На физические свойства грунта минералогический состав твердых частиц влияет

Добавил пользователь Валентин П.
Обновлено: 19.09.2024

1 Лекция 2 Общие сведения о грунтах. ОБЩИЕ СВЕДЕНИЯ О ГРУНТАХ Изучение грунтов как объекта инженерно-строительной деятельности является задачей грунтоведения. Грунтами называются горные породы верхней коры выветривания, используемые строительстве. Происхождение термина голландское или немецкое, пришедшее к нам в средние века. Грунт используется для сооружений в качестве: основания; среды (сооружения подземные); материала (насыпи, подушки, земляное полотно и др.). Образование, состав, структура, текстура и связность грунтов 1. Образование грунтов (генезис) Континентальные отложения: - элювиальные ( - форма зерен угловатая); - делювиальные (перемещенные атмосферными водами и силами тяжести, напластования не однородны.); - аллювиальные (перенесенными водными потоками на значительные расстояния окатанные частицы); - ледниковые (результат действия ледников, неоднородные грунты); - эоловые (продукты выветривания, пески дюн, барханов, наличие пылеватых и илистых фракций).ё Морские отложения: илы, заторфованные грунты, пески, галечники низкая несущая способность. 2. Состав грунтов Грунты дисперсные (раздробленные) системы, являющиеся продуктами механического, химического, физико-механического и биологического процессов выветривания в земной коре. В условиях естественного залегания они представляют собой сложную систему твердых, жидких и газообразных компонентов. Во всех грунтах, кроме скальных, твердые частицы представляют собой систему минеральных зерен величиной от нескольких сантиметров до мельчайших частиц с размерами в сотые и тысячные доли мм. Они состоят из первичных (кварц, полевые шпаты, слюды, магниево-железистые соли, кремниевые кислоты, кальцит, доломит и др.) и вторичных минералов (каолинит, монтмориллонит, окислы и гидроокислы алюминия и железа, кремнезем и др.), а также из органической части (гумуса, торфа, иловатых частиц и др.). 8

2 Грунт - это 3 х фазная система. Грунт = твердые частицы + вода + газ От соотношения этих фаз и зависят характеристики грунтов. Грунт может состоять из двух компонентов или фаз (твердые частицы + вода, твердые частицы + воздух) или из трех (твердые частицы + вода + воздух). Вода и воздух заполняют пустоты между частицами. 3. Структура и текстура грунтов Следует различать структуру и текстуру грунтов. Под структурой грунтов понимают взаимное расположение грунтовых частиц и характер связи между ними. Из этого определения следует, что структура имеет две стороны: сложение и связность. Виды сложений а - зернистое (им обладают песчаные грунты): а рыхлое, б средней плотности, в плотное. б - хлопьевидное (характерно для илов при n >90%): малые поры, большие поры. в - сотообразное (губчатое) - при уплотнении происходит упрочнение грунтов. г - каркасное (для различных глинистых, особенно моренных грунтов. Виды связности Связность это свойство, характеризующее связь между грунтовыми частицами, которая в дисперсных грунтах бывает двоякой: а водноколлоидная создана молекулярными силами пленочной воды. Характерна для молодых (четвертичных) глинистых грунтов и может легко нарушаться при замачивании или встряхивании, но затем легко восстанавливаться. б кристаллизационная создана природным цементом у древних грунтов за счет пленочной и свободной воды в виде электролита. Такую связность можно создавать искусственно (силикатизация образование кремнистого цемента в течение нескольких суток при химическом закреплении грунтов). Под текстурой грунтов понимают их сложение в массиве. Она бывает: а - слоистая (водноледниковые пески), горизонтальная и косослойная; б ленточная (озерно-ледниковые отложения) с чередованием м тонких прослойков песка и глины; в порфировая (моренные глинистые грунты) с размещением на фоне мельчайших частиц просматриваются крупные обломки. Наряду со связностью возникает большое трение; г сетчатая (при промерзании грунта сверху и сбоку), просматривается в пределах образца; д слитная (на фоне разреза нет неоднородностей) у однородных песчаных или глинистых отложений. 9

3 Структура грунта: зернистая сотообразная хлопьевидная Текстура грунта: Слоистая порфировидная слитная (однородная) Строение грунтовой толщи бывает: нормальное согласованное и несогласованное, косослойное и линзовидное. 4. Виды грунтов Вначале рассмотрим только основные виды (классы) грунтов согласно СТБ и ГОСТ : скальные; крупнообломочные и песчаные; глинистые; особые (илы, заторфованные и торфы, ленточные глины, просадочные и набухающие глинистые, пучинистые пылеватые глинистые и пылеватые пески, насыпные и намывные, вечномерзлые, искусственные). К скальным грунтам относятся изверженные, метаморфические и осадочные породы с жесткими связями между зернами (спаянные и сцементированные), залегающие в виде сплошного или трещиноватого массива. К нескальным грунтам относятся: крупнообломочные несцементированные грунты, содержащие более 50% по весу обломков кристаллических или осадочных пород с размерами частиц более 2 мм; песчаные сыпучие в сухом состоянии грунты, содержащие менее 50% по весу частиц крупнее 2 мм и не обладающие свойством пластичности (грунт не раскатывается в шнур); глинистые связные грунты, обладающие свойством пластичности, т.е. их можно раскатывать в шнур диаметром 3 мм и менее. Они содержат частиц менее 0,005 мм более 3%. 5. Скелет грунта и его гранулометрический состав Грунты с мелкими зернами обладают развитой поверхностью и представляют собой дисперсные системы. В этих системах дисперсной фазой являются частицы, а дисперсионной средой вода и воздух, заполняющие промежутки (поры) между частицами грунта. Дисперсность степень раздробления вещества на частицы. Естественные грунты состоят из частиц различной формы и величины и относятся к полидисперсным системам, свойства которых весьма сложны поскольку суммируют свойства входящих в них частиц. Особенно сильно влияет наличие в них коллоидных и тонкодисперсных частиц. По количеству частиц разной крупности в грунте построена строительная классификация грунтов. 10

4 Скелет грунта это твердая фаза. Минеральный состав грунтовых частиц зависит от вида горных пород или минералов, из которых они произошли. Помимо минеральных частиц в состав грунтов входят органические вещества (торф или гумус), очень разнообразные по своему физическому состоянию и химическому составу. Они сильно ухудшают строительные свойства грунтов. Грунтовая фракция - определенный интервал крупности частиц. Выраженное в процентах от общего веса сухого грунта содержание в грунте частиц различной крупности, называется гранулометрическим составом. Разделение частиц на фракции называется гранулометрическим анализом. Имеется несколько методов определения грансостава: ситовой для песчано-гравелистых частиц; проф. Сабаниеа А.Н. для пылеватых, иловатых и глинистых частиц, который основан на отмучивании в воде с использованием закона Стокса; пипеточный или ареометрический проф. Рабинзона Г.В. для глинистых частиц. Метод отмучивания для определения песчаной фракции (Æ от 1 0,05 мм) Фактически грунт состоит из различных частиц. Как его назвать? Классификация твердых частиц: п/п Наименование частиц Поперечный размер (мм) 1 Галечные (щебень) 2 Гравелистые 2 10 (20) 3 Песчаные 0, Пылеватые 0,005 0,05 5 Глинистые 10 (20) Классификация по шкале Сабанина (по скорости падения частиц в воде) Свойства твердых частиц Свойства твердых (минеральных) частиц зависят от размеров. Крупнообломочные частицы в скоплении формируют так называемые крупнообломочные грунты, которые: очень хорошо водопроницаемы; мало сжимаемы; мало чувствительны к воде (маловлажные или насыщенные водой сжимаются одинаково, набухание не происходит). Песчаные частицы в преобладающем множестве образуют песчаные грунты, которые: хорошо водопроницаемы; мало сжимаемы; не набухают. За исключением мелких пески не пучат при промерзании. Свойства частиц зависят не от минералов (из которых преобладает кварц, полевой шпат, глауконит), а от крупности. Пылеватые частицы продукты как механического, так и химического выветриваний. При их наличии более 25% образуются пылеватые грунты. Минералогический состав частиц в некоторой степени влияет на свойства этих грунтов. Наличие зерен окислов обусловливает связность. Пылеватые пески малопрочны, неустойчивы по отношению к воде, а при замачивании теряют связность и оплывают в откосах (потеря устойчивости). Некоторые виды пылеватых грунтов набухаемы и сильно пучинисты. 11

Типичные величины для подпахотных горизонтов различных почв (кроме черноземов)

Сильно уплотненные иллювиальные горизонты

Плотность твердой фазы в определенной степени служит признаком, по которому можно судить о минералогическом составе, содержании органического вещества, её используют для расчета порозности и скорости падения частиц по формуле Стокса при анализе механического состава почв.

Пористость (порозность, скважность) –это суммарный объем всех пор между частицами твердой фазы почвы. Обозначают P и определяют расчетным путем по соотношению показателей плотности почвы (dV) и плотности твердой фазы (D), выраженному в процентах:


Пористость зависит от гранулометрического состава, структуры, плотности. В пахотных почвах пористость обусловлена обработкой и приемами окультуривания, при рыхлении – увеличивается, при уплотнении – уменьшается. Размеры пор, в совокупности образующих общую пористость почвы, варьируют от тончайших капилляров (для воды) до более крупных промежутков (для воздуха), которые не обладают капиллярными свойствами (должны составлять не менее 20 – 25 % от общей пористости).

Общая пористость почвы колеблется от 25 % (глина) до 90 % (торф). В культурной песчаной почве она равна 45 – 50 %, черноземах – достигает 60 – 63 %, вниз по профилю (кроме торфяников) она уменьшается. Оценка общей пористости (по Н.А.Качинскому) приведена в таблице 5.

Оценка почв по показателю пористости

Почва вспушена – избыточно пористая

Культурный пахотный слой

Неудовлетворительная для пахотного слоя

Характерна для уплотненных

Пористость – одно из важнейших свойств почвы. С ней связаны интенсивность и глубина фильтрации, водопроницаемость и водоподъемная способность, влагоемкость и воздухоемкость, процессы испарения на орошаемых землях. От порозности в значительной степени зависит плодородие почв.

§2. Физико-механические свойства почв

Физико-механические свойства почв по сравнению с физическими имеют более широкое использование не только в почвоведении, но и в грунтоведении, строительстве. К ним относятся: пластичность, липкость, набухание, усадка, связность, твердость и удельное сопротивление.

Пластичность – свойство почвы изменять свою форму под влиянием внешней силы без разрушения и сохранять ее после устранения воздействия. Это свойство имеет только влажная почва в определенном диапазоне влажности, т.е. есть верхний и нижний предел пластичности, разность между которыми называется числом пластичности – величина пластичности. Чем больше это число, тем более пластична почва. Песок имеет число пластичности 0, супесь – 1 – 7, суглинок – 7 – 17, глина – более 17. Пластичность обусловливается главным образом количеством глинистых частиц и составом поглощенных оснований (наибольшей пластичностью обладают глинистые солонцы, содержащие более 25 % обменного натрия, наименьшей – почвы, содержащие много кальция и магния), органическое вещество уменьшает пластичность.

Липкость – способность почвы прилипать к соприкасающимся с нею предметам, измеряется усилием, требующимся для отрыва от почвы прилипшей к ней пластины, и выражается в г/см 2 . Прилипание почвы к рабочим частям и колесам машин увеличивает тяговое сопротивление и ухудшает качество обработки почвы.

Липкость почвы зависит от ее гранулометрического и минералогического состава, от структуры и влажности. Сухие почвы не обладают липкостью. С повышением влажности до определенного предела (80 % от полной влагоемкости) липкость увеличивается, а далее уменьшается вследствие нарушения сцепления между частицами почвы. Чем больше глинистых частиц, тем липкость больше. Почвы глинистые и бесструктурные прилипают сильнее, чем легкие по гранулометрическому составу или структурные глинистые. Почвы по липкости делят на: предельно вязкие (> 15 г/см 2 ), сильновязкие (5 – 15), средневязкие (2 – 5) и слабовязкие ( 2 ).

На величину липкости влияет состав поглощенных оснований: с увеличением насыщенности почвы кальцием она уменьшается, а с возрастанием насыщенности натрием резко увеличивается. Поэтому почвы высокогумусированные, с достаточным количеством оснований (дерновые, черноземы) не обладают липкостью даже при высоком увлажнении.

Набухание – увеличение объема почвы при увлажнении. Способность почвы к набуханию связана с гранулометрическим, минералогическим и химическим составом, а также с их начальной плотностью. Набухание обусловлено образованием на поверхности почвенных частиц оболочек рыхло связанной воды, в результате этого ослабевают силы сцепления и увеличиваются расстояния между частицами, что приводит к возрастанию общего объема почвы.

Набухание характерно для минеральных илистых частиц и органических коллоидов, поэтому глинистые почвы больше подвержены этому свойству. Сильно набухает минерал монтмориллонит и практически не набухает каолинит. При насыщении почв одновалентными основаниями, особенно натрием, оно достигает 120 – 150 %, а при насыщении двух- и трехвалентными катионами значительного набухания не наблюдается, поэтому даже песчаные почвы могут набухать, если насытить их почвенный поглотительный комплекс натрием.

Усадка – уменьшение объема почвы или грунта при высыхании. Она зависит от тех же факторов, что и набухание. Чем сильнее набухание, тем сильнее усадка почвы. Усадку можно охарактеризовать степенью изменения объема, а также влажностью, при которой усадка прекращается (предел усадки). В результате сильной усадки в почве образуются трещины, происходит разрыв корней растений, усиливается испарение влаги из почвы.

Энергетические затраты на обработку почвы и износ сельскохозяйственных машин и другие показатели обусловливаются связностью и твердостью почвы.

Связность – способность почвы сопротивляться внешнему усилию, стремящемуся разъединить почвенные частицы, выражается в г/см 2 .Она вызвана силами сцепления между частицами почвы. Связность обусловлена гранулометрическим и минералогическим составом, структурностью и влажность, содержанием гумуса, составом обменных оснований.

Наибольшую связность в сухом состоянии имеют глинистые бесструктурные почвы, наименьшую – песчаные и супесчаные почвы. Связность возрастает при насыщении почвы ионами натрия, при оструктуривании – снижается. Влияние органического вещества двояко: на песчаных почвах гумус увеличивает связность, на глинистых – снижает за счет увеличения структурированности и снижения площади соприкосновения. Связные почвы лучше противостоят эрозии, но при увеличении ее повышается удельное сопротивление обработке.

Твердость – это сопротивление, которое оказывает почва проникновению в нее под давлением различных тел, выражается в кг/см 3 . На величину твердости влияют те же характеристики, что и на связность. Почвы с высоким содержанием гумуса, насыщенные кальцием и имеющие хорошую комковато-зернистую структуру, не обладают высокой твердостью и связностью.

Высокая твердость – признак плохих физико-химических и агрофизических свойств почв. При высокой твердости снижается прорастание семян, затрудняются проникновение корней в почву и развитие растений вследствие неблагоприятного водного, воздушного и теплового режимов. Твердость – важная технологическая характеристика почвы. Твердость прямо пропорциональна удельному сопротивлению почвы при обработке орудиями, а следовательно, больше и энергозатраты. Удельное сопротивление – это физическое усилие, которое затрачивается на подрезание пласта, его оборот и трение о рабочую поверхность плуга. Удельное сопротивление зависит от физико-механических свойств почвы и колеблется в пределах от 0,2 до 1,2 кг/см 2 .

§3. Спелость почвы

Спелость почвы – это такое состояние почвы, при котором она имеет высокую микробиологическую активность и лучше всего подвергается обработке при наименьшем тяговом усилии. Является важным технологическим свойством почвы. Различают физическую и биологическую спелость.

Под физической спелостью почвы понимают ее подготовленность к обработке. Она соответствует влажности, при которой почва не прилипает к почвообрабатывающим орудиям и крошится на комки с образованием прочных агрегатов (эта влажность достигается при содержании влаги от 60 – 90 % их полевой влагоемкости). Влажность, при которой почва находится в состоянии спелости, зависит от гранулометрического состава, поглощенных оснований и гумусированности почв. Легкие песчаные и супесчаные и более гумусированные почвы раньше других готовы для обработки весной.

Биологическая спелость – состояние почвы, показывающее ее готовность к посеву, характеризующееся оптимальным прогреванием и состоянием микробиологической активности. Наилучшим состоянием спелости считается такое, когда физическая и биологическая спелости совпадают.

Природа происхождения грунтов. Изучение состава, строения и состояния грунтовых оснований. Исследование форм, размеров и взаимного расположения частиц в почве, их структурные связи. Геологическая классификация почв и их физические характеристики.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 26.01.2013
Размер файла 35,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

КУРСОВАЯ РАБОТА

Содержание

1. Состав, строение и состояние грунтов

1.1 Грунтовые основания. Происхождение грунтов

1.2 Состав грунтов

1.3 Форма, размеры и взаимное расположение частиц в грунте

1.4 Структурные связи между частицами грунта

2. Физические характеристики, классификация грунтов, строение оснований

2.1 Основные физические характеристики грунтов

2.2 Классификация грунтов

2.3 О связи физических и механических характеристик грунтов

2.4 Геологическое строение оснований

Введение

Механика грунтов, основания и фундаменты вместе с инженерной геологией и охраной природной среды составляют особый цикл строительных дисциплин. Предметом его изучения являются материалы, как правило, природного происхождения - грунты и их взаимодействие с сооружениями. Если конструкционные материалы приготавливаются технологами так, чтобы они обладали заданными строительными свойствами, то грунты каждой строительной площадки имеют самостоятельную историю образования. Состав, строение и свойства грунтов разных строительных площадок определены природой и могут существенно различаться, требуя каждый раз специального изучения.

Поведение грунтов под нагрузками сопровождается сложными процессами, во многом отличающимися от поведения конструкционных материалов. Это потребовало разработки специальных экспериментальных методов и теоретического аппарата механики грунтов для описания процессов их деформирования и разрушения.

Нормальная эксплуатация здания или сооружения во многом зависит от того, насколько правильно запроектировано и осуществлено его взаимодействие с основанием. Это же в значительной мере влияет на стоимость и сроки строительства.

Поэтому цель настоящего курса - научить будущих инженеров-строителей обоснованию и принятию оптимальных решений по устройству оснований и фундаментов зданий и сооружений промышленного и гражданского назначения в различных инженерно-геологических условиях.

Курс состоит из двух частей.

Механика грунтов, основания и фундаменты неразрывно связаны с инженерной геологией, изучающей верхнюю часть земной коры как среду инженерной деятельности человека. Для понимания механики грунтов необходимо знать дисциплины механико-математического цикла: сопротивление материалов, теорию упругости, пластичности и ползучести, строительную механику, владеть методами математического анализа. Проектирование оснований и фундаментов требует также знания строительных конструкций, технологии строительного производства. Техники безопасности, экономики и организации строительства. Развитие автоматизированного проектирования фундаментов связано с умением специалистов работать с современными ЭВМ, прежде всего с персональными компьютерами.

1. Состав, строение и состояние грунтов

1.1 Грунтовые основания. Происхождение грунтов

Всякое сооружение покоится на грунтовом основании. В зависимости от геологического строения участка застройки строение основания даже расположенных вблизи сооружений может быть различным (рис. 1.1). Обычно основание состоит из нескольких типов грунтов, которые определенным образом сочетаются в пространстве (сооружения А, В, Г, Д на рис. 1.1). В частном случае основание может состоять из грунта одного типа (сооружение Б на рис. 1.1).

Сооружение и основание составляют единую систему. Свойства грунтов основания, их поведение под нагрузками от сооружения во многом определяют прочность, устойчивость и нормальную эксплуатацию сооружения. Поэтому инженер-строитель должен хорошо понимать, что представляют собой грунты, каковы их особенности по сравнению с другими конструкционными материалами (бетон, железобетон, металл, кирпич и т.п.), каким образом залегают грунты в основании сооружений, что определяет свойства грунтов и грунтовых оснований.

Грунтом называют всякую горную породу, используемую при строительстве в качестве основания сооружения, среды, в которой сооружение возводиться, или материала для сооружения.

Горной породой называют закономерно построенную совокупность минералов, которая характеризуется составом, структурой и текстурой.

Под составом подразумевают перечень минералов, составляющих породу. Структура - это размер, форма и количественное соотношение слагающих породу частиц. Текстура - пространственное расположение элементов грунта, определяющее его строение.

Горная порода, а следовательно, и грунт представляют собой не случайное скопление минералов, а закономерную определенным образом построенную совокупность. Это имеет исключительно большое значение для строительства. Действительно, совокупностей минералов может быть много. Закономерно построенных совокупностей горных пород в природе выделяется большое, но ограниченное количество. Инженерная геология изучает закономерности образования и свойства горных пород как грунтов. Наличие в природе однотипных грунтов, широко распространенных в разных частях Земли, служит основанием для разработки стандартных приемов строительства и применения типовых конструкций фундаментов. Так. Существование слабых водонасыщенных грунтов - илов - уже в древности привело к идее устройства фундаментов; особые свойства не менее широко распространенного лессового грунта потребовали разработки специальных способов строительства и т.п. В связи с этим, прежде чем рассматривать методы расчета и проектирования оснований и фундаментов, необходимо изучить основные типы грунтов, их физические свойства, особенности строения оснований.

Закономерности состава и строения грунтов теснейшим образом связаны с условиями их происхождения. В инженерной геологии происхождение грунтов детально изучено в разных условий. Происхождение положено в основу классификации грунтов (ГОСТ 25100-82).

Все грунты разделяются на естественные - магматические, осадочные, метаморфические - и искусственные - уплотненные, закрепленные в естественном состоянии, насыпные и намывные.

Магматические (изверженные) горные породы образуются при медленном остывании и отвердении огненно-жидких расплавов магмы в верхних слоях земной коры (интрузивные, или глубинные, породы-граниты, диориты, габбро и др.), а также при быстром остывании излившегося на поверхность земли расплава (эффузивные, или излившиеся, - бальзаты, порфиры и др.)

Осадочные горные породы образуются в результате выветривания, перемещения, осаждения и уплотнения продуктов разрушения исходных пород магматического, метаморфического или осадочного происхождения, образовавшихся ранее. В зависимости от степени упрочнения различают сцементированные (песчинки, доломиты, алевролиты и т.п.) и несцементированные осадочные породы (крупнообломочные, песчаные, пылевато-глинистые грунты, лессы, илы, торфы, почвы и т.п.).

Метаморфические горные породы образуются в недрах из осадочных, магматических или метаморфических пород путем их перекристаллизации под воздействием высоких давлений и температур в присутствии горячих растворов. Наиболее типичные метаморфические горные породы - сланцы, мраморы, кварциты, гнейсы.

Горные породы метаморфического, магматического происхождения и сцементированные осадочные породы обладают жесткими связями между частицами и агрегатами и относятся к классу скальных грунтов. Осадочные несцементированные породы не имеют жестких связей и относятся к классу нескальных грунтов.

В самых верхних слоях земной коры, называемых зоной современного выветривания. Под влиянием колебаний температуры, изменения состояния и химического состава воды, газов, деятельности растительных и животных организмов и т.п. развиваются процессы выветривания - физического, химического. Органического разрушения минералов и горных пород. Продукты разрушения верхних зон коры выветривания могут перемещаться водой или воздухом, переносится на большие расстояния и вновь откладываться на новых территориях. Различие условий происхождения и дальнейшего изменения являются причиной разнообразия строения, состава, состояния и условий залегания грунтов в верхних слоях земной коры.

К искусственным скальным грунтам относятся все природные грунты любого происхождения, специально закрепленные материалами, приводящими к возникновению жестких связей (цементные и глинисто-силикатные растворы, жидкое стекло и т.п.). К классу нескальных искусственных грунтов относятся несцементированные осадочные породы, подвергнутые специальному уплотнению в природном залегании, насыпные, намывные грунты, а также твердые промышленные отходы (шлаки, золы и т.п.).

структурная связь частица грунтовое основание

1.2 Состав грунтов

Состав грунтов в значительной мере определяет их физические и механические свойства. В связи с этим он достаточно хорошо изучен в разделе инженерной геологии - грунтоведения.

В общем случае, с физических позиций, грунт состоит из трех компонентов: твердой, жидкой, газообразной.

Иногда в грунте выделяют биоту - живое существо. Это оправдано с общенаучной точки зрения и полезно практически, так как жизнедеятельность организмов может оказывать существенное воздействие на свойства грунтов. Активизация жизнедеятельности бактерий, как правило, снижает прочность грунта, а их отмирание приводит к повышению его прочности. Однако пока свойства биоты не нашли отражения в моделях механики грунтов, и мы будем рассматривать грунт как трехкомпонентную систему.

Было бы сравнительно просто решать задачи фундаментостроения, если бы грунт можно было рассматривать как механическую систему, состоящую из твердого. Жидкого и газообразного веществ с фиксированными независимыми свойствами каждой компоненты. В действительности дело обстоит сложнее. На свойства грунта, как системы, значительное влияние оказывает минеральный и химический состав вещества, наличие биологически активной составляющей. Химические. Физические, физико-химические и биологические процессы в грунтах протекают в сложном взаимодействии, сливаясь в единый геологический процесс, который изменяет свойства грунта во времени до строительства, при строительстве и впоследствии при эксплуатации сооружений.

Твердые частицы грунтов состоят из породообразующих минералов с различными свойствами. Часть минералов инертна по отношению к воде и практически не вступает во взаимодействие с растворенными в ней веществами (кварц, полевые шпаты, слюда, авгит, кремень, роговая обманка и др.). Эти минералы не меняют свойств не только при изменении содержания воды, но и в широком диапазоне температур. Очевидно, что грунты. Полностью сложенные такими минералами, обладают наиболее благоприятными строительными свойствами. Из инертных минералов состоят все магматические горные породы, подавляющее большинство метаморфических часть осадочных. Среди осадочных пород этими минералами сложены пески и крупнообломочные грунты, а также образующие из них при цементации песчинки и конгломераты.

Большое влияние на свойства грунтов оказывают растворимые в воде минералы. К ним относятся галит NCl, гипс CaSO4 ? 2H2O, кальцит CaCO3 некоторые другие. Такие распространенные горные породы, как мрамор, известняк, гипс, сложены растворимыми минералами.

Глинистые минералы составляют третью группу. Они нерастворимы в воде в отличии от минералов предыдущей группы, но их никак нельзя приравнять к инертным минералам первой группы. В силу чрезвычайно малых размеров кристаллов глинистые минералы обладают высокой коллоидной активностью. К ним относятся каолинит. Монтмориллонит, иллит, и другие минералы, кристаллы которых имеют выраженное свойство гидрофильности. Из-за мельчайших размеров и высокоразвитой поверхности глинистые минералы активно взаимодействуют с жидкой составляющей грунтов. Поэтому уже малое содержание их в общей массе грунта резко изменяет его свойства.

Органическое вещество в грунтах у поверхности земли находятся в виде микроорганизмов, корней растений и гумуса, а в глубоких горизонтах - в виде нефти. Бурого и каменного угля. Повсеместно на равнинных площадях с поверхности залегает почва, которая содержит 0,5…5% органических соединений. Коллоидная активность гумуса выше, чем даже глинистых минералов.

Жидкая составляющая грунтов. Кристаллизационная вода принимает участие в строении кристаллических решеток минералов и находится внутри частиц грунта. Удаление ее путем длительного нагревания грунта может привести к разложению минералов и значительному изменению свойств грунта.

Свободная вода в грунте подчиняется законам гидравлики. Она передает гидростатическое давление и может перемещаться под воздействием разности напоров. Часто свободную воду подразделяют на гравитационную и капиллярную. Практически вся вода, содержащаяся в трещиноватых скальных породах, крупнообломочных, гравелистых и крупных песках, относится к гравитационной. Капиллярная вода может содержаться в песках средней крупности, мелких и особенно пылеватых песках и глинистых грунтах.

Сложное и разнообразное взаимодействие твердых частиц грунта с водой очень сильно влияет на свойства грунта. Например. замерзание пылевато-глинистых грунтов происходит постепенно при понижении отрицательной температуры: сначала в лед переходит свободная вода, затем периферийные и, наконец, более глубокие слои рыхлосвязанной воды. Фильтрация свободной воды в грунте возникает сразу же после появления разности напоров. Однако для перемещения слоев даже рыхлозвязанной воды требуется приложение тем больших силовых воздействий, чем ближе эти слои находятся к поверхности частиц. В то же время, если по каким либо причинам. Например, из-за перепада температур в зоне замерзания грунта, соседние частицы будут иметь разные по толщине слои связанной воды. Возможно возникновение миграции - перемещение связанной воды из более толстых пленок в более тонкие. Если зона замерзания грунта соединена капиллярной водой с уровнем подземных вод, то объем воды, подтягиваемой в зону замерзания, может быть весьма значительным. Здесь важно отметить. Что знание физико-химических особенностей взаимодействия твердых частиц с водой в грунте позволяет не только объяснить многие важные для практики строительства инженерные мероприятия.

Газообразная составляющая грунта. Содержание воды и газов в грунте зависит от объема его пор: чем больше поры заполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена атмосферным воздухом, ниже - азоном, метаном, сероводородом и другими газами. Необходимо подчеркнуть, что метан, сероводород, угарный газ ядовиты, и могут содержаться в грунте в концентрациях, опасных для жизни работающих в слабо проветриваемых выемках. Интенсивность газообмена между атмосферой и грунтом зависит от состава и состояния грунта и повышается с увеличением содержания и размеров трещин, пустот, пор. В газообразной составляющей всегда присутствуют пары воды.

Газы в грунте могут быть в свободном состоянии или растворены в воде. Свободный газ подразделяется на не защемлённый сообщающийся с атмосферой, и защемленный, находящийся в контактах между частицами и пленками воды в виде мельчайших пузырьков в воде. В поровой воде всегда содержится то или иное количество растворенного газа. Повышение давления или понижение температуры приводит к увеличению количества растворенного газа.

Содержание в грунте защемленного и растворенного в воде газа существенно сказывается на свойствах грунта и протекающих в них процессах. Уменьшение давления вследствие разработки котлована или извлечения образца грунта на поверхность может привести к выделению пузырьков газа и разрушению природной структуры грунта. Наоборот, увеличение давления при передаче нагрузки от сооружения может сопровождаться повышением содержания растворенного в воде газа. В то же время увеличение содержания в воде пузырьков воздуха может увеличить сжимаемость воды в сотни раз и сделать ее соизмеримой со сжимаемостью скелета грунта.

Наблюдения показывают, что при подтоплении территории (повышении уровня подземных вод) в обводненном грунте на многие годы, если не на десятилетия, задерживается защемленный газ. Э то имеет большое значение, в частности при сейсмическом микрорайонировании. На обводненных грунтах сейсмическая бальность выше. Защемленный воздух поднимает ее дополнительно, так как снижает скорость прохождения сейсмических волн.

Итак, грунт состоит из твердой, жидкой и газообразной компонент. В каждой из трех компонент чаще в малом и незначительном, а иногда и в существенном количестве содержатся микроорганизмы. Из всех составляющих грунта наиболее стабильной является твердая компонента. Жидкая (вода0 при отрицательных температурах переходит в твердое состояние (лед), может истекать, испаряться. Газ при перемене условий растворяется, вытесняется жидкостью или другими газами. Очевидно, что свойства грунтов зависят от состава, состояния и взаимодействия слагающих его компонент.

1.3 Форма, размеры и взаимное расположение частиц в грунте

Совокупность твердых частиц, состоящих из минерального вещества, образует как бы каркас, скелет грунта. Поровая вода и газ как сплошная среда располагаются в порах и трещинах между частицами. Форма частиц может быть угловатой и округлой. Угловатая форма характерна для мельчайших кристаллов, которые не округляются при соударениях из-за их исключительно малой массы и значительной прочности. Среди крупных обломков выделяются угловые (глыбы, щебень, дресва) и окатанные (валуны, галька, гравий).

Для удобства классификации частицы, близкие по крупности, объединяются в определенные группы (гранулометрические фракции), которым присваиваются следующие наименования (табл. 1.1).

Грунт свойства. Физические и механические свойства грунта

Грунт свойства. Физические и механические свойства грунта

От 40 до 50% объема инженерно-геологических работ приходится на лабораторные испытания. Инженерные изыскания предоставляют заказчику детальную информацию об исследуемом участке под застройку: данные о геологии участка, основные геологические особенности территории, а также прогноз на возможное изменение данных условий в ходе строительства и эксплуатации возведенного здания или сооружения.

Физические свойства грунта

Физические свойства грунта характеризуют физические состояние грунта и способность изменять это состояние под влиянием физико-химических факторов. Они оказывают значительное влияние на технологию производства земляных работ.

Плотность грунта – отношение массы грунта m, включая массу воды в его порах, к объему грунта V

Влажность грунта характеризует насыщенность грунта водой и определяется отношением массы содержащейся в нём воды m2 к массе твёрдых минеральных частиц грунта m1

Сухие грунты имеют влажность до 5%, влажные – от 5 до 30%, мокрые – свыше 30%.

Удельный вес грунта – вес занимаемого грунтом объёма

Относительное содержание твёрдых частиц – отношение объёма твёрдых частиц V1 к объёму грунта

Пористость грунта – отношение объема пор Vпор к полному объему V, занимаемого грунтом

n = V пор /V = 1 - ρ d /ρ s , %,

где ρ d – плотность сухого грунта, ρ s – плотность твердых частиц грунта.

Коэффициент пористости грунта – отношение объема пор в образце к объему, занимаемому его твердыми частицами

e = ρ s /ρ d - 1 = n/(1-n) .

Водонасыщение – степень заполнения объема пор грунта водой

ρ ω – плотность воды.

Набухание грунта – увеличение его объема при взаимодействии с водой; свойственно глинистым грунтам при их замачивании.

Механические свойства грунта

Механические свойства грунта определяются действием внешней нагрузки или при изменении их физического состояния.

1) Деформационные – способность грунта сопротивляться развитию деформаций:

Сжимаемость грунта – изменение своего первоначального объёма за счёт перекомпоновки частиц и уменьшения пористости; характеризуется модулем деформации, коэффициентом уплотнения и модулем осадки.

зависит от его пористости, фанулометрического и минералогического составов, природы внутренних структурных связей и характера действия нагрузки;

Модуль общих деформаций – учитывает все упругие и остаточные деформации при одноразовом воздействии на грунтовое основание сжимающей нагрузки. Используется при расчёте осадок фундамента.

2) Прочностные – способность грунта сопротивляться разрушению:

Прочность грунта – сопротивляемость сдвигу;

Твердость грунта – сопротивление прониканию твердого тела.

3) Фильтрационные – способность грунта отжимать воду из своих пор:

Водопроницаемость грунта – способность пропускать через поры воду под действием разности напоров;

Скорость фильтрации – расход воды через единицу площади;

Коэффициент фильтрации kf характеризует фильтрационные свойства грунта и определяется эксперементально

где V – объём профильтровавшейся воды при одном замере, см³; A – площадь поперечного сечения цилиндра фильтрационной трубки см²; j – градиент напора (отношение перепада высот ΔH к длине фильтрационного промежутка l: j = ΔH/l ); t – время фильтрации, с.

Просадочность – способность грунта легко размокать, размываться, а при замачивании давать значительные просадки под действием нагрузки.

пластичность (способность грунта под действием внешних сил изменять свои размеры и форму без образования трещин), размываемость (способность оказывать сопротивление разрушающему действию воды).

Разрыхляемость грунта характеризуется увеличением его объема при разработке, по сравнению с объемом в природном состоянии и выражается коэффициентом первоначального разрыхления – Кр. Уложенный в насыпь разрыхленный грунт после уплотнения по сравнению с природным состоянием сохраняет остаточное разрыхление, которое характеризуется коэффициентом остаточного разрыхления Ко.р.

Грунт свойства. Физические и механические свойства грунта

Читайте также: