Какие растения имеют клеточное строение

Добавил пользователь Владимир З.
Обновлено: 19.09.2024


Растительная клетка

Растительная клетка и ее строение

Клетка — структурная единица живого организма. Как функциональная единица она обладает всеми свойствами живого: дышит, питается, ей свойствен обмен веществ, выделение, раздражимость, деление и самовоспроизведение себе подобных. Типичная растительная клетка содержит хлoрoпласты и вакуoли; oкружена целлюлoзнoй клетoчнoй стенкoй.

Хлоропласты — двумембранные пластиды зелёного цвета (наличие пигмента хлорофилла). Отвечают за процесс фотосинтеза. Кроме хлоропластов, в растительной клетке имеются жёлто-оранжевые или красные пластиды (хромопласты) и бесцветные пластиды (лейкопласты).

Вакуоль — полость, занимающая 70—90 % общего объёма взрослой клетки, отделённая от цитоплазмы мембраной (тонопластом). Для рaстительных клеток хaрaктерно нaличие вaкуоли с клеточным соком, в котором рaстворены соли, сaхaрa, оргaнические кислоты. Вaкуоль регулирует тургор клетки (внутреннее давление).

Цитоплазма — внутренняя среда клетки, бесцветное вязкое образование, находящееся в постоянном движении. Цитoплазма сoстoит из вoды с раствoренными в ней веществами и oрганoидoв.

Растительная клетка

Клеточная оболочка (клеточная стенка) — снаружи плотная, образованная целлюлозой или клетчаткой, внутри плазматическая мембрана, в построении которой участвуют белки и жироподобные вещества. Ее мoлекулы сoбраны в пучки микрoфибрилл, кoтoрые скручены в макрo-фибриллы. Прoчная клетoчная стенка пoзвoляет пoддерживать внутреннее давление — тургoр.

Ядро — носитель признаков и свойств клетки и всего организма. Ядро отделено от цитоплазмы двухслойной мембраной. В ядре находятся хромосомы и ядрышки. Число хромосом для вида постоянно. Ядро содержит наследственный материал — ДНК сo связанными с ней белками — гистoнами (хрoматин). Ядро заполнено ядерным соком (кариоплазмой). Ядрo кoнтрoлирует жизнедеятельнoсть клетки. Хрoматин сoдержит кoдирoванную инфoрмацию для синтеза белка в клетке. Вo время деления наследственный материал представлен хрoмoсoмами.

Лизосомы — мембранные тельца, содержащие ферменты внутриклеточного пищеварения. Переваривают вещества, избыточные органеллы (аутофагия) или целые клетки (аутолиз).

клеточное строение

Тело высшего растения образовано клетками, которые отличаются друг от друга строением и функцией. Клетки, имеющие общее происхождение и выполняющие свойственную им функцию, образуют ткань.

Жизнедеятельность клетки

    1. Движение цитоплазмы осуществляется непрерывно и способствует перемещению питательных веществ и воздуха внутри клетки.
    2. Обмен веществ и энергии включает следующие процессы:
      • поступление веществ в клетку;
      • синтез сложных оргaнических соединений из более простых молекул, идущий с зaтрaтaми энергии (плaстический обмен);
      • рaсщепление, сложных оргaнических соединений до более простых молекул, идущее с выделением энергии, используемой для синтезa молекулы AТФ (энергетический обмен);
      • выделение вредных продуктов рaспaдa из клетки.
    3. Размножение клеток делением.
    4. Рост клеток — увеличение клеток до размеров материнской клетки.
    5. Развитие клеток — возрастные изменения структуры и физиологии клетки.

    Схема. Типичная растительная клетка.

    Растительная клетка и ее строение

    Нажмите на картинку для увеличения!


    Наименьшей частью организма является клетка, она способна существовать самостоятельно и имеет все признаки живого организма. В данной статье мы узнаем, какое строение имеет растительная клетка, кратко расскажем об её функциях и особенностях.


    Строение клетки растения

    В природе существуют как одноклеточные растения, так и многоклеточные. Например, в водной среде можно встретить одноклеточные водоросли, клетки которых имеют все функции, присущие живому организму.

    Многоклеточная особь – это не просто набор клеток, а единый организм, состоящий из различных тканей и органов, которые взаимодействуют между собой.

    Строение растительной клетки у всех растений схоже, их клетки состоят из одних и тех же компонентов. Рассмотрим состав растительной клетки:

    • оболочка (включает в себя цитоплазматическую мембрану и клеточную стенку из целлюлозы);
    • цитоплазма, с расположенными в ней митохондриями, хлоропластами, вакуолями и другими органоидами;
    • ядро, состоящие из ядерной оболочки, ядерного сока, ядрышка, хроматина.

    В отличие от животной растительная клетка имеет особую целлюлозную оболочку, вакуоли с клеточным соком и пластиды.

    Изучение строения и функций растительной клетки показало, что:

    которые читают вместе с этой





    • самой значительной частью в организме является ядро, которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От цитоплазмы отделяет ядро ядерная оболочка;
    • бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой. Именно в ней находятся все органоиды;
    • под клеточной стенкой находится мембрана (тонопласт), которая отвечает за обмен веществ с окружающей средой. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
    • клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и поддержание формы;
    • важными составными компонентами являются пластиды.
    • митохондрии способны передвигаться вместе с цитоплазмой, как и пластиды. Именно здесь происходит процесс дыхания и образования АТФ;
    • аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль – накопление и выведение различных веществ;
    • рибосомысинтезируют белок. Находятся они в цитоплазме, внутри митохондрий и пластид.

    Клеточное строение растений учёные открыли ещё в XVII веке. Клетки апельсиновой мякоти видны невооружённым глазом, но большинство клеток растений можно рассмотреть лишь под микроскопом.

    Строение аппарата Гольджи

    Рис. 3. Строение аппарата Гольджи.

    Особенности растительного организма

    Сравнение растений с другими организмами позволило выявить следующие особенности:

    • в отличие от других живых организмов, растения имеют вакуоль, заполненную клеточным соком;
    • клеточная стенка по своему составу отличается от грибного хитина и стенок бактерий. В её состав входит целлюлоза, пектин и лигнин;
    • связь между клетками осуществляется при помощи специальных цитоплазматических мостиков – плазмодесм;
    • пластиды имеются только в растительном организме. Помимо хлоропластов это могут быть лейкопласты, которые делятся на два вида: одни из них запасают жиры, другие – крахмал. А также хромопласты, которые окрашены в желто-красные цвета за счет пигментов;
    • в отличие от животного организма, у клеток высших растений нет центриолей (но они есть у водорослей).

    Что мы узнали?

    Будучи самой маленькой частью всего организма, клетка может существовать самостоятельно у одноклеточных водорослей. Именно клетки обеспечивают работу отдельных органов и всего организма. Отличительными компонентами растительных клеток являются: клеточная стенка из целлюлозы, наличие пластид и вакуолей с клеточным соком. Каждый органоид имеет свои функции, без выполнения которых невозможно функционирование всего организма в целом.


    Хотя отдельные виды растений уникальны, все они имеют общую структуру: растительное тело, состоящее из стеблей, корней и листьев. Эти органы транспортируют воду, минералы и сахара, полученные в результате фотосинтеза, через тело растения. Все виды растений также реагируют на внешние факторы окружающей среды, такие как свет, гравитация, конкуренция, температура и хищничество.

    Тело человека включает в себя системы органов, состоящие из отдельных органов, которые работают вместе, чтобы выполнять определенные функции. Эти органы, в свою очередь, состоят из различных видов тканей, которые представляют собой группы клеток, работающих сообща. Например, ваш желудок состоит из мышечной ткани, облегчающей движение пищи, и железистой ткани, выделяющей ферменты для расщепления молекул пищи. Ткани, в свою очередь, состоят из клеток, специализированных по форме, размеру и компонентам органелл.

    Растения тоже состоят из органов, которые, в свою очередь, состоят из тканей. Растительные ткани, как и наши, состоят из специализированных клеток, содержащих специфические органеллы. Именно эти клетки, ткани и органы поддерживают жизнь растений.

    Клетки растений

    Растительные клетки во многом напоминают другие эукариотические клетки. Например, они заключены в плазматическую мембрану и имеют ядро и другие мембраносвязанные органеллы. Типичная растительная клетка представлена диаграммой на рисунки ниже.


    Структуры, которые есть в растительных клетках, но нет в клетках животных, включают большую центральную вакуоль, клеточную стенку и пластиды, такие как хлоропласты.

    • Большая центральная вакуоль окружена собственной мембраной и содержит воду и растворенные вещества. Ее основная роль заключается в поддержании давления на внутреннюю часть клеточной стенки, придавая клетке форму и помогая поддерживать растение.
    • Клеточная стенка расположена вне клеточной мембраны. Она состоит в основном из целлюлозы и может также содержать лигнин, что придает ей жесткости. Клеточная стенка формирует, поддерживает и защищает клетку. Она предотвращает поглощение клеткой слишком большого количества воды и ее разрыв, а также защищает от больших молекул вне клетки.
    • Пластиды – это мембраносвязанные органеллы с собственной ДНК. Примерами являются хлоропласты и хромопласты. Хлоропласты содержат зеленый пигмент хлорофилл и осуществляют фотосинтез. Хромопласты производят и хранят другие пигменты. Они придают лепесткам цветов их яркие цвета.

    Типы растительных клеток

    У большинства растений есть три основных типа клеток. Эти клетки составляют основные ткани, с которыми мы ознакомимся ниже. Различные виды растительных клеток отличаются по своей структуре и функциям.

    Таблица. Особенности основных клеток растений


    Растения – многоклеточные эукариоты с тканевыми системами, состоящими из различных типов клеток, которые выполняют определенные функции. Системы растительных тканей делятся на два основных типа: меристематические (образовательные) и постоянные (основные) ткани. Клетки меристематической ткани находятся в меристемах, которые представляют собой области непрерывного клеточного деления и роста. Меристематические клетки ткани либо недифференцированы, либо не полностью дифференцированы, и они продолжают делиться и вносить свой вклад в рост растения. Напротив, постоянная ткань состоит из клеток, которые больше активно не делятся.

    Меристематические ткани бывают трех типов, в зависимости от их расположения в растении. Апикальные (верхушечные) меристемы расположенны на кончиках стеблей и корней и позволяют растению увеличиваться в длину. Латеральные (боковые) меристемы способствуют росту в толщину. Интеркалярные (вставочные) меристемы встречаются только у однодольных, у оснований листовых пластинок и в узлах (областях, где листья прикрепляются к стеблю). Эта ткань позволяет листовой пластинке увеличиваться в длину от основания листа; например, она обеспечивает повторное отрастание листьев газонной травы даже после многократного скашивания.


    Меристемы производят клетки, которые быстро дифференцируются или специализируются и становятся постоянной тканью. Такие клетки берут на себя определенные функции и теряют способность к дальнейшему делению. Они подразделяются на три основных типа: покровные, механические и проводящие ткани. Покровная ткань покрывает и защищает растение, а проводящая ткань транспортирует воду, минералы и сахара в различные части растения. Механическая ткань служит местом для фотосинтеза, обеспечивает поддерживающую матрицу для сосудистой ткани и помогает накапливать воду и сахара.

    Вторичные ткани бывают либо простыми (состоящими из одинаковых типов клеток), либо сложными (состоящими из разных типов клеток). Эпидерма, например, представляет собой простую ткань, которая покрывает внешнюю поверхность растения и контролирует газообмен. Проводящая ткань является примером сложной ткани и состоит из двух специализированных проводящих тканей: ксилемы и флоэмы. Ткань ксилемы транспортирует воду и питательные вещества от корней к различным частям растения и включает в себя сосуды, трахеиды, волокна ксилемы и паренхиму ксилемы. Ткань флоэмы, которая транспортирует органические соединения от места фотосинтеза к другим частям растения, состоит из четырех различных типов клеток: волокна флоэмы, ситовидные трубки, паренхиму флоэмы и клетки-компаньоны. В отличие от ксилемных проводящих клеток, флоэмные остаются живы в зрелости.

    Покровная ткань

    Покровная ткань стебля состоит в основном из эпидермиса, одного слоя клеток, покрывающих и защищающих другие ткани. Древесные растения имеют жесткий, водонепроницаемый внешний слой пробковых клеток, широко известный как кора, которая дополнительно защищает растение от повреждений. Эпидермальные клетки – самые многочисленные и наименее дифференцированные из клеток эпидермиса. Эпидермис листа также содержит отверстия, известные как устьица, через которые происходит обмен газами. Две защитные клетки, окружают каждую листовую стому, контролируя ее открытие и закрытие и, таким образом, регулируя поглощение углекислого газа и выделение кислорода и водяного пара. Трихомы – это волоскоподобные структуры на поверхности эпидермиса. Они помогают замедлять транспирацию (потерю воды надземными частями растений), повышать солнечную отражающую способность и накапливать соединения, которые защищают листья от травоядных животных.

    Проводящая ткань

    Ксилема и флоэма, составляющие сосудистую ткань стебля, расположены в виде отдельных нитей, называемых сосудистыми пучками, которые проходят вверх и вниз по длине стебля. При осмотре стебля в поперечном сечении сосудистые пучки двудольных стеблей располагаются кольцом. У растений со стеблями, которые живут более одного года, отдельные пучки растут вместе и образуют характерные кольца роста. В стеблях однодольных сосудистые пучки беспорядочно разбросаны по всей механической ткани.

    Ткань ксилемы имеет три типа клеток: паренхиму ксилемы, трахеиды и сосудистые элементы. Трахеиды – это ксилемные клетки с толстыми вторичными клеточными стенками, которые одревесневают. Вода движется от одной трахеиды к другой через области на боковых стенках, известные как ямы, где вторичные стенки отсутствуют. Сосудистые элементы представляют собой клетки ксилемы с более тонкими стенками; они короче трахеид. Каждый элемент сосуда соединен со следующим посредством перфорационной пластины на торцевых стенках элемента. Вода движется через перфорационные пластины вверх по растению.

    Ткань флоэмы состоит из волокна флоэмы, ситовидные трубки, паренхиму флоэмы и клетки-компаньоны. Ряд клеток ситовидных трубок расположены вплотную друг к другу, образуя длинную трубку, по которой транспортируются органические вещества, такие как сахара и аминокислоты. Сахара перетекают из одной клетки ситовидной трубки в другую через перфорированные решетчатые пластины, которые находятся в концевых соединениях между двумя клетками. В зрелом возрасте, ядро и другие структуры клеток ситовидных трубок распадаются. Клетки-компаньоны находятся рядом с клетками ситовидных трубок, обеспечивая им метаболическую поддержку. Клетки-компаньоны содержат больше рибосом и митохондрий, чем клетки ситовидных трубок, в которых отсутствуют некоторые органеллы.

    Механическая ткань

    Механическая ткань в основном состоит из клеток паренхимы, но может также содержать клетки колленхимы и склеренхимы, которые помогают поддерживать стебель. Основная ткань в направлении внутренней части сосудистой ткани в стебле или корне известна как сердцевина, в то время как слой ткани между сосудистой тканью и эпидермисом известен как кора.

    Органы растений


    Как и животные, растения содержат клетки с органеллами, в которых происходит специфическая метаболическая деятельность. Однако, в отличие от животных, растения используют энергию солнечного света для образования сахаров в процессе фотосинтеза. Кроме того, растительные клетки имеют клеточные стенки, пластиды и большую центральную вакуоль, которые не встречаются в клетках животных. Каждая из этих клеточных структур играет определенную роль в строении и функционировании растений.

    У растений, как и у животных, сходные клетки, работая вместе, образуют ткань. Когда различные типы тканей работают сообща, чтобы выполнять уникальную функцию, они образуют орган; органы, работающие вместе, формируют системы органов. Сосудистые растения имеют две различные системы органов: побеговую и корневую. Побеговая система состоит из двух частей: вегетативных (не репродуктивных) частей растения, таких как листья и стебли, и репродуктивных частей растения, которые включают цветы и плоды. Побеговая система обычно находится над землей, где она поглощает свет, необходимый для фотосинтеза. Корневая система, которая поддерживает растения и поглощает воду и минералы из почвы, обычно расположена под землей.

    Стебель


    Стебли являются частью побеговой системы растения. Они могут варьироваться в длину от нескольких миллиметров до сотен метров, а также отличатся в диаметре, в зависимости от типа растения. Стебли обычно находятся над землей, хотя стебли некоторых растений растут под землей. Стебли могут быть травянистыми (мягкими) или древесными. Их основная функция – это поддержание растения, удерживая листья, цветы, плоды и почки; в некоторых случаях стебли также хранят пищу для растения. Стебель может быть неразветвленным, как у пальмы, или сильно разветвленным, как у магнолии. Стебель соединяет корни с листьями, помогая транспортировать поглощенную воду и минералы в различные части растения. Он также помогает транспортировать продукты фотосинтеза, а именно сахара, от листьев к остальной части растения.

    Стебли растений, как надземные, так и подземные, характеризуются наличием узлов и междоузлий. Узлы – это точки прикрепления листьев, воздушных корней и цветов. Область стебля между двумя узлами называется междоузлием. Стебель, который простирается от основного стебля до основания листа, называется черешком. Пазушная почка обычно находится в пазухе – области между основанием листа и стеблем – где она может дать начало ветке или цветку. Верхушка (кончик) побега содержит апикальную меристему внутри апикальной почки.

    Листья


    Листья являются основными органами для осуществления фотосинтеза – процесса, посредством которого растения синтезируют пищу. Большинство листьев обычно зеленые, из-за присутствия хлорофилла в их клетках. Однако некоторые листья могут иметь разные цвета, вызванные другими растительными пигментами, которые маскируют зеленый хлорофилл.

    Толщина, форма и размер листьев адаптированы к окружающей среде. Каждая вариация помогает растению максимизировать свои шансы на выживание в определенной среде обитания. Обычно листья растений, растущих в тропических лесах, имеют большую площадь поверхности, чем листья растений, растущих в пустынях или очень холодных условиях, которые имеют меньшую площадь поверхности, чтобы минимизировать потерю воды.

    Корни


    Корни семенных растений выполняют три основные функции: закрепляют растение в почве, поглощают воду и минералы и транспортируют их вверх, а также хранят продукты фотосинтеза. Некоторые корни модифицированы для поглощения влаги и обмена газов. Большинство корней находятся под землей. Некоторые растения, однако, также имеют придаточные корни, которые появляются над землей из побега.

    Корневые системы в основном бывают двух типов (пример на рисунке выше). Двудольные имеют стержневую корневую систему, а однодольные – мочковатую. Стержневая корневая система имеет главный корень, который растет вертикально вниз, и из которого возникает много меньших боковых корней. Хорошим примером являются одуванчики; их стержневые корни обычно обрываются при попытке вырвать эти сорняки, и они могут отрастить еще один побег из оставшегося корня). Стержневая корневая система глубоко проникает в почву. Напротив, мочковатая корневая система расположена ближе к поверхности почвы и образует плотную сеть корней, которая также помогает предотвратить эрозию почвы (хорошим примером являются газонные травы, а также пшеница, рис и кукуруза). Некоторые растения имеют сочетание стержневых и волокнистых корней. Растения, растущие в засушливых районах, часто обладают глубокой корневой системой, в то время как растения, произрастающие в районах с обильным количеством воды, как правило, имеют более мелкие корневые системы.

    kletka-rastenii

    Строение растительной клетки. Химический состав.

    Клетка — основная структурная единица жизни

    Для живого характерно клеточное строение: человек и растение, кролик и амеба. Амеба состоит из одной клетки, а лист груши — это 50 млн клеток. Если организм одноклеточный, то его процессы (питание, дыхание, выделение, рост, размножение и т. д.) выполняет одна клетка. В сложном многоклеточном организме каждая клетка является маленькой структурой и выполняет свои определенные функции. Как бы ни отличались клетки разных животных и растений друг от друга, в их строении много общего. Заглянуть в таинственный микромир, не видимый простым глазом, поможет даже школьный микроскоп. Рассматривая препарат под микроскопом, можно увидеть множество круглых, продолговатых и квадратных клеток, плотно прилегающих друг к другу (рис.1).

    растительные клетки

    Рис.1 Разнообразие растительных клеток

    рисунок пробки дерева Роберт Гук

    Рис.2 Рисунок Роберта Гука

    Строение растительной клетки

    Каждая растительная клетка состоит из клеточной оболочки, цитоплазмы и ядра (рис.3).

    Оболочка

    Оболочка покрывает клетку снаружи. В отличие от животной, растительная клетка окружена как бы двумя оболочками. Наружная плотная оболочка не растворяется в горячий воде. Тонкие участки ее называются порами. Через поры осуществляется обмен веществ между клетками. Оболочка придает клетке определенную форму и прочность, защищает внутренние части клетки от повреждения и высыхания. Плотность оболочки определяется входящей в ее состав клетчаткой.

    строение растительной клетки

    Рис.3 Строение растительной клетки

    Цитоплазма

    Цитоплазма — прозрачное, слизистое вещество, похожее на белок яйца. В составе цитоплазмы имеются вода, белки, жиры и сахара, которые участвуют во всех сложных жизненных процессах. Цитоплазма живой клетки пребывает в беспрерывном движении. В цитоплазме находятся ядро, пластиды, одна крупная или несколько небольших вакуолей.

    Вакуоль

    Вакуоль — полость в цитоплазме, заполненная клеточным соком. Это кладовая клетки. Клеточный сок представляет собой раствор органических кислот, витаминов, солей, пигментов, запасаемых веществ и других соединений. При необходимости они используются клеткой. Вакуоль — это и место запаса воды. Вакуоль регулирует давление клеточной жидкости, определяя тем самым упругость тканей. При изменении давления растение увядает.

    Ядро ответственно за передачу наследственных признаков при размножении. Оно контролирует все жизненные процессы клетки. Ядро более плотное, чем цитоплазма, имеет округлую форму. Его оболочка, как и оболочка клетки, тоже имеет утонченные участки — поры. Через них происходит непрерывный обмен веществ между цитоплазмой и ядром. Ядро принимает участие и размножении клетки.

    Читайте также: