Физиология цветения опыления и оплодотворения

Добавил пользователь Skiper
Обновлено: 19.09.2024

Опылением называется, собственно, перенос пыльцы с тычинок на рыльца пестиков. Различают самоопыление (автогамию: греч. авто — сам) и перекрестное опыление (аллогамию: греч. аллос — другой). В первом случае пыльца опыляет рыльце того же цветка, во втором — других цветков того же самого (гейтоногамия: греч. гейтон — сосед) или иных (ксеногамия: греч. ксенос — чужой) экземпляров. Ксеногамия биологически выгоднее прежде всего потому, что при этом возрастают возможности рекомбинаций генетического материала и это способствует увеличению внутривидового разнообразия и дальнейшей приспособительной эволюции. Однако и самоопыление имеет важное значение — для стабилизации признаков вида, в селекции — при выведении чистых линий и т. п.
Гейтоногамия встречается часто у растений с многоцветковыми соцветиями (например, у сложноцветных — перекрестное опыление цветков в пределах одной корзинки). С генетической точки зрения этот вариант равноценен автогамии, так как не происходит рекомбинаций индивидуальных признаков.
Дихогамия. Цветки нередко имеют те или иные приспособления, препятствующие самоопылению. Очень распространена дихогамия. Этим термином обозначают неодновременное созревание пыльников и рыльца. Более раннее вскрывание пыльников, когда рыльце еще не созрело, называют протерандрией, более раннее созревание рыльца — протерогинией.
Протерандрия наблюдается у гвоздичных, гераниевых, мальвовых, сложноцветных, многих лилейных и др.; протерогиния — у многих крестоцветных, розовых, осоковых и др. Протерандрия распространена шире, чем протерогиния, видимо, вследствие того, что тычинки, расположенные кнаружи от плодолистиков, начинают развиваться раньше них.
Гетеростилия. У некоторых растений одни экземпляры имеют цветки с длинными столбиками, другие — с короткими, а иногда имеются еще и третьи — со столбиками промежуточной длины соответственно, и пыльники расположены у одних ниже, у других — выше, а у третьих — на уровне рыльца. Это явление называется гетеростилией или разностолбчатостью. Гетеростилия, возможно, служит защитой от гейтоногамии.

Гетеростилия у первоцвета.


Другой пример иллюстрирует крайнюю степень специализации, при которой растение опыляется единственным видом насекомого и полностью зависит от последнего.

У инжира (Ficus carica), как и у других видов рода Ficus, так называемые в обиходе плоды представляют в действительности крайне своеобразные соцветия-синконии, у которых ось трансформирована в шарообразное или грушевидное тело (рис. 277).
Схема опыления инжира. (1— синконии с мужскими и галловыми цветками (каприфиги); 2— синконии с мужскими недоразвитыми и женскими цветками (фиги); ГЦв — галловые цветки; МЦв—мужские цветки; МНЦв— мужские недоразвитые цветки; ЖЦв — женские цветки.

ОПЛОДОТВОРЕНИЕ.

Развитие пыльцевой трубки. Пылинка, попав на рыльце пестика, при отсутствии тормозящих факторов прорастает; при этом ее содержимое, одетое интиной, выпячивается через поры в экзине и образует пыльцевую трубку.

Между опылением и оплодотворением у разных растений проходит весьма различное время. Так, у некоторых дубов этот период достигает 12—14 месяцев, у ольхи и орешника—3—4 месяцев, у орхидей — обычно несколько недель. У большинства растений данный период не превышает 1—2 суток, а у портулака он длится всего 3—4 ч, у недотроги — менее 1 ч, а у кок-сагыза — 15—45 мин. Скорость роста пыльцевой трубки составляет 35 мм/ч. Повышение температуры, как правило, ускоряет рост. Так, у дурмана при 33°С скорость роста была в 3 раза выше, чем при 11°С.
Ядро клетки пыльцевой трубки и генеративное ядро (или образовавшиеся из него 2 спермия) находятся на растущем конце пыльцевой трубки. Достигнув завязи, пыльцевая трубка направляется к семязачатку и проникает в него чаще всего через микропиле. Это явление носит название порогами и. Оболочка зародышевого мешка растворяется, соприкасаясь с кончиком пыльцевой трубки. В зародышевом мешке пыльцевая трубка растет по направлению к яйцеклетке. Оболочка на кончике пыльцевой трубки разрывается, и оттуда выходят 2 спермия, из которых один сливается с яйцеклеткой, а другой — с вторичным ядром зародышевого мешка или с одним из центральных ядер. Происходит так называемое двойное оплодотворение — характерная особенность покрытосеменных, не встречающаяся у голосеменных.
Двойное оплодотворение открыл в 1898 г. русский ботаник С. Г. Навашин на двух растениях семейства лилейных—Lilium martagon и Fritil-laria tenella. Впоследствии из оплодотворенной яйцеклетки развивается зародыш, а из канальцевой клетки с оплодотворенным вторичным ядром — эндосперм. Эндосперм покрытосеменных оказывается, стало быть, триплоидным и в противоположность голосеменным возникает лишь после оплодотворения. В этом состоит одно из принципиальных различий между голосеменными и покрытосеменными.
По форме спермин различны. Часто они палочковидные и даже червеобразные. С. Г. Навашин, наблюдая подобную форму спермиев на своих объектах, предположил, что спермин обладают способностью к самостоятельному движению, несмотря на отсутствие жгутиков. Некоторые данные как будто бы подтверждают это предположение. В то время как спермин движутся в пыльцевой трубке всегда__вперед, некоторые плазматические тяжи передвигаются в обратном направлении. Это возможно лишь в случае самостоятельного движения спермиев. Значительный интерес представляет выяснение вопроса, входит ли в яйцеклетку совместно с ядром мужской гаметы также ее цитоплазма. Однако наблюдение за живым зародышевым мешком методически весьма затруднительно. Большинство ученых считают, что мужская цитоплазма к моменту оплодотворения разрушается. Следует подчеркнуть, что доказательства так называемой внехромосомной наследственности основываются на участии в оплодотворении лишь женской цитоплазмы.
Кроме обычного способа проникновения пыльцевой трубки через микропиле — порогамии, известны иные варианты. Проникновение через хйлазу называют халазогамией. Впервые она была обнаружена в 1894 г. Трейбом у своеобразного австралийского рода Casuarina, а вскоре после этого — С. Г. Навашиным у березы. При халазогамии пыльцевая трубка растет через ткани рыльца и столбика до семяножки, а затем опять-таки в ткани последней до уровня середины семязачатка и далее по ткани обоих покровов она поворачивает к верхушке нуцеллюса, минуя микропиле и полость между покровами (рисунок 2). Предположили, что у халазогамных покрытосеменных пыльцевая трубка, как и у голосеменных, не способна еще к росту через полость завязи, и, стало быть, береза, казуарина и др. относятся к наиболее примитивным цветковым.

Схемы порогамии (1) и халазогамии (2, 3). (ПТ — путь пыльцевой трубки; ЗМ — зародышевый мешок)


В настоящее время, как правило, придерживаются иной точки зрения, рассматривая халазогамию более с физиологической, чем с филогенетической, точки зрения. Следует учитывать, что халазогамия известна и у сравнительно эволюционно развитых растений, например у крестоцветных, манжеток и др. Кроме того, у некоторых видов имеет место как порогамия, так и халазогамия.
Формирование зародыша. Оплодотворенная яйцеклетка переходит в состояние покоя, весьма различное по времени и зависящее отчасти от внешних условий. У сложноцветных и злаков этот период наиболее короткий (несколько часов). Первое деление сопровождается заложением поперечной перегородки. Клетку, отделяющуюся в направлении середины зародышевого мешка, называют терминальной, другую — базальной. Дальнейшие деления у различных растений происходят по-разному. У крестоцветных, например, базальная клетка делится поперек, а терминальная — вдоль, что приводит далее к возникновению проэмбрия (предзародыша).

Первые стадии развития зародыша у пастушьей сумки (Capsella bursapastoris): (БК—базальная клетка; ТК — терминальная клетка; Г — гаусториальная клетка подвеска.)

П. Козма
ФИЗИОЛОГИЯ ЦВЕТЕНИЯ И ОПЛОДОТВОРЕНИЯ
ХИМИЧЕСКИЙ СОСТАВ ЦВЕТКОВ И ПЫЛЬЦЫ
Исследования химических свойств пыльцы различных видов растений были начаты более 100 лет тому назад. Они резюмированы Lunden (1954).
Данных о химическом анализе различных типов цветка виноградной лозы мало. По наблюдениям Коzmа (1958, 1963), содержание воды в соцветиях в период цветения составляет 81, 19—85,20% от общего веса. Аномальные цветки, как правило, содержат больше воды, чем нормальные. По содержанию NPK в соцветиях клонов разного пола существуют значительные разницы.
Аминокислотный состав типов цветка винограда изучался в основном Голодригой (1960) и Коzmа (1963а). В этом отношении более полные сведения дают многолетние и подробные исследования Kozma по сорту Гымза.
В цветках винограда установлены следующие 15 аминокислот, частично в свободном и частично в связанном состоянии: гистидин, аргинин, аспарагин, аспарагиновая кислота, оксипролин, пролин, глутаминовая кислота, пипеколиновая кислота, аланин, треонин, валин, фенилаланин, лейцин, изолейцин, метионин. Из аминокислот аспарагин, аспарагиновая и глутаминовая кислоты, валин, фенилаланин и лейцин в свободном или связанном состоянии встречаются во всех клоновых типах пола. Предполагается, что наличие других аминокислот имеет специфический характер и каким-то образом связано с типом цветка.
Гистидин встречается только в аномальных (тератологических) цветках. Аргинин полностью отсутствует в цветках клонов мужского характера и со звездчатыми цветками. Оксипролина не обнаружено в части цветков мужского характера и тератологических. Пролин отсутствует только в цветках обоеполого клона. Пипеколиновой кислоты не обнаружено только в цветках клоновых типов с фертильными аномальными и малыми звездчатыми цветками. Аланина не удалось обнаружить в цветках мужского характера и фертильных аномальных. Треонин обнаружен только в обоеполых цветках. Изолейцин характерен только для мужских цветков. Метионин обнаружен только в обоеполых и стерильных аномальных цветках.
С точки зрения оплодотворения очень важными физиологическими факторами считаются физико-химические и биохимические свойства волосков рыльца и проводящей ткани канала столбика. Волоски рыльца содержат много дубильных веществ, а волоски канала столбика свободны от них (Ziеgler, Branscheidt, 1927). Клетки канала столбика сильно разбухают и под воздействием рутенового красного дают реакцию слизи. В клетках завязи обильно накопляется крахмал (S а г t о г i u s, 1926). Крахмальные зерна большей частью идут на образование слизи, играющей важную роль в росте пыльцевой трубки. Роrtele (1883) обнаружил зерна крахмала и в клетках цветоложа. В верхних клетках рыльца и столбика крахмала нет.
Показатель pH пыльцы (6,8—7,5) выше pH рыльца (5,5—6,5), причем разница может достичь 1—1,5 пункта. Подобные разницы были найдены и по rН2 (окислительно-восстановительный потенциал); показатель rН2 рыльца может быть на 1—1,5 выше rН2 пыльцы. Реакция рыльца и проводящей ткани столбика кислее реакции пыльцы. Реакция рыльца кислее реакций паренхимной ткани завязи, семяпочки и зародышевого мешка. Внутренний эпидермис оболочки завязи показывает кислую реакцию около 5,5 pH, халаза и наружный интегумент семяпочки — менее кислую (pH 6,5). Часть внутреннего интегумента со стороны семявхода и сам семявход характеризуются щелочной реакцией, pH их около 7,5. В тканях завязи с помощью гистохимической реакции можно обнаружить полифенольную и пероксидазную реакции, в рыльце же этих реакций нет, окисление здесь происходит за счет кислорода воздуха (Бритиков, 1952).
Изоэлектрические зоны цветоножек различных типов цветка винограда изучал Коzmа (1963). По его данным, кислее всего кажется ткань клона мужского и наименее кислой — ложноженского типа. Цветоножки обоеполых и фертильных аномальных цветков по этому признаку дают средние показатели.
В процессе оплодотворения важную роль играют секреты рыльца и канала столбика. На рыльце готовой для оплодотворения завязи после раскрывания цветка появляется секрет в виде капли величиной с булавочную головку. Преобладающую часть секрета составляет вода, но с раствором Феллинга дает реакцию на сахар. Содержание сахара может достичь 5—10%. Кроме сахара, в нем нашли и ауксин. По Ziegler и Branscheidt (1927), показатель pH секреторной жидкости считается наиболее оптимальным в пределах 5,8—6,4. По наблюдениям Kozma, показатель pH секрета рыльца хорошо оплодотворяющихся цветков находится в пределах 4,8—6,5.
В ходе химических исследований пыльцы были изучены протеины, аминокислоты, углеводы, липиды, витамины, гормоны, энзимы и коэнзимы, пигменты, неорганические и прочие вещества.
Интина построена из сетки, состоящей из пектиновых элементов микрофибрилл, а экзина состоит из аморфного спороллиния, крупно-молекулярного терпена, сильно инкрустированного и адкрустированного в целлюлозную волокнистую сетку. Химические свойства их еще точно не известны. Экзина пыльцы винограда имеет желтую окраску. Красящие вещества локализованы в экзине пыльцы. Из красящих веществ в экзине были найдены антоцианы, каротиноиды и в большем количестве антоксантины. Первичная функция красящих веществ в пыльце — защита очень чувствительной к облучению генеративной клетки от ультрафиолетовых лучей. После 8—10 h солнечного облучения виноградной пыльцы сильно снижается сила роста пыльцевых трубок. Под действием ультрафиолетовых лучей снижается интенсивность окраски экзины. Окраска сильно облученной пыльцы изменяется от оранжево-желтой до оранжево-красной и красной.
Содержание влаги и золы. Содержание влаги в зрелой, сухой пыльце винограда изменяется по сортам в пределах 4,1—5,1%. Зольность пыльцы составляет приблизительно 10% в пересчете на сухое вещество. Щелочность золы пыльцы колеблется в пределах показателей 4,9—7,7. В состав золы входят 1,1—1,4% Р2O5, 1,2—1,9% К2O, 0,4—14,7% SiO3, 1,04—1,1 СаО и 4,1— 7,8% MgO.

Содержание азота, белка и аминокислот. По наблюдениям Коzmа (1963), содержание азота в пыльце находится в пределах 2,9—3,7%, а белка— 18,1—23,1% в пересчете на сухое вещество; белковый азот составляет приблизительно 70—80% общего азота. В пыльце были обнаружены глобулин и альбумин. Для каждой фазы развития характерен свой состав протеинов. Из аминокислот в пыльце обнаружены цистин, гистидин, аспарагин, аспарагиновая кислота, аргинин, оксипролин, глутаминовая кислота, треонин, метионин, серин, аланин, валин, фенилаланин, лейцин, изолейцин, пролин, пи- пеколиновая кислота. Подобные результаты получили Novara и Роsрisi1оvа (1962), ими были определены и количества аминокислот. По их данным, в пыльце цветка винограда по количеству аминокислот преобладают валин, пролин, аспарагин и лизин.

Сахара и крахмал. В пыльце винограда общее содержание сахаров колебалось по сортам в пределах 2,5—3,7%, крахмала — в пределах 2,6—5,0% в пересчете на сухое вещество (Коzmа, 1963). Из сахаров имеются глюкоза, фруктоза, сахароза, мальтоза и рафиноза.

Энзимы. Многогранная, комплексная физиологическая активность пыльцевых зерен при оплодотворении регулируется богатым набором ферментов. В пыльце до сих пор удалось обнаружить следующие энзимы: каталазу, сахаразу, козимазу, дегидрогеназу, фосфатазу, коньюгазу фолиевой кислоты, кутиназу и гидролазу. По мере старения пыльцы активность энзимов снижается.
Липиды. Содержание липидов и жиров в пыльце винограда еще не определено. В пыльце других видов растений обнаружено 8—10 %жиров и липоидов.

Витамины и стимулирующие вещества. В пыльце различных видов растений обнаружены тиамин, рибофлавин, никотиновая, аскорбиновая и пантотеновая кислоты, витамины A, D, Е и К. В покоящейся пыльце из ростовых веществ обнаружены индолилуксусная кислота, индоацетонитрил, эстроген.

Сростные элементы формируются: 1) первоначально формируются отдельные бугорки, которые затем образуют сплошное кольцо; 2) при появлении элементы имеют широкое основание и срастаются в виде валика, позже делятся на зубчики, дольки.

Тычинки дифференцируются на нить и пыльник довольно поздно, пыльник формируется раньше нити. Нить удлиняется за счет интеркалярного роста. Число бугорков меньше числа тычинок, так как бугорки расщепляются. Плодолистики пестика похожи на листья, разрастаются внизу, срастаются, образуя завязь. Затем обособляется рыльце и столбик.

Цветение и опыление растений

Цветение – это период от распускания бугорков до засыхания околоцветника и тычинок. Функция цветения – обеспечение опыления и оплодотворения.

Периоды цветения различны. Существуют ремонтантныевиды, которые постоянно цветут и плодоносят (какао, лимон).

Растения, которые цветут многократно – поликарпические, те которые цветут 1 раз в жизни – монокарпические.

Интенсивность и срок первого цветения у разных растений различны. Некоторые цветут обильно периодически. У некоторых цветки зацветают: 1) раньше листьев; 2)одновременно с распусканием листьев. Цветки так же могут раскрываться в различное время суток.

Опыление – это процесс переноса пыльцы с пыльников тычинок на рыльце пестика.

Два типа опыления:

1. Самоопыления (или автогамия) – пыльца с тычинок попадает на рыльце пестика того же цветка.

2. Перекрестное (или аллогамия) – пыльца с тычинок одного цветка попадает на пестик другого цветка.

В 1750-51 гг. открыли перекрестное опыление Доббе и Мюллер, Большой вклад внесли в изучение опыления Й.Т. Кёльрёйтер и К.К. Шпренгель.

Самоопыление

Положительные стороны самоопыления:

ü обеспечивает образование семян и плодов без опылителя;

ü способствует стабилизации вида, сохраняет чистые линии

Есть клейстогамные цветки, которые не раскрываются (летние цветки фиалок, кислицы). Самоопыляющимися растениями являются – ячмень, пшеница, фасоль, овес, томат, лен.

Отрицательной стороной самоопыления является сужение приспособительной способности потомков.

Приспособления, исключающие самоопыление:

o самостерильность – неспособность пыльцы прорастать на рыльце пестика собственного цветка (рожь, рис, кукуруза и т.д.);

o дихогамия – неодновременное созревание в цветке пыльников и рылец: протерандрия – более раннее созревание тычинок, протерогиния – более раннее созревание рылец.

o гетеростилия (разностолбчатость) – различная длина пестиков и тычинок;

Перекрестное опыление

Виды перекрестного опыления:

a. гейтоногамия – пыльца с тычинок попадает на рыльце цветка в пределах соцветия или растения;

b. ксеногамия – попадает на растение одного вида;

c. гибридизация – попадает на цветок другого сорта или вида.

В зависимости от агентов опылителей: анемофилия (ветром), гидрофилия (водой), энтомофилия (насекомыми), орнитофилия (птицами), мирмикофилия (муравьями).

Положительной стороной перекрестного опыления является то, что в биологическом отношении оно более предпочтительное, так как приводит к комбинированию новых признаков. Отрицательной стороной – необходимость опылителей и благоприятных условий.

Энтомофилия – 80% растений опыляются насекомыми. Особенности растений, опыляемых насекомыми:

o пыльца с шипами, выростами, клейкая, зерна крупные, содержат около 30% белка;

o есть нектар – насекомым необходимо проникать внутрь цветка, а нектар выделяется в небольшом количестве, порциями; нектар и пыльца – первичные аттрактанты;

o ярко окрашенный венчик или венчиковидный околоцветник, мелкие цветки собраны в соцветия;

o запах – аромат или тухлый (индол); цвет и запах – вторичные аттрактанты.

Перенос пыльцы из пыльника на рыльце пестика называется опылением. Различают два вида опыления: перекрестное и самоопыление.

При самоопылении рыльце принимает пыльцу того же цветка либо другого, но той же особи. Возможно опыление в закрытых, нераспустившихся цветках (горох). При перекрестном опылении переносится пыльца от разных особей. Это основной тип опыления цветковых растений (яблоня, ива, огурец и др.).

Схема перекрестного опыления и самоопыления

Перекрестное опыление

Перекрестное опыление осуществляется естественным (насекомыми, птицами, летучими мышами, ветром, водой) и искусственным (производит человек) путями.

Приспособленность растений к опылению ветром проявляется в наличии голых цветков, либо невзрачных, слабо развитых околоцветников. Они лишены нектарников и запаха, пыльцы образуют много, она легкая, сухая, мелкая, рыльца длинные, с большой поверхностью для улавливания пыльцы (рожь, кукуруза).

Приспособленность растений к опылению насекомыми характеризуется яркой окраской венчика, наличием нектарников, запаха (одуванчик, земляника). Пищей для насекомых являются нектар и пыльца. Окраска и запах служат для привлечения опылителей. Иногда цветки обладают запахом, характерным для самок насекомых того же вида. Это привлекает к ним самцов, которые и осуществляют опыление. Эволюция цветковых растений и их опылителей шла параллельно. Это так называемая сопряженная эволюция.

Приспособление растений к опылению насекомыми и ветром

Приспособление растений к опылению насекомыми и ветром

Перекрестное опыление обеспечивает обмен генами, поддерживает высокую гетерозиготность популяций, дает материал для естественного отбора и сохраняет самое выносливое потомство — носителей наиболее благоприятного сочетания генов.

Искусственное опыление

Искусственное опыление производит человек для повышения урожая или получения новых сортов растений. При этом для нанесения пыльцы на рыльце пестика используют разные способы. Так, у кукурузы, имеющей однополые цветы, пыльцу собирают, стряхивая верхушечные метелки мужских цветков в бумажные воронки. Затем собранной пыльцой посыпают выступающие на верхушке початка длинные рыльца женских цветков.

При искусственном опылении подсолнечника стебли двух соседних растений наклоняют так, чтобы можно было прижать цветущую поверхность одной корзинки к другой. Можно переносить пыльцу, поочередно прижимая руку в варежке из мягкой материи к цветущим корзинкам разных растений.

Схема искусственного опыления

Схема искусственного опыления

Для получения новых сортов растений с обоеполыми цветками необходима подготовка к искусственному опылению. Прежде всего из цветков растения, избранного в качестве материнского, еще в бутоне удаляют пыльники и защищают эти цветки марлевыми или бумажными мешочками от попадания пыльцы. Через 2-3 дня, когда бутоны раскроются, наносят на рыльца пестиков заготовленную пыльцу другого сорта чистой сухой акварельной кисточкой, мягким поролоном или кусочком резинки, прикрепленными к проволоке.

Двойное оплодотворение у цветковых растений

После опыления происходит процесс оплодотворения, но для этого нужен ряд условий: пыльца должна не только удержаться на рыльце, но и прорасти через столбик, достигнуть семязачатка и обеспечить слияние мужских клеток с женскими.

Двойное оплодотворение характерно для цветковых растений.

Обычно на рыльце попадает множество пыльцевых зерен. Они, как правило, имеют шероховатую поверхность и удерживаются липкой кожицей рыльца. Кроме этого, при попадании совместимой пыльцы клетки рыльца выделяют вещества, стимулирующие ее прорастание.

Схема двойного оплодотворения у цветковых растений

Схема двойного оплодотворения у цветковых растений

Начинается прорастание пыльцевых зерен с набухания. Затем через специальные поры (каналы) в наружной оболочке пыльцевого зерна внутренняя выпячивается в тонкую пыльцевую трубку, куда переходят вегетативное ядро и спермин. Пыльцевые трубки всех совместимых зерен, удержавшихся на рыльце пестика, растут по столбику, направляясь к семязачатку. Одна из них обгоняет в росте другие и, достигнув пыльцевхода, проникает через него к зародышевому мешку и здесь изливает в него свое содержимое.

Один из спермиев сливается с яйцеклеткой, а другой — со вторичным ядром центральной диплоидной клетки. Вегетативное ядро разрушается еще до проникновения пыльцевой трубки в зародышевый мешок.

Двойное оплодотворение у цветковых растений открыл русский цитолог и эмбриолог растений С.Г.Навашиным в 1898г.

При наличии в завязи семязачатков в каждом из них происходит вышеописанный процесс двойного оплодотворения. Называется он двойным потому, что сливаются две мужские клетки с двумя клетками женского гаметофита. В дальнейшем после оплодотворения в цветке начинается развитие семени и плода.

Образование семян

После оплодотворения внутри зародышевого мешка начинается быстрое митотическое деление триплоидного вторичного ядра, не имеющего периода покоя. Образуется большое количество ядер, затем между ними возникают, перегородки.

Эти вновь образовавшиеся клетки продолжают деление, заполняя всю полость зародышевого мешка питательной тканью — эндоспермом, который у одних растений полностью расходуется во время развития зародыша (бобовые, тыквенные), а у других — сохраняется в зрелых семенах (злаки). Одновременно происходит разрастание зародышевого мешка и семяпочки.

Формирование зародыша начинается с деления зиготы. После периода покоя зигота делится митотически на две клетки. Верхняя клетка, прилегающая к пыльцевходу, образует подвесок, отодвигающий нижнюю клетку в глубь эндосперма. Подвесок у одних видов растений остается одноклеточным, у других — делится поперечными перегородками и становится многоклеточным. Нижняя клетка разрастается в предзародыш семени сферической формы. Предзародыш делится на 4 клетки двумя перпендикулярными перегородками, затем каждая из этих клеток делится еще на две.

Сначала клетки более или менее однородны. По мере дальнейшего деления происходит дифференцировка клеток на зачаточный корешок, зачаточный стебель, зачаточные листочки (семядоли) и зачаточную почечку, окруженную семядолями. К этому времени семяпочка превращается в семя, ее покровы и остатки эндосперма образуют кожицу семени.

Таким образом, из оплодотворенной диплоидной яйцеклетки формируется зародыш семени, а из вторичной триплоидной клетки — питательная ткань — эндосперм, покровы семязачатка превращаются в покровы семени, а стенка завязи, разрастаясь, образует околоплодник.

Читайте также: