Главная область применения аммиака и солей аммония получение удобрений

Добавил пользователь Skiper
Обновлено: 19.09.2024

Формула аммиака — N H 3 . Степень окисления азота равна \(–3\). В молекуле три ковалентные полярные связи. У атома азота одна электронная пара остаётся неподелённой и играет важную роль в способности аммиака вступать в химические реакции.

Молекула аммиака имеет форму пирамиды , в вершине которой расположен атом азота, а в основании — три атома водорода.

Общие электронные пары в молекуле смещены к более электроотрицательному атому азота. Он заряжен отрицательно, а атомы водорода — положительно. Поэтому молекула полярна и представляет собой диполь . Благодаря высокой полярности молекулы аммиака способны образовывать водородные связи между собой и с молекулами воды. Образование водородных связей влияет на физические свойства вещества.

При обычных условиях аммиак представляет собой бесцветный газ с резким неприятным запахом . Он легче воздуха. Ядовит.

Аммиак очень хорошо растворяется в воде — при \(20\) °С в одном объёме воды может раствориться до \(700\) объёмов аммиака. Раствор с содержанием газа \(25\) % называется аммиачной водой, а \(10\)%-ный раствор используется в медицине как нашатырный спирт.

Аммиак легко сжижается при пониженной температуре или при повышенном давления. При испарении жидкого аммиака поглощается много тепла, что позволяет использовать его в холодильных установках.

Степень окисления азота в аммиаке — \(–3\), поэтому в окислительно-восстановительных реакциях он выступает в роли сильного восстановителя .

Аммиак окисляется кислородом с образованием азота или оксида азота(\(II\)). Результат реакции зависит от условий её протекания.

Аммонийные удобрения – группа твердых азотных удобрений, содержащих азот в форме катиона аммония NH4 + . Применяются в качестве основных удобрений. Бесхлорные аммонийные удобрения используют в качестве подкормок в течение вегетационного периода. Получают на основе химического взаимодействия аммиака с различными веществами (серной кислотой, хлоридом натрия, диоксидом углерода и прочими).

Содержание:

Виды аммонийных удобрений

Сульфат аммония

(NH4)2SO4 – азотное удобрение, физиологически и биологически кислое. Внешне – кристаллы белого, сероватого, синеватого или красноватого цвета. Синтетический сульфат аммония белый, цвет появляется в коксохимическом состоянии (NH4)2SO4 из-за органических примесей. Для удобрения характерно обменное поглощение почвой и вследствие этого хорошее закрепление в ней. Поэтому применяется в основном в качестве основного удобрения. Хорошая растворимость позволяет использовать его для подкормок.

Сульфат аммония-натрия

(NH4)2SO+Na2SO4 или Na(NH4)SO4*2H2O – азотное удобрение. Содержит, кроме азота и серы, натрий и органические примеси. Внешне – кристаллическая соль желтоватого цвета.

Является хорошим удобрением для растений, отзывчивых на серу и натрий, в частности, для культур из семейства крестоцветных. Используется для основного, припосевного внесения и подкормок.

Хлористый аммоний

4Сl – азотное удобрение, содержащее хлор (67 %) и азот (24–25 %.) Это его главный недостаток, поскольку это ограничивает его применение для хлорофобных культур (картофеля, винограда, табака и прочих).

Внешне хлорид аммония – мелкокристаллический желтоватый или чисто белый порошок. Обладает хорошей растворимостью. В 100 м 3 воды при 20 °C растворяется 37,2 г вещества. Удобрение малогигроскопичное, при хранении не слеживается.

Высокая физиологичческая кислотность и содержание хлора являются причиной основного использования хлорида аммония осенью под зяблевую вспашку. При таком внесении хлор будет вымыт из корнедоступного слоя атмосферными осадками.

Карбонат аммония

(NН4)2CO3 и бикарбонат аммония NН4 HCO3 – углекислые соли аммония. Применяются в небольших количествах. Внешне – кристаллические вещества белого цвета. Карбонат аммония нестоек, при соприкосновении с воздухом выделяет аммиак и переходит в бикарбонат аммония. Технический карбонат аммония, используемый в качестве удобрения, содержит 21–24 % азота и является смесью карбоната, бикарбоната и карбамата аммония.

Бикарбонат аммония содержит 17 % азота, более стоек к воздействию кислорода воздуха, но потери аммиака при хранении и перевозке не исключаются. При внесении его следует сразу заделывать в почву.

Применение

Сельское хозяйство

Аммонийные удобрения применяют как минеральные удобрения для увеличения плодородия почвы и обеспечения растений необходимыми питательными веществами, в частности, азотом.

Промышленность

Вещества, представляющие собой аммонийные удобрения, находят применение и в различных отраслях промышленности. Так, сульфат аммония применяют при производстве вискозного волокна и в стекольной промышленности.

Поведение в почве

После внесения в почву аммонийные удобрения быстро растворяются в почвенном растворе, и ион NН4 вступает в обменные реакции с ионами твердой фазы почвы. Значительная часть растворенных катионов аммония входит в почвенный поглощающий комплекс. Вследствие этого в почвенный раствор вытесняется эквивалентное количество ионов. (Изображение)

Вследствие этого процесса ион аммония теряет подвижность и хорошо усваивается растениями.

Не все ионы аммония поглощаются растениями, оставшаяся часть в результате нитрификации переходит в нитратную форму. Нитраты легко попадают в корневую систему растений путем биологического поглощения.

Процесс нитрификации приводит к образованию в почве азотной кислоты и освобождению соляной и серной кислот.

Бикарбонаты почвенного раствора и катионы ППК нейтрализуют образовавшиеся кислоты.

В результате реакций нейтрализации происходит вытеснение оснований из ППК водородом. Это ослабляет буферную способность почв и приводит к повышению их кислотности. (Изображение)

Кислотность почвы при внесении аммонийных удобрений повышается еще и из-за их собственной физиологической кислотности. Причина в том, что из аммонийных удобрений растениями быстрее поглощается катион аммония, чем анион хлора или серы. Поэтому в почве накапливаются кислотные остатки, вызывающие ее подкисление.

Применение на различных типах почв

Применение аммонийных удобрений ограничивается их способностью подкислять почву. Однократное внесение аммонийных удобрений может и не повлиять на кислотность почв, но их использование в течение нескольких лет может значительно сдвинуть реакцию почвы в кислую сторону. Степень подкисления тем выше, чем меньше буферная способность почвы.

Повышение кислотности приводит к снижению эффективности азотных удобрений, поскольку в кислой среде течение реакции нитрификации сильно замедляется.

Применение аммиака и солей аммония, слайд №1
Применение аммиака и солей аммония, слайд №2
Применение аммиака и солей аммония, слайд №3
Применение аммиака и солей аммония, слайд №4
Применение аммиака и солей аммония, слайд №5
Применение аммиака и солей аммония, слайд №6
Применение аммиака и солей аммония, слайд №7
Применение аммиака и солей аммония, слайд №8

Применение аммиака и солей аммония, слайд №1

Слайд 1

 Аммоний Аммоний – одно из многочисленных соединений азота. Его соли обладают рядом интересных свойств и находят практическое применение во многих областях человеческой деятельности. Исследованием свойств этого элемента занимается химия. Соли аммония изучаются в разделе исследования взаимодействий азота с другими химическими элементами.-

Слайд 2

Аммоний Аммоний – одно из многочисленных соединений азота. Его соли обладают рядом интересных свойств и находят практическое применение во многих областях человеческой деятельности. Исследованием свойств этого элемента занимается химия. Соли аммония изучаются в разделе исследования взаимодействий азота с другими химическими элементами.-

 Применение аммиака и солей аммония Весомая доля аммиака, добываемого промышленным путем, идет на применение его в установках для заморозки и охлаждения. Находят соли аммония применение в повседневной жизни и в медицине. Но подавляющая часть аммиака идет на изготовление азотной кислоты и разнообразных азотсодержащих соединений, прежде всего, различных минеральных удобрений

Слайд 3

Применение аммиака и солей аммония Весомая доля аммиака, добываемого промышленным путем, идет на применение его в установках для заморозки и охлаждения. Находят соли аммония применение в повседневной жизни и в медицине. Но подавляющая часть аммиака идет на изготовление азотной кислоты и разнообразных азотсодержащих соединений, прежде всего, различных минеральных удобрений

 Азотистые удобрения Наиболее известные соли производной азота, применение которых в хозяйственной деятельности крайне важно – это сульфат аммония, нитрат аммония, хлорид аммония. Азот – необходимая составляющая часть белков. Этот элемент является обязательным для существования любого живого организма. Растения извлекают азот из плодородного грунта, где этот элемент находится преимущественно в связанном виде. Обычно азот встречается, как соли аммония и соединения азотной кислоты. Растворяясь во влажной почве, эти неорганические соединения попадают в организмы растений и перерабатываются ими в различные белки и аминокислоты. Животные и люди не могут усваивать азот ни в свободном виде, ни в качестве его простых соединений. Для питания и роста им необходим белок, составной частью которого обязательно является азот. Только при участии растений мы получаем столь необходимый нам элемент для жизни и здоровья

Слайд 4

Азотистые удобрения Наиболее известные соли производной азота, применение которых в хозяйственной деятельности крайне важно – это сульфат аммония, нитрат аммония, хлорид аммония. Азот – необходимая составляющая часть белков. Этот элемент является обязательным для существования любого живого организма. Растения извлекают азот из плодородного грунта, где этот элемент находится преимущественно в связанном виде. Обычно азот встречается, как соли аммония и соединения азотной кислоты. Растворяясь во влажной почве, эти неорганические соединения попадают в организмы растений и перерабатываются ими в различные белки и аминокислоты. Животные и люди не могут усваивать азот ни в свободном виде, ни в качестве его простых соединений. Для питания и роста им необходим белок, составной частью которого обязательно является азот. Только при участии растений мы получаем столь необходимый нам элемент для жизни и здоровья

Применение аммиака и солей аммония, слайд №5

Слайд 5

Применение аммиака и солей аммония, слайд №6

Слайд 6

 “Нашатырь” Хлорид аммония. Хорошо известен, как нашатырь. Его химическая формула - NH4Cl. Это соединение хорошо известно в производстве лакокрасочной продукции, в текстильном деле, используется нашатырь и в гальванических элементах. Хорошо известен хлорид аммония пайщикам и лудильщикам. В своей работе они часто задействуют хлористые соли аммония. Применение этого вещества помогает удалить с поверхности металлов тончайшие оксидные пленки. Прикосновение разогретого металла к нашатырю вызывает соответствующую реакцию оксидов – они либо переходят в хлориды, либо восстанавливаются. Хлориды быстро улетучиваются с поверхности металла

Слайд 7

“Нашатырь” Хлорид аммония. Хорошо известен, как нашатырь. Его химическая формула - NH4Cl. Это соединение хорошо известно в производстве лакокрасочной продукции, в текстильном деле, используется нашатырь и в гальванических элементах. Хорошо известен хлорид аммония пайщикам и лудильщикам. В своей работе они часто задействуют хлористые соли аммония. Применение этого вещества помогает удалить с поверхности металлов тончайшие оксидные пленки. Прикосновение разогретого металла к нашатырю вызывает соответствующую реакцию оксидов – они либо переходят в хлориды, либо восстанавливаются. Хлориды быстро улетучиваются с поверхности металла

Применение аммиака и солей аммония, слайд №8

Слайд 8

Аммиак почти вдвое легче воздуха, ПДКр.з. 20 мг/м3 — IV класс опасности (малоопасные вещества) по ГОСТ 12.1.007 [1] . Растворимость NH3 в воде чрезвычайно велика — около 1200 объёмов (при 0 °C) или 700 объёмов (при 20 °C) в объёме воды. В холодильной технике носит название R717, где R — Refrigerant (хладагент), 7 — тип хладагента (неорганическое соединение), 17 — молекулярная масса.

Молекула аммиака имеет форму тригональной пирамиды с атомом азота в вершине. Три неспаренных p-электрона атома азота участвуют в образовании полярных ковалентных связей с 1s-электронами трёх атомов водорода (связи N−H), четвёртая пара внешних электронов является неподелённой, она может образовать донорно-акцепторную связь с ионом водорода, образуя ион аммония NH4 + . Благодаря тому, что не связывающее двухэлектронное облако строго ориентировано в пространстве, молекула аммиака обладает высокой полярностью, что приводит к его хорошей растворимости в воде.

В жидком аммиаке молекулы связаны между собой водородными связями. Сравнение физических свойств жидкого аммиака с водой показывает, что аммиак имеет более низкие температуры кипения (tкип −33,35 °C) и плавления (tпл −77,70 °C), а также более низкую плотность, вязкость (вязкость жидкого аммиака в 7 раз меньше вязкости воды), проводимость и диэлектрическую проницаемость. Это в некоторой степени объясняется тем, что прочность этих связей в жидком аммиаке существенно ниже, чем у воды, а также тем, что в молекуле аммиака имеется лишь одна пара неподелённых электронов, в отличие от двух пар в молекуле воды, что не дает возможность образовывать разветвлённую сеть водородных связей между несколькими молекулами. Аммиак легко переходит в бесцветную жидкость с плотностью 681,4 кг/м³, сильно преломляющую свет. Подобно воде, жидкий аммиак сильно ассоциирован, главным образом за счёт образования водородных связей. Жидкий аммиак практически не проводит электрический ток. Жидкий аммиак — хороший растворитель для очень большого числа органических, а также для многих неорганических соединений. Твёрдый аммиак — бесцветные кубические кристаллы.

Химические свойства

· Взаимодействуя с кислотами даёт соответствующие соли аммония:

· Аммиак также является очень слабой кислотой (в 10 000 000 000 раз более слабой, чем вода), способен образовывать с металлами соли — амиды. Соединения, содержащие ионы NH2 − , называются амидами, NH 2− — имидами, а N 3− — нитридами. Амиды щелочных металлов получают, действуя на них аммиаком:

Амиды, имиды и нитриды ряда металлов образуются в результате некоторых реакций в среде жидкого аммиака. Нитриды можно получить нагреванием металлов в атмосфере азота.

Амиды металлов являются аналогами гидроксидов. Эта аналогия усиливается тем, что ионы ОН − и NH2 − , а также молекулы Н2O и NH3 изоэлектронны. Амиды являются более сильными основаниями, чем гидроксиды, а следовательно, подвергаются в водных растворах необратимому гидролизу:

Подобно водным растворам щелочей, аммиачные растворы амидов хорошо проводят электрический ток, что обусловлено диссоциацией:

Фенолфталеин в этих растворах окрашивается в малиновый цвет, при добавлении кислот происходит их нейтрализация. Растворимость амидов изменяется в такой же последовательности, что и растворимость гидроксидов: LiNH2 — нерастворим, NaNH2 — малорастворим, KNH2, RbNH2 и CsNH2 — хорошо растворимы.

· При нагревании аммиак проявляет восстановительные свойства. Так, он горит в атмосфере кислорода, образуя воду и азот. Окисление аммиака воздухом на платиновом катализаторе даёт оксиды азота, что используется в промышленности для получения азотной кислоты:

На восстановительной способности NH3 основано применение нашатыря NH4Cl для очистки поверхности металла от оксидов при их пайке:

Окисляя аммиак гипохлоритом натрия в присутствии желатина, получают гидразин:

· Галогены (хлор, йод) образуют с аммиаком опасные взрывчатые вещества — галогениды азота (хлористый азот, иодистый азот).

· С галогеноалканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):

· С карбоновыми кислотами, их ангидридами, галогенангидридами, эфирами и другими производными даёт амиды. С альдегидами и кетонами — основания Шиффа, которые возможно восстановить до соответствующих аминов (восстановительное аминирование).

· При 1000 °C аммиак реагирует с углём, образуя синильную кислоту HCN и частично разлагаясь на азот и водород. Также он может реагировать с метаном, образуя ту же самую синильную кислоту:

Жидкий аммиак, хотя и в незначительной степени, диссоциирует на ионы (автопротолиз), в чём проявлется его сходство с водой:

Константа самоионизации жидкого аммиака при −50 °C составляет примерно 10 −33 (моль/л)².

Жидкий аммиак, как и вода, является сильным ионизирующим растворителем, в котором растворяется ряд активных металлов: щелочные, щёлочноземельные, Mg, Al, а также Eu и Yb. Растворимость щелочных металлов в жидком NH3 составляет несколько десятков процентов. В жидком аммиаке NH3 также растворяются некоторые интерметаллиды, содержащие щелочные металлы, например Na4Pb9.

Разбавленные растворы металлов в жидком аммиаке окрашены в синий цвет, концентрированные растворы имеют металлический блеск и похожи на бронзу. При испарении аммиака щелочные металлы выделяются в чистом виде, а щелочноземельные — в виде комплексов с аммиаком [Э(NH3)6] обладающих металлической проводимостью. При слабом нагревании эти комплексы разлагаются на металл и NH3.

Растворенный в NH3 металл постепенно реагирует с образованием амида:

Получающиеся в результате реакции с аммиаком амиды металлов содержат отрицательный ион NH2 − , который также образуется при самоионизации аммиака. Таким образом, амиды металлов являются аналогами гидроксидов. Скорость реакции возрастает при переходе от Li к Cs. Реакция значительно ускоряется в присутствии даже небольших примесей H2O.

Металлоаммиачные растворы обладают металлической электропроводностью, в них происходит распад атомов металла на положительные ионы и сольватированные электроны, окруженные молекулами NH3. Металлоаммиачные растворы, в которых содержатся свободные электроны, являются сильнейшими восстановителями.

Комплексообразование

Благодаря своим электронодонорным свойствам, молекулы NH3 могут входить в качестве лиганда в комплексные соединения. Так, введение избытка аммиака в растворы солей d-металлов приводит к образованию их аминокомплексов:

Комплексообразование обычно сопровождается изменением окраски раствора. Так, в первой реакции голубой цвет (CuSO4) переходит в темно-синий (окраска комплекса), а во второй реакции окраска изменяется из зелёной (Ni(NO3)2) в сине-фиолетовую. Наиболее прочные комплексы с NH3 образуют хром и кобальт в степени окисления +3.

Биологическая роль

Аммиак является конечным продуктом азотистого обмена в организме человека и животных. Он образуется при метаболизме белков, аминокислот и других азотистых соединений. Он высоко токсичен для организма, поэтому большая часть аммиака в ходе орнитинового цикла конвертируется печенью в более безвредное и менее токсичное соединение — карбамид(мочевину). Мочевина затем выводится почками, причём часть мочевины может быть конвертирована печенью или почками обратно в аммиак.

Физиологическое действие

По физиологическому действию на организм относится к группе веществ удушающего и нейротропного действия, способных при ингаляционном поражении вызвать токсический отёк лёгких и тяжёлое поражение нервной системы. Аммиак обладает как местным, так и резорбтивным действием.

Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это человек и воспринимает как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюнктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи. При соприкосновении сжиженного аммиака и его растворов с кожей возникает жжение, возможен химический ожог с пузырями, изъязвлениями. Кроме того, сжиженный аммиак при испарении поглощает тепло, и при соприкосновении с кожей возникает обморожение различной степени. Запах аммиака ощущается при концентрации 37 мг/м³ [2] .

Предельно допустимая концентрация в воздухе рабочей зоны производственного помещения (ПДКр.з.) составляет 20 мг/м³ [3] . В атмосферном воздухе населённых пунктов и в жилых помещениях среднесуточная концентрация аммиака (ПДКс.с.) не должна превышать 0,04 мг/м³ [4] . Максимальная разовая концентрация в атмосфере — 0,2 мг/м³. Таким образом, ощущение запаха аммиака свидетельствует о превышении допустимых норм.

Раздражение зева проявляется при содержании аммиака в воздухе 280 мг/м³, глаз — 490 мг/м³. При действии в очень высоких концентрациях аммиак вызывает поражение кожи: 7—14 г/м³ — эритематозный, 21 г/м³ и более — буллёзный дерматит. Токсический отёк лёгких развивается при воздействии аммиака в течение часа с концентрацией 1,5 г/м³. Кратковременное воздействие аммиака в концентрации 3,5 г/м³ и более быстро приводит к развитию общетоксических эффектов.

В мире максимальная концентрация аммиака в атмосфере (больше 1 мг/м³) наблюдается на Индо-Гангской равнине, в Центральной долине США и в Южно-Казахстанской области [5] .

Применение

Аммиак относится к числу важнейших продуктов химической промышленности, ежегодное его мировое производство достигает 150 млн тонн. В основном используется для производства азотных удобрений (нитрат и сульфат аммония, мочевина), взрывчатых веществ и полимеров, азотной кислоты, соды (по аммиачному методу) и других продуктов химической промышленности. Жидкий аммиак используют в качестве растворителя.

В холодильной технике используется в качестве холодильного агента (R717)

В медицине 10 % раствор аммиака, чаще называемый нашатырным спиртом, применяется при обморочных состояниях (для возбуждения дыхания), для стимуляции рвоты, а также наружно — невралгии, миозиты, укусах насекомых, для обработки рук хирурга. При неправильном применении может вызвать ожоги пищевода и желудка (в случае приёма неразведённого раствора), рефлекторную остановку дыхания (при вдыхании в высокой концентрации).

Применяют местно, ингаляционно и внутрь. Для возбуждения дыхания и выведения больного из обморочного состояния осторожно подносят небольшой кусок марли или ваты, смоченный нашатырным спиртом, к носу больного (на 0,5-1 с). Внутрь (только в разведении) для индукции рвоты; также, в составе нашатырно-анисовых капель - в качестве муколитического (отхаркивающего) средства. При укусах насекомых — в виде примочек; при невралгиях и миозитах — растирания аммиачным линиментом. В хирургической практике разводят в тёплой кипяченой воде и моют руки.

Поскольку аммиак является слабым основанием, при взаимодействии с кислотами он их нейтрализует.

Физиологическое действие нашатырного спирта обусловлено резким запахом аммиака, который раздражает специфические рецепторы слизистой оболочки носа и способствует возбуждению дыхательного и сосудодвигательного центров мозга, вызывая учащение дыхания и повышение артериального давления.

Противоморозная добавка для сухих строительных растворов, относящаяся к ускорителям. Рекомендуемая дозировка — 2…8 % массы компонентов сухой смеси в зависимости от температуры применения. Аммиачная вода — продукт (NH3*H2O), представляющий собой газообразный аммиак NН3, растворенный в воде.

Получение

Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:

Это так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода).

Реакция происходит с выделением тепла и понижением объёма. Следовательно, исходя из принципа Ле-Шателье, реакцию следует проводить при возможно низких температурах и при высоких давлениях — тогда равновесие будет смещено вправо. Однако скорость реакции при низких температурах ничтожно мала, а при высоких увеличивается скорость обратной реакции. Проведение реакции при очень высоких давлениях требует создания специального, выдерживающего высокое давление оборудования, а значит и больших капиталовложений. Кроме того, равновесие реакции даже при 700 °C устанавливается слишком медленно для практического её использования.

Применение катализатора (пористое железо с примесями Al2O3 и K2O) позволило ускорить достижение равновесного состояния. Интересно, что при поиске катализатора на эту роль пробовали более 20 тысяч различных веществ.

Учитывая все вышеприведённые факторы, процесс получения аммиака проводят при следующих условиях: температура 500 °C, давление 350 атмосфер, катализатор. Выход аммиака при таких условиях составляет около 30 %. В промышленных условиях использован принцип циркуляции — аммиак удаляют охлаждением, а непрореагировавшие азот и водород возвращают в колонну синтеза. Это оказывается более экономичным, чем достижение более высокого выхода реакции за счёт повышения давления.

Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:

Обычно лабораторным способом аммиак получают слабым нагреванием смеси хлорида аммония с гашеной известью.

Для осушения аммиака его пропускают через смесь извести с едким натром.

Очень сухой аммиак можно получить, растворяя в нём металлический натрий и впоследствии перегоняя. Это лучше делать в системе, изготовленной из металла под вакуумом. Система должна выдерживать высокое давление (при комнатной температуре давление насыщенных паров аммиака около 10 атмосфер) [6] . В промышленности аммиак осушают вабсорбционных колоннах.

Аммиак в медицине

При укусах насекомых аммиак применяют наружно в виде примочек. 10 % водный раствор аммиака известен как нашатырный спирт.

Возможны побочные действия: при продолжительной экспозиции (ингаляционное применение) аммиак может вызвать рефлекторную остановку дыхания.

Местное применение противопоказано при дерматитах, экземах, других кожных заболеваниях, а также при открытых травматических повреждениях кожных покровов.

При случайном поражении слизистой оболочки глаза промыть водой (по 15 мин через каждые 10 мин) или 5 % раствором борной кислоты. Масла и мази не применяют. При поражении носа и глотки — 0,5 % раствор лимонной кислоты или натуральные соки. В случае приема внутрь пить воду, фруктовый сок, молоко, лучше — 0,5 % раствор лимонной кислоты или 1 % раствор уксусной кислоты до полной нейтрализации содержимого желудка.

Читайте также: