Болезнь какого растения положила начало науки вирусологии

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

Если в пандемии коронавируса и есть что-то положительное, то это повышение нашей осведомленности о вирусных инфекциях. Обычный человек сегодня знает о них куда больше, чем пять лет назад! А главное – новые реалии стали стимулом для важных открытий и изобретений в медицине. Ученые и врачи разработали инновационные методы диагностики инфекций и устройства для защиты дыхательных путей, фармакологи активно исследуют лекарственные препараты, одобренные для лечения определенных недугов, на эффективность и безопасность при лечении других заболеваний. Биотехнологические и фармацевтические компании запустили десятки клинических испытаний, направленных на поиск новых препаратов, способных бороться с COVID-19. Появились новые разработки в области телемедицины и медицинской робототехники. А главное, пандемия стала началом нового этапа в вирусологии – науки, которая изучает один из самых загадочных биологических объектов на планете. В нашей статье – краткая история открытия вирусов и их изучения.

История открытия вирусов

Вирусология как наука начала развиваться в XIX веке, когда люди узнали – благодаря микробиологам Луи Пастеру и Роберту Коху, хирургу Джозефу Листеру, – что инфекционные заболевания вызываются микробами. О том, что не все из этих микробов – бактерии, стало известно не сразу. Можно было только предполагать, что, например, возбудитель бешенства – некий болезнетворный агент, который по какой-то причине проскакивает через бактериальный фильтр, не выращивается на питательной среде и не виден через световой микроскоп. А первый вирус, который человеку удалось выделить, все-таки был растительным: им стал вирус табачной мозаики. И обнаружил его российский ученый Дмитрий Ивановский.

Виды вирусных заболеваний

Сегодня, разрабатывая способы борьбы с вирусными болезнями, ученые руководствуются в том числе и типами этих заболеваний. Классификацию вирусов в соответствии с системой пораженных органов полезно знать и обычному человеку, чтобы своевременно помочь себе и своим близким. Вот краткий обзор заболеваний 1 , вызываемых разными вирусами.


Респираторные инфекции – это инфекции верхних дыхательных путей, с которыми мы сталкиваемся чаще всего. От человека к человеку они, как правило, передаются воздушно-капельным путем. К этой группе относятся вирусы гриппа, риновирусы, а также коронавирусы, один из которых стал причиной пандемии в 2020 году и сейчас продолжает распространяться по планете.

Желудочно-кишечные инфекции распространяются фекально-оральным путем, так что основная мера профилактики личная гигиена. К таким вирусам относится ротавирус, норовирус, астровирус и т. д.

Экзантематозные инфекции. Экзантема это сыпь на коже, которой себя проявляют корь, краснуха, скарлатина, брюшной и сыпной тифы, ветряная оспа, герпес и т. д. Некоторые вирусы, помимо поражения кожи, вызывают и системные проявления.

Инфекции печени. К ним относятся не только вирусные гепатиты (А, B, C, D, E), но и другие вирусы: цитомегаловирус, вирус желтой лихорадки, а даже вирусы герпеса, кори, краснухи и ветрянки.

Неврологические инфекции часто распространяются комарами или клещами: это, например, энцефалит.

Геморрагическая лихорадка, которая вызывает поражение сосудов, также распространяется москитами и клещами, а также зараженными животными грызунами, летучими мышами, обезьянами.

Инфекции кожи или слизистых оболочек. К вирусам, которые вызывают такие заболевания, относится вирус папилломы человека.

Вирусолог Дмитрий Ивановский

С табачной мозаикой 2 знакомы, наверное, все, кто выращивал овощи и фрукты или просто наблюдал, как они растут. Несмотря на название, Tobacco mosaic virus поражает не один лишь табак, а более 350 видов овощных, садовых, декоративных растений. Желтые пятна и разводы на листьях огурцов, помидоров, картофеля, молодых яблонь – все это табачная мозаика. Она создавала проблемы фермерам и в прошлые века, особенно для тех, кто выращивал табак на продажу. Пораженные листья были непригодны для дальнейшей обработки, так что снижение урожая из-за мозаики било по карманам и фермеров, и производителей табачной продукции. Инфекционную природу этой болезни доказал в 1886 году немецкий агрохимик Адольф Майер, однако он посчитал, что всему виной бактерия. Его опыты решил повторить петербургский студент Дмитрий Ивановский. В университете он учился на физико-математическом факультете, однако по окончании остался при кафедре ботаники, выбрав темой диссертации мозаичную болезнь табака – этой темой Ивановский заинтересовался еще студентом, бывая на Украине и в Молдавии.

Дмитрий Иосифович Ивановский в 1895 году успешно защитил магистерскую диссертацию, начал читать лекции в родном вузе, после стал профессором Варшавского университета, где создал свою лабораторию. Ученый внес большой вклад в исследование физиологии и анатомии растений, занимался почвенной микробиологией, был автором 180 научных публикаций.

Вирусолог Мартин Бейеринк

Хотя открытие Ивановского касалось в первую очередь фитопатологии, оно сыграло огромную роль в развитии биологии, медицины и ветеринарии. Еще при жизни вирусолога его данные о вирусах дополнил нидерландский микробиолог Мартин Бейеринк (Martin Beijerinck). В 1898 году он, еще не зная об исследованиях Ивановского, тоже экспериментировал с вирусом табачной мозаики и сделал похожие выводы – кроме одного: он предположил, что инфекционный агент – это патогенная молекула, способная репродуцироваться и распространяться в клетках зараженного хозяина. Таким образом, Бейеринк угадал неклеточную природу вирусов. Узнав впоследствии о работе Ивановского, который его опередил, голландский ученый не стал замалчивать его достижение и честно сослался на работу предшественника.

Изучение вирусов, исследования


Вирус табачной мозаики стал первым организмом из своего царства, который исследовали на электронном микроскопе (в 1939 году). До сих пор это один из популярных модельных организмов. Прежде всего ученым нужно было научиться воспроизводить вирусы. В 1939 году американский врач Эрнест Гудпасчер сумел вырастить в куриных яйцах вирус гриппа. Еще через десять лет вирусологи из США – Эндерс, Уэллер и Роббинс – впервые вырастили полиовирус не на тканях животных или яйцах, а на культуре клеток человеческого зародыша. Благодаря этому достижению была создана первая эффективная вакцина против полиомиелита.

Уже в наше время, в 2002 году был создан первый синтетический вирус. На данный момент описано несколько тысяч видов вирусов, однако ученые предполагают, что в реальности их миллионы. Это самые распространенные биологические объекты на Земле! Кстати, большая их часть не болезнетворна или даже приносит пользу человеку. Последнее относится к фагам – вирусам, паразитирующим на бактериях. Впервые их обнаружили в конце XIX века. Способность фагов уничтожать вредоносные бактерии активно изучалась в СССР, где разработали фаги против стрептококка, сальмонеллеза и т.д. Сегодня интерес к фагам возрождается: их можно использовать против бактерий, которые развили устойчивость к антибиотикам.

Институт вирусологии имени Гамалеи


Сегодня основное направление деятельности Центра Гамалеи – решение фундаментальных проблем в области эпидемиологии, инфекционной иммунологии. Здесь изучают закономерности распространения и проявления инфекционных заболеваний; генетику, молекулярную биологию и экологию патогенных микроорганизмов; разрабатывают способы диагностики и профилактики инфекционных болезней. На базе института работают девять центров Минздрава России: по риккетсиозам, лептоспирозам, бруцеллезу, туляремии, легионеллезу, микоплазмозам, хламидиозам, клостридиозам, боррелиозам.


Заболевания растений, животных и человека, вирусная природа которых в настоящее время установлена, в течение многих столетий наносили ущерб сельскому хозяйству и вред здоровью человека.

Многие из них были описаны очень давно, но попытки установить их причину и обнаружить возбудителя оставались безуспешными. Первую вакцину для предупреждения вирусной инфекции—оспы предложил английский врач Э. Дженнер в 1796 г., почти за сто лет до открытия вирусов. Он впервые осуществил мечту человечества: обуздать одну из самых страшных болезней человека — натуральную оспу с помощью вакцинации — искусственной прививки возбудителя коровьей оспы. Вторая вакцина — против бешенства была предложена основателем микробиологии Л. Пастером в 1885 г., за семь лет до открытия вирусов.

Открытие вирусов принадлежит русскому ученому-ботанику — Д. И. Ивановскому (1864—1920).

В феврале 1892 г. на заседании Российской академии наук Д. И. Ивановский сообщает, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату считают днем рождения вирусологии, а Д. И. Ивановского — ее основоположником.

В потоке новостей о вирусах были и затишья, продолжавшиеся до тех пор, пока не появились новые методы их выделения, культивирования и идентификации. В 30—40-х годах XX в. основной экспериментальной моделью были лабораторные животные, чувствительные к ограниченному количеству вирусов. В 40-е годы в вирусологию в качестве экспериментальной модели входят развивающиеся куриные эмбрионы, которые позволили открыть и культивировать много новых вирусов: кори, инфекционного ларинготрахеита птиц, оспы птиц, ньюкаслской болезни и др. Использование этой модели стало возможным благодаря исследованиям австралийского вирусолога и иммунолога Ф. М. Бернета и американского вирусолога А. Херши.

Подлинное революционное событие в вирусологии — открытие возможности культивировать клетки в искусственных условиях. В 1952 г. Д. Эндерс, Т. Уэллер, Ф. Роббинс получили Нобелевскую премию за разработку метода культуры клеток. Использование культуры клеток является эффективным методом для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой.

По мере достижения успехов в создании новых методов исследования расширялось представление о мире вирусов, их природе, характере взаимодействия с чувствительными клетками организма, особенностях противовирусного иммунитета, экологии ряда вирусов, их роли в онкогенных процессах и эволюции ряда вирусных болезней человека и животных.

Со времени открытия вирусов по настоящее время представления о природе вирусов претерпели значительные изменения. По мере изучения природы вирусов в первые 50 лет после их открытия формировались представления о вирусах как о мельчайших организмах на основании наличия у них свойств, характерных для других организмов: 1) вирусы способны к размножению; 2) они обладают наследственностью, воспроизводя себе подобных. Наследственные признаки вирусов можно учитывать по спектру поражаемых ими хозяев и симптомов заболеваний и специфичности иммунных реакций. Сумма этих признаков позволяет определить наследственные свойства вируса; 3) вирусы обладают изменчивостью; 4) как другие организмы, они характеризуются приспособляемостью к условиям внешней среды — через организм хозяина; 5) вирусы эволюционируют, и движущий силой их эволюции является естественный отбор.

На примере вируса гриппа А можно проследить эволюцию, темпы которой измеряются не миллионами и даже не тысячами лет, а немногими годами. Незначительные изменения его антигенной структуры происходят ежегодно, а резкие смены антигенов — 1 раз в 10—15 лет. Подобных темпов естественной эволюции не знает ни одна группа других организмов.

Главным фактором естественного отбора в этом процессе является искусственный отбор, применяемый для выведения полезных пород животных и сортов растений. Классическим примером искусственного отбора являются работы J1. Пастера по получению вакцинного штамма — фикс-вируса бешенства, а также разработка живых вакцин против чумы крупного рогатого скота, чумы свиней, полиомиелита и других болезней.

На рубеже середины XX в. выход естественных наук на молекулярный уровень стимулировал дальнейшее развитие вирусологии, иммунологии, генетики. Создание электронного микроскопа сделало видным мир вирусов и макромолекулярных соединений. Использование молекулярных методов в вирусологии позволило установить строение (архитектуру) вирусных индивидуумов — вирионов (термин введен французским микробиологом А. Львовым), способы проникновения вирусов в клетку и их репродукцию. Исследования показали, что генетическое вещество вирусов — ДНК или РНК. Нуклеиновые кислоты вирусов заключены в футляр-капсид из белковых молекул, у сложных вирусов могут быть внешние оболочки (суперкапсидные), состоящие из белков, углеводов и липидов.

С развитием исследований молекулярной биологии вирусов стали накапливаться факты, противоречащие представлению о вирусах как микроорганизмах по следующим уникальным свойствам:

К вирусам примыкают вироиды-агенты, открытые Т. О. Дайнером в 1972 г., вызывающие заболевание некоторых растений и способные передаваться как обычные инфекционные вирусы. Вироиды — это сравнительно небольшие молекулы РНК (300—400 нуклеотидов), лишенные белковой оболочки. Механизм репликации вироидов не вполне ясен.

Многие годы считали, что некоторые медленные инфекции у человека (Куру, болезнь Крейтцфельлта—Якоба, синдром Герстманна—Штрейусслера—Шейнкера и др.) и животных (энцефалопатия у крупного рогатого скота, норок и др.) вызывают вирусы. Однако оказалось, что причиной этих болезней является новый патогенный агент — прион, открытый в начале 80-х годов XX в. американским биохимиком Стенли Прузинером.

Вирусы являются неклеточными формами жизни. По-видимому, вирусы можно рассматривать как биологические образования, несущие генетическую информацию, которую они реализуют только в живых клетках человека, животных и растений.

О происхождении вирусов высказывались разные предположения. Одни авторы считают, что вирусы являются результатом крайнего проявления регрессивной эволюции бактерий и других одноклеточных организмов. Эту гипотезу большинство вирусологов не разделяют.

Согласно второй гипотезы вирусы — потомки древних, доклеточных форм жизни. Эту гипотезу большинство исследователей также не разделяют.

В 1974 г. В. М. Жданов высказал гипотезу, согласно которой вирусы — важный фактор эволюции органического мира. Преодолевая видовые барьеры, вирусы могут переносить отдельные гены или их группы, а интеграция вирусной ДНК с хромосомами клеток может приводить к тому, что вирусные гены становятся клеточными генами, выполняющими важные функции.

Почему вирусология, которая зародилась в недрах микробиологии, за последние годы достигла такого стремительного успеха, став одной из ведущих и профилирующих дисциплин медикобиологической и ветеринарных наук? Этому способствовал ряд обстоятельств.

Во-первых, по мере сокращения роли бактерий, простейших и грибов в инфекционной патологии человека и животных, для лечения и профилактики которых имеются надежные биологические и химиотерапевтические препараты, роль вирусов возросла. Против многих вирусных болезней ни медицинская, ни ветеринарная наука еще не создала подобных препаратов. Так, до сих пор не решены проблемы с такими болезнями, как грипп, бешенство, ящур и др.

Во-вторых, возможность использования вирусов в качестве биологической модели. Таким образом, многие фундаментальные открытия в области биологии были сделаны благодаря вирусам (механизм репликации ДНК, механизм синтеза белка и др.).

В-третьих, установлено, что в широко распространенных респираторно-кишечных болезнях молодняка, наносящих огромный экономический ущерб, большую роль играют вирусы из различных таксономических групп (адено-, рота-, корона-, парамиксовирусы, вирусы диареи и др.). Оказалось, что при появлении вспышек этих заболеваний тесно взаимодействуют различные вирусы, бактерии, хламидии и стрессовые факторы.

В-четвертых, отдельные виды патологии (врожденные уродства, пороки развития и пр.), где роль вирусов даже не подозревалась, оказались вирусологическими. В медицине известно, что вирусы являются одной из причин внутриутробной патологии человека (вирус краснухи, гриппа, аденовирусы и др.). К сожалению, в ветеринарной вирусологии эта проблема не привлекла должного внимания. Хотя тератогенное действие вирусов наблюдается и в инфекционной патологии животных: вирус чумы свиней часто вызывает мертворождение и мумификацию плодов; вирус диареи крупного рогатого скота — гипоплазию мозжечка новорожденных телят; вирус инфекционного бронхита кур — патологическую форму яиц; вирус инфекционного ринотрахеита — пороки развития, слепоту у телят.

Установлена роль вирусов в возникновении некоторых хронических заболеваний. Накапливаются сведения о роли вирусов при острых сердечно-сосудистых заболеваниях, заболеваниях почек, поджелудочной железы, глаз и т. д. Только разносторонние исследования могут служить основой для суждения о роли вирусов в болезнях с неясной этиологией, которые до сих пор изучают врачи-неинфекционисты.

Очень важен как с эпидемиологической, так и эпизоотологической точки зрения факт миграции человеческих штаммов вируса гриппа в животный мир. Вирусы гриппа ускользают от действия иммунной системы организма за счет быстрого изменения своих антигенных детерминант. Это затрудняет проведение своевременных эффективных специфических методов профилактики. К сожалению, проблема гриппа до сих пор остается очень актуальной.

И наконец, накопились неоспоримые доказательства того, что многие опухолевые болезни вызывают вирусы (лейкоз птиц, крупного рогатого скота, болезнь Марека и др.). Выяснение причин возникновения злокачественных заболеваний человека, от которых во всем мире ежедневно погибают миллионы людей, остается одной из важнейших проблем современной биологии и медицины.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как обнаружили вирусы

Вирусы открыл русский ученый, спасая табак от мозаики.

Вирус табачной мозаики под микроскопом

Вирус табачной мозаики под микроскопом


Российского ботаника Дмитрия Ивановского болезнь табака волновала ничуть не в меньшей степени. Полагая, что этот недуг вызывают бактерии, Ивановский планировал осадить их на специальном фильтре, поры которого меньше этих организмов. Такая процедура позволяла полностью удалить из раствора все известные патогены. Но экстракт зараженных листьев сохранял инфекционные свойства и после фильтрации!

123


Этот парадокс, описанный Ивановским в работе 1892 года, стал отправной точкой в развитии вирусологии. При этом сам ученый думал, что сквозь его фильтр прошли мельчайшие бактерии либо выделяемые ими токсины, то есть вписывал свое открытие в рамки существующего знания. Впрочем, это частности. Приоритет Ивановского в открытии вирусов не оспаривается.

123


Вирусы присутствуют во всех земных экосистемах и поражают все типы организмов: от животных до бактерий с археями. При этом ученые до сих пор спорят, являются ли вирусы живыми существами. Серьезные аргументы есть и за, и против.

Конечно да! У вирусов есть геном, они эволюционируют и способны размножаться, создавая собственные копии путем самосборки.

Решительно нет! У них неклеточное строение, а именно этот признак считается фундаментальным свойством живых организмов. А еще у них нет собственного обмена веществ — для синтеза молекул, как и для размножения, им необходима клетка-хозяин.


Впрочем, большинство ученых склонны рассматривать этот спор как чисто схоластический.

Как устроены вирусы

Вирус — это генетическая инструкция в белковом контейнере. Расшифровать строение вирусов удалось, превращая их в кристаллы.

К началу 1930-х годов всё еще оставалось непонятным, что такое вирус и как он устроен. И по-прежнему не было микроскопа, в который его можно было бы разглядеть. В числе прочих высказывалась гипотеза, что вирус — это белок. А структуру белков в то время изучали, преобразуя их в кристаллы. Если бы вирус удалось кристаллизовать, то его строение можно было бы изучать методами, разработанными для исследования кристаллов.

123

В 1932 году Уэнделл Мередит Стэнли отжал сок из тонны больных листьев табака и воздействовал на него разными реагентами. После трех лет опытов он получил белок, которого не было в здоровых листьях. Стэнли растворил его в воде и поставил в холодильник. Наутро вместо раствора он обнаружил игольчатые кристаллы с шелковистым блеском. Стэнли растворил их в воде и натер полученным раствором здоровые листья табака. Через некоторое время они заболели. Эти опыты открыли ученым путь к получению и изучению чистых препаратов вируса, а самому Стэнли принесли Нобелевскую премию.


Что мы знаем сегодня

Постепенно накопились данные, позволившие разработать классификации вирусов. Выяснилось, что вирусы различаются по типу молекул ДНК или РНК, на которых записана их генетическая программа. Другое различие — по форме белкового контейнера, который называется капсид. Бывают спиральные, продолговатые, почти шарообразные капсиды и капсиды сложной комплексной формы. Многие капсиды имеют ось симметрии пятого порядка, при вращении вокруг которой пять раз совпадают со своим первоначальным положением (как у морской звезды).


Необходимость кристаллизовать вирусы для их изучения отпала лишь недавно с появлением атомных силовых микроскопов и лазеров, генерирующих сверхкороткие импульсы.

Кто такие фаги

В конце XIX века британский бактериолог Эрнест Ханкин, сражавшийся с холерой в Индии, изучал воды рек Ганг и Джамна, которые местные жители считали целебными. Ханкин, энтузиаст кипячения воды и теории Пастера о том, что болезни вызываются микроорганизмами, а не миазмами (вредоносными испарениями — так думали врачи еще в середине XIX века), обнаружил, что суеверные индусы правы: какой-то неопознанный объект непонятным образом обеззараживает воду священных рек без всякого кипячения.

123

Для бактерии встреча с фагами не всегда заканчивается печально: бактериофаги бывают вирулентными и умеренными. Если клетке не повезет и она повстречает вирулентного фага, то погибнет (у биологов этот процесс называется лизисом). Фаг использует такую клетку как ясли для своего потомства. Умеренные фаги обычно более дружелюбны. Они делают из бактерии зомби: она переходит в особую форму — профаг, когда вирус интегрируется в геном клетки и сосуществует с ней. Это сожительство может стать симбиозом, в котором бактерия приобретет новые качества и эволюционирует.

Способность вирусов уничтожать вредоносные бактерии привлекла к ним внимание ученых. Впервые фагов, этих цепных собак биологов, натравили на стафилококк ещё в 1921 году. Их активно изучали в Советском Союзе. Основоположник этого направления грузинский микробиолог Георгий Элиава был учеником Феликса Д'Эрелля. По его инициативе в 30-е годы был создан Институт исследования бактериофагов в Грузии, а позднее фаготерапия в СССР получила одобрение на самом высоком уровне. Были разработаны стрептококковый, сальмонеллезный, синегнойный, протейный и другие фаги.

123


Западные ученые отнеслись к фагам с меньшим энтузиазмом. Фаги очень чувствительные и в неподходящих условиях внешней среды теряют супергеройские способности. А тут как раз открыли и успешно применили первый антибиотик, и о фагах надолго позабыли.

Что мы знаем сегодня

В 2005 году биологи из Университета Сан-Диего показали, что вирусы — самые распространенные биологические объекты на планете, и больше всего среди них именно бактериофагов.

Всего на данный момент описано более 6 тыс. видов вирусов, но ученые предполагают, что их миллионы.


Как создали первую вакцину

Главное событие в истории вакцинации произошло в конце XVIII века, когда английский врач Эдвард Дженнер использовал коровью оспу для предотвращения оспы натуральной — одного из самых страшных заболеваний в истории, смертность от которого тогда достигала полутора миллионов человек в год.

Коровья оспа передавалась дояркам, протекала легко и оставляла на руках маленькие шрамы. Сельские жители хорошо знали, что переболевшие коровьей оспой не болеют человеческой, и эта закономерность стала отправной точкой для исследований Дженнера.

123


Хотя идея была не нова: еще в Х веке врачи придумали вариоляцию — прививку оспенного гноя от заболевшего к здоровому. На Востоке вдыхали растертые в порошок корочки, образующиеся на местах пузырьков при оспе. Из Китая и Индии эта практика расходилась по миру вместе с путешественниками и торговцами. А в Европу XVIII века вариоляция пришла из Османской империи: ее привезла леди Мэри Уортли-Монтегю — писательница, путешественница и жена британского посла. Так что самому Дженнеру оспу привили еще в детстве. Вариоляция действительно снижала смертность в целом, но была небезопасна для конкретного человека: в 2% случаев она приводила к смерти и иногда сама вызывала эпидемии.

Но вернемся к коровам. Предположив близкое родство вирусов коровьей и натуральной оспы, Дженнер решился на публичный эксперимент. 14 мая 1796 года он привил коровью оспу здоровому восьмилетнему мальчику, внеся экстракт из пузырьков в ранки на руках. Мальчик переболел легкой формой оспы, а введенный через месяц вирус настоящей оспы на него не подействовал. Дженнер повторил попытку заражения через пять месяцев и через пять лет, но результат оставался тем же: прививка коровьей оспы защищала мальчика от оспы натуральной.

Эдвард Дженнер прививает восьмилетнего Джеймса Фиппса от оспы. 1796 год

Эдвард Дженнер прививает восьмилетнего Джеймса Фиппса от оспы. 1796 год

Глава Роспотребнадзора Анна Попова — о борьбе с эпидемиями, научных открытиях и стратегических задачах работы ведомства

Что мы знаем сегодня

В 1980 году Всемирная организация здравоохранения объявила о полном устранении натуральной оспы. Это первое заболевание, которое победили с помощью массовой вакцинации.

Сейчас существует более сотни вакцин, защищающих от 40 вирусных и бактериальных заболеваний. Иммунизация спасает миллионы жизней, поэтому наши дети не умирают от столбняка, поцарапавшись на улице.

Современные вакцины, прошедшие все стадии клинических испытаний, безопасны — они могут вызвать сильную иммунную реакцию у некоторых людей, но никак не тяжелую форму болезни с летальным исходом или тем более эпидемию.

Как вирусы поселились в нашей ДНК

В геноме человека затаились древние вирусы. Они составляют более 8% нашей ДНК. И мы им многим обязаны.

В 1960-х годах ученые поняли, что некоторые вирусы могут вызывать рак. Одним из них был вирус птичьего лейкоза, угрожавший всему птицеводству. Вирусологи выяснили, что он относится к группе так называемых ретровирусов, внедряющих свой генетический материал в ДНК клетки-носителя. Такая ДНК будет производить новые копии вируса, но если вирус по ошибке встроился не в то место ДНК, клетка может стать раковой и начать делиться. Вирус птичьего лейкоза оказался очень странным ретровирусом. Ученые находили его белки в крови совершенно здоровых куриц.

Курица с саркомой, с которой начались исследования, которые выявили, что некоторые вирусы могут вызывать рак

Курица с саркомой, с которой начались исследования, выявившие, что некоторые вирусы могут вызывать рак


Робин Вайс, вирусолог из Университета Вашингтона, первым понял, что вирус мог интегрироваться в ДНК курицы, стать ее неотъемлемой и уже неопасной частью. Вайс и его коллеги обнаружили этот вирус в ДНК многих пород кур. Отправившись в джунгли Малайзии, они изловили банкивскую джунглевую курицу, ближайшую дикую родственницу домашней, — она несла в ДНК тот же вирус! Когда-то давно иммунная система куры-предка сумела подавить вирус, и, обезвреженный, он стал передаваться по наследству. Ученые назвали такие вирусы эндогенными, то есть производимыми самим организмом.

Вскоре выяснилось, что эндогенных ретровирусов полно в геномах всех групп позвоночных. А в 1980 году их обнаружили и у человека.

Что мы знаем сегодня

Согласно данным исследователей из Мичиганского университета, на долю эндогенных ретровирусов приходится более 8% нашего генома. При этом обнаружены далеко не все вирусные последовательности, которые осели в геноме человека. Искать их сложно: они встречаются у одного и отсутствуют у другого.

123

Злокачественные клетки, зараженные вирусом Эпштейна-Барр. В качестве носителя этот вирус использует ДНК


Друзья или враги нам эндогенные ретровирусы, сказать сложно, потому что нет уже деления на нас и них, — мы соединились в одно существо.

ВИРУСОЛО́ГИЯ (от ви­русы и …ло­гия), нау­ка об ин­фек­ци­он­ных аген­тах не­кле­точ­ной при­ро­ды – ви­ру­сах. В. яв­ля­ет­ся ча­стью био­ло­гии, а так­же со­став­ной ча­стью мед. и с.-х. на­ук – ме­ди­цин­ская, ве­те­ри­нар­ная, рас­ти­тель­ная В. Под­раз­де­ля­ет­ся так­же на об­щую и ча­ст­ную В. Об­щая В. изу­ча­ет фун­дам. про­бле­мы – струк­ту­ру и хи­мич. со­став ви­рус­ных час­тиц (ви­рио­нов), взаи­мо­дей­ст­вие ви­ру­сов с клет­кой и ор­га­низ­мом, их про­ис­хо­ж­де­ние и рас­про­стра­не­ние в при­ро­де, раз­ра­ба­ты­ва­ет клас­си­фи­ка­цию ви­ру­сов и др. Важ­ней­шим раз­де­лом об­щей В. яв­ля­ет­ся мо­ле­ку­ляр­ная В., ис­сле­дую­щая струк­ту­ру и функ­цию ви­рус­ных час­тиц, ме­ха­низ­мы экс­прес­сии ви­рус­ных ге­нов, мо­ле­ку­ляр­ную эво­лю­цию ви­ру­сов и др. Ча­ст­ная В. изу­ча­ет осо­бен­но­сти отд. се­мейств ви­ру­сов, раз­ра­ба­ты­ва­ет под­хо­ды к ле­че­нию и про­фи­лак­ти­ке ви­рус­ных ин­фек­ций.

При этом главной задачей является не только обнаружение новых, ранее не исследованных возбудителей болезней у человека, животных и растений, но и определение способов борьбы с виру­сами и профилактики заражения ими.

Это была первая в мире живая вакцина. В настоящее время таких вакцин много. Наряду с живыми вакцинами изготавливаются и применяются убитые вакцины, они производятся из вируса, убитого (инактивированного) формалином. При разных вирусных заболеваниях используют или живые, или убитые вакцины, но часто их применяют вместе для достижения больше­го эффекта (например, для профилактики клещевого энцефалита).

Читайте также: