание аскорбиновой кислоты из расчёта на 1 мл пробы по формуле: [С1,0] = [Cv] х Vn (3)

После получения 5 результатов содержания витамина С в 5 различных объёмных пробах, рассчитывали среднее содержание витамина С в 1 мл пробы по формуле:

Определение содержания витамина С в полном объёме пробы настоя производили по формуле:

где [Спр] — концентрация витамина С в полном объёме полученного настоя, [C1,0] — содержание витамина С в 1 мл пробы настоя, Vnр — объём исследуемого настоя.

Для сопоставления и сравнения полученных результатов в дальнейшем производили расчёт содержания витамина С в 100 граммах растительного продукта или лекарственного растения, используя пропорцию:

[Сх] = [Спр] х 100 / mрс, (6)

где [Спр] — содержание витамина С в полном объёме настоя, mрс — масса пробы лекарственного сырья, взятого для получения настоя, [Сх] — искомая величина содержания витамина С из расчёта на 100 грамм лекарственной травы.

Используемые нами малые концентрации раствора йода оказались необходимыми для определения витамина С в лекарственных растениях с его низким содержанием. При этом до появления видимой устойчивой синей окраски исследуемого раствора требовалось добавить не менее 3 капель 0,1 % йода. С другой стороны использование низкой концентрации раствора йода при высоком содержании витамина С в пробе приводило к удлинению времени постановки реакции, но делало результат более точным.

Результаты исследований. В ходе исследований был произведён поиск и определение уровня содержания аскорбиновой кислоты растений, обладающих лечебными свойствами. Попытки получить свежий сок из лекарственных трав и цветов оказались мало результативными из-за низкого содержания последнего в травянистой или цветковой части растений и потому сравнить содержание витамина С в свежем соке растений оказалось невозможным. Уровень аскорбиновой кислоты в лекарственных растениях исследовали только после получения проб методом водно-термической экстракции с изготовлением настоев. Для получения полной информации о содержании витамина С подсчитывали сумму показателей вдвух видах настоя, полученных из сухого сырья одного растения. Сравнительное исследование содержания данного витамина в светлом настое и в настое с взвесью растёртых тканевых компонентов растения показало, что в 90 % случаев наибольшее содержание витамина С отмечали в светлом фильтрате настоя. А при исследовании плодов шиповника, листьев костяники, сосновой хвои, листьев и плодов рябины наибольшее содержание витамина С было получено в настое со взвесью из растёртых компонентов растений (табл. 1).

Сравнительная характеристика растительных проб и содержание аскорбиновой кислоты в лекарственных растениях

Растение

Содержание витамина С

в пробах (мг/г)

Общий уровень витамина С

в растении

НС (n=46)

НВ (n=46)

Характеристика растительных проб:

средняя масса пробы растительного сырья (г)

средний объём настоя (мл)

Содержание витамина С в пробах растений:

Получен сухой экстракт из шрота шиповника путем ультразвуковой водной экстракции . Определен химический состав биологически активных веществ. Найдены витамины (аскорбиновая кислота, тиамин и рибофлавин), углеводы, карбоновые кислоты, аминокислоты, флавоноиды, каротиноиды, пектиновые вещества. Для полученного сухого экстракта изучен тест на острую токсичность. Оказалось, что экстракт не токсичен и обладает анаболическим и адаптогенным действием

В последние годы интерес к лекарственному сырью, изучению его химического состава, фармакологических свойств, глубокой переработки этого сырья все более возрастает.
Известно, что плоды шиповника в основном используются в качестве поливитаминного концентрата при первичной переработке. Отходы (шрот) при этом не используются и дальнейшей переработке не подвергаются. Однако, шрот шиповника содержит большое количество биологически активных веществ, в том числе и витаминов.
Известны работы, посвященные изучению химического состава шиповника 1. Работы по изучению химического состава шрота шиповника после первичной переработки этого сырья нами не найдены.
Целью настоящего исследования являлось получение сухого экстракта из шрота шиповника на основе ультразвукового водного экстракта из этого сырья и изучение его химического состава.
Водный экстракт шрота шиповника получали по разработанной на кафедре органической химии Томского государственного университета технологии переработки растительного сырья, позволяющей максимально извлекать и сохранять биологически активные соединения [4].

Экстракт из шрота шиповника получали ультразвуковой водной экстракцией при температуре 45-50°С и соотношении сырье: экстрагент 1:10, озвучивание проводилось в течение 45 минут. Удаление свободной и адсорбционной воды проводилось с помощью ротационной сушки до постоянного веса при 45°С. Выход сухих экстрактивных веществ составляет 13,7% в пересчете на сырье.

Определение содержания витаминов в сухом водном экстракте из шрота шиповника
Определение аскорбиновой кислоты (витамина С) проводилось по методике, которая применяется в фармокопее [5], как основного биологически активного соединения шиповника 2. Из сухого экстракта на основе шрота шиповника аскорбиновая кислота выделялась путем экстракции 5% уксусной кислотой. Осаждение пигментов осуществлялось добавлением карбоната кальция и 5% раствора ацетата свинца. Осажденные пигменты отфильтровывались. Аскорбиновая кислота в фильтрате определялась титриметрически по Тильмансу [5] с использованием 2,6-дихлорфенолиндофено-лята натрия. Содержание аскорбиновой кислоты составляло 14,27±0,49%.
Кроме этого аскорбиновая кислота определялась спектрофотометрическим методом в ацетатном буфере по методу Тильманса [5]. Оптическая плотность определялась при длине волны 530 нм. Содержание аскорбиновой кислоты 14,78±0,56%.

Количественное определение витаминов В (тиамина и рибофлавина) проводилось после ферментативного гидролиза пепсином при 40°С. Затем к раствору добавляли равный объем трихлоруксусной кислоты, избыток которой удалялся 2-3 кратным промыванием смесью этанола и эфира (1:1). Вытяжка витаминов группы В вместе с аскорбиновой кислотой анализировалась методом ТСХ с применением пластинок "Silufol". Для разделения витаминов группы В наиболее подходящей оказалась система: пиридин - уксусная кислота - вода (10:1:40) [6], а для аскорбиновой кислоты - этилацетат - уксусная кислота в соотношении 80:20:6. Проявление хроматограмм с витаминами группы В поводилось хлортолуидиновым реактивом [7], а аскорбиновой кислоты - фосфорно-молибденовым реактивом [8]. Для каждого из этих витаминов расcчитаны величины R f . Результаты этих исследований представлены в таблице таблице.

Таблица
Величины R f водорастворимых витаминов в системе растворителей: пиридин - уксусная кислота - вода (10:1:40)
Витамины R f
стандарта
R f
экстракта
Цвет пятна при проявлении
1 2
аскорбиновая кислота (витамин С) 0,87 0,86 бесцветное коричневое
тиамин (витамин В1) 0,44 0,44 голубое синяя флуоресценция
рибофлавин (витамин В2) 0,54 0,53 желто-оливковое желто-зеленая флуоресценция

Примечания:
  1- хлортолуидиновый реактив [9]
2 - фосфорно-молибденовый реактив [10]

Определение углеводов
Суммарное содержание углеводов определялось спектрофотометрически с использованием фенолсернокислотного метода при длине волны 490 нм [9]. Содержание углеводов составило 20,88±0,65%. Разделение углеводов на отдельные компоненты проводилось с использованием бумажной хроматографии. В качестве подвижной фазы использовалась смесь: н-бутанол - уксусная кислота - вода (4:1:5) [8]. Проявителем служил анилин-дифениламинофосфатный реактив [10]. При сравнении со стандартными веществами в сухом экстракте из шрота шиповника обнаружены глюкоза и фруктоза. Одно пятно, принадлежащее альдосахару, идентифицировать не удалось. Спектрофотометрически определено количественное содержание углеводов: глюкоза - 0,75%, фруктоза - 18,5%, альдосахар - 1,2%.

Определение карбоновых кислот
Карбоновые кислоты сухого экстракта отделялись от мешающих определению веществ (сахаров, аминокислот и др.) хлоридом бария. Затем определялась общая кислотность [10] в пересчете на яблочную кислоту, т. к. она преобладает в плодах шиповника. Содержание кислот составило 1,85%. С помощью ТСХ на пластинках "Silufol" определен качественный состав кислот. Были обнаружены лимонная, яблочная, винная и щавелевая кислоты.

Аминокислотный состав
Аминокислоты определялись методом ТСХ с использованием подвижной фазы пропанол-1 гидрооксид аммония (67:33). Проявитель - нингидрин. Идентифицированы треонин, валин, метионин и лизин по сравнению со стандартными веществами. Общее содержание аминокислот определялось по методикам [11, 12] и составило 17,1%.

Флавоноиды
Флавоноиды выделялись экстракцией этилацетатом и количественно определялись спектрофотометрическим методом при длине волны 330 нм [13]. Содержание флавоноидов составляет 0,74%. С помощью бумажной и ТСХ идентифицированы кверцетин, кемпферол-арабинозид и кемпферол-дигликозид.

Каротиноиды
Определялось содержание полярных и неполярных каротиноидов. Неполярные каротиноиды извлекались смесью гексан - хлороформ (1:1), а полярные - смесью гексан - ацетон (1:1). Количественное содержание неполярных каротиноидов определялось спектрофотометрически при длине волны 452 нм, а полярные при длине волны 440 нм [13]. Содержание полярных каротиноидов составляет 1,32%, а неполярных - 1,55%.

Пектиновые вещества
Пектиновые вещества определялись после гидролиза и осаждения полигалактуроновой кислоты в виде пектата кальция и в виде медного комплекса [10]. Содержание пектиновых веществ определялось по количеству меди, связанной в комплекс с пектиновыми веществами и составляет 3,1%.

При изучении тестов на острую токсичность в институте фармакологии СО АМН РФ показано, что сухой водный экстракт из шрота шиповника не токсичен и приводит к увеличению веса и работоспособности животных, т. е. обладает анаболическим и адаптогенным эффектом.

На основании изучения химического состава и биологических тестов сухой водный экстракт из шрота шиповника может быть рекомендован как для создания поливитаминных пищевых добавок, так и для создания поливитаминных природных препаратов.

Читайте также: