Аммонификация белковых веществ значение процесса в почве и при хранении пищевых продуктов

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

АММОНИФИКАЦИЯ разложение микроорганизмами азотсодержащих органич. соединений (белков, мочевины, нуклеиновых кислот и др.) с образованием свободного аммиака; один из важнейших этапов круговорота азота в природе, приводящий к обогащению почвы усвояемыми формами азота. В результате жизнедеятельности и гибели организмов в почву и водоёмы попадает много азотсодержащих органич. веществ, к-рые благодаря А. минерализуются и могут быть вновь использованы растениями и разл. микроорганизмами. При А. соединения вначале гидролизу-ются при участии соответствующих ферментов до более простых соединений, используемых клеткой в процессах метаболизма. Микроорганизмы, участвующие в А. белков, наз. Гнилостными, мочевины — уробактериями. Нек-рые бактерии в процессе нитратного дыхания восстанавливают до аммиака нитраты.

Гние́ние (аммонификация) — процесс разложения азотсодержащих органических соединений (белков, аминокислот), в результате их ферментативного гидролиза под действием аммонифицирующих микроорганизмов с образованием токсичных для человека конечных продуктов — аммиака, сероводорода, а также первичных и вторичных аминов при неполной минерализации продуктов разложения:

Трупных ядов (например путресцин и кадаверин)

Ароматические соединения (например скатол, индол- образуются в результате дезаминирования и декарбоксилирования аминокислоты триптофана)

Гниение серосодержащих аминокислот (цистеина, цистина и метионина) приводит к выделению сероводорода, меркаптанов, диметилсульфоксида.

Аммонифицирующие микроорганизмы (иначе гнилостные микроорганизмы, гнилостная микрофлора) широко распространены в почве, воздухе, воде, животных и растительных организмах. Поэтому любой подходящий субстрат быстро подвергается гниению. Наиболее глубокий распад белка с образованием безазотистых и азотистых соединений (индол, скатол, NH3,H2S) идет при участии спорообразующих бактерий рода Bacillus (например Bacillus subtilis, Bacillus mycoides), Clostridium (Clostridium perfringens, Clostridium tetani, Clostridium histolyticum),и семейства Enterobacteriaceae(например Proteus, Escherichia).

Умеренное, контролируемое иммунитетом организма бактериальное гниение белков также является необходимой частью пищеварения и происходит в толстом кишечнике человека и животных. Их активаторами являются Proteus, Escherichia, Morganella, Klebsiella, Pseudomonas. По мнению И.И.Мечникова, постоянно образующиеся в кишечнике продукты гниения (скатол, индол и др.), вызывают хроническую интоксикацию и являются одной из причин преждевременного старения. Чрезмерно интенсивное гниение в толстом кишечнике является причиной гнилостной диспепсии, диареи и дисбактериоза толстого кишечника.

Первой стадией разложения белков является их гидролиз как микробными протеазами, так и протеазами клеток погибшего организма, высвобождаемыми из лизосом в результате смерти клеток (аутолиз). Протеолиз происходит в несколько стадий- в начале белки расщепляются до всё ещё крупных полипептидов, затем образовавшиеся полипептиды расщепляются до олигопептидов, которые в свою очередь расщепляются до дипептидов и свободных аминокислот. Образовавшиеся свободные аминокислоты затем подвергаются ряду превращений, приводящих к выделению характерных для гниения продуктов. Первыми стадиями является дезаминирование аминокислот, в результате которого аминогруппа аминокислоты отщепляется и высвобождается свободный ион аммония и декарбоксилирование, в результате которого карбоксильная группа отщепляется с высвобождением двуокиси углерода (реакция декарбоксилирования чаще всего происходит в условиях пониженного pH). В результате декарбоксилирования высвобождаются также первичные амины:

H2N-(CH2)4-CHNH2-COOH (лизин) → H2N-(CH2)4-CH2NH2 (кадаверин) + CO2

Выделяют так называемое окислительное дезаминирование (наиболее распространённый вид дезаминирования, в результате которого NAD(P) восстанавливается до NAD(P)H2) и гидролитическое дезаминирование, при котором аминогруппа аминокислоты заменяется на гидроксильную.

Также некоторые аминокислоты трансаминируются путём перемещения аминогруппы аминокислоты на 2-оксикислоту (в результате этого процесса также происходит дезаминирование аминокислот, кроме этого синтезируются те аминокислоты, которые бактерии не могут синтезировать путём аминирования ионами аммония).

Образовавшиеся в результате дезаминирования и декарбоксилирования продукты могут как окисляться микроорганизмами с целью получения энергии в виде АТФ, так и участвовать в реакциях промежуточного обмена.

Поможем написать любую работу на аналогичную тему

Аммонификация белковых веществ и других органических азотсодержащих соединений.

Аммонификация белковых веществ и других органических азотсодержащих соединений.

Аммонификация белковых веществ и других органических азотсодержащих соединений.

Постановка опыта. Для изучения аммонификации белко­вых веществ питательной средой может служить мясной буль­он с добавлением 3% пептона.

По 10 мл среды разливают в 2 пробирки и добавляют по 1.0 -2.0 г почвы. Пробирки закры­вают ватными пробками. Над средой подвешивают две бумажки — красную лакмусовую, или универсальную индика­торную бумагу, смоченную дистиллированной водой, для об­наружения выделяющегося аммиака и фильтровальную, смо­ченную щелочным раствором ацетата свинца, для выявления сероводорода и меркаптана. Закрепляют их между пробкой и стенками пробирки. Бумажки не должны касаться среды.

На 3—5-е сут инкубации при 28—30 °С опыт заканчивают и содержимое пробирок анализируют. Определяют возбудите­лей процесса аммонификации белка и продукты их жизнеде­ятельности.

Микроскопирование. Для обнаружения возбудителей гнилостного распада белковых веществ готовят фиксированный и окрашенный препарат.

Чаще других на препарате встре­чаются подвижные клетки Proteus vulgaris (от греч. Proteys — в древнегреческой мифологии морское божество, способ­ное менять свой облик; от лат. vulgaris — обыкновенный, простой) пре­обладающие на первых стадиях распада белков.


Рис.1. Proteus vulgaris

Это неспорообразующие, неоди­наковой длины палочки. Кроме того, на препарате можно наблюдать много спорообразующих кле­ток Bacillus mycoides и Clostridium putrificus. У последних споры распо­ложены терминально и диаметр их превышает ширину клетки. Вас. mycoides вызывает аммонификацию белковых ве­ществ в аэробных условиях, а С. putrificus — в анаэробных, но может также развиваться и в аэробных условиях, если в среде находятся аэробные микроорганизмы, поглощающие кислород.

Качественные реакции на продукты гнилостного распада белка.Выделяющийся в атмосферу NH3 окрашивает подве­шенную полоску красной лакмусовой бумаги в синий цвет.

Накопление аммиака в культуральной жидкости устанав­ливают при помощи реактива Несслера. Реакция капельная. На фарфоровые пластинки с лунками или в чашки помещают каплю культуральной жидкости, затем — каплю реактива. При большом количестве аммиака образуется коричневый или бу­роватый осадок, при небольшом — появляется оранжевая или желтая окраска.

Сероводород обнаруживают с помощью подвешенной по­лоски фильтровальной бумаги, смоченной ацетатом свинца [РЬ(СН3СОО)2]. Бумага чернеет под действием сероводорода. Если она покрывается серебристым налетом, значит, наряду с H2S выделяются еще и меркаптаны (например, метилмеркаптан CH3SH).

Материалы, представляемые в отчет по лабораторной работе

1. Описать последовательность проведения работ

2. Результаты работы записать.

3. Изложить выводы по работе.

ТЕМА 6

ИЗУЧЕНИЕ УГЛЕВОДОРОДОКИСЛЯЮЩЕЙ МИКРОФЛОРЫ ПОЧВЫ

Цель занятия:

· Выделение углеводородокисляющей микрофлоры почвы

Вопросы и задания для самоподготовки

1. Симбиозы прокариот и протистов

2. Симбиоз микроорганизмов и растительноядных животных

3. Симбиозы микроорганизмов и морских животных

4. Паразитизм – как стратегия жизни микроорганизмов

5. Факторы патогенности

6. Роль токсинов в экологии бактерий

7. Концепция и стратегии паразитизма

Оборудование и материалы

1. Микроскоп биологический МБР-3 или аналогичный

4. Пробирки с жидкой питательной средой..

5. Материалы (предметные стекла для микропрепаратов; пробирки стеклянные, вместимостью 15 мл; пипетки, вместимостью 1,0 и 5,0 мл с делениями).

Общие сведения

Широкая механизация сельского хо­зяйства приводит к загрязнению сельскохозяйственных земель значительным количеством углеводородов. Так, керосин и бензин, используемые в тракторных, автомобильных и дру­гих двигателях, мазут и дизельное топливо, применяемые на сельских электростанциях, попадая в почву, приводят к нару­шению ее свойств, ухудшают экологическую ситуацию, а ава­рийные разливы нефти превращают почву в техногенную пус­тыню. Образцы почвы, загрязненные нефтепродуктами, продемонстрировали мутагенные эффекты на растениях. В городе источниками загрязнения являются сети АЗС, моек, станций технического обслуживания автомобилей содержание нефтепродуктов в почвах "значительно увеличилось". Доля участков, загрязненных нефтепродуктами свыше допустимого уровня, в среднем по Москве составила 26%, бензофенолом - 34% от общего числа обследованных участков.

Состав нефти и нефтепродуктов характеризуется высо­ким процентом парафиновых, нафтеновых и ароматических углеводородов, В почве эти продукты окисляют микроорга­низмы. Углеводороды хорошо окисляют представители родов Pseudomonas (P. aeruginosa, P. putida), Mycobacterium, Arthrobacter и Nocardia. Загрязненные места должны быть рано или поздно подвергнуты очистке — ремедиации (ле­чению).Внесение в загрязненные почвы микроорганизмов, способных разлагать соответствующие специфические вещества используют в целях очистки загрязненных почв органическими веществами и нефтепродуктами. В настоящему времени выделено и описано большое количество бактерий, способных использовать нефтяные загрязнения, токсические соединения. Применение таких культур в качестве посевного материала может быть полезно в свежих загрязнениях, когда ав­тохтонная микробная популяция еще не успела развиться или плотность ее очень низка. В любом случае необходимо обеспечить доступность загрязняющих веществ для использования их микро­организмами. Здесь важную роль играют дисперсия и растворение загрязнителей, а также снабжение микроорганизмов источника­ми азота и фосфора. Их недостаток лимитирует микробный мета­болизм и рост, а это, в свою очередь, ограничивает процесс био­деградации.

Ход работы

Постановка опыта. В качестве единственного источника углерода добавляют 2 мл керосина или вазелинового масла в минимальную минеральную среду. Для заражения в пробирки помещают 1/3 чайной ложки почвы из пробы, отобран­ной у бензоколонки или у гаража. Пробирки помещают в термостат при 30 °С на 4—6 сут.

Исследование морфологии микроорганизмов.Для знакомства с микроорганиз­мами, окисляющими углеводороды, используют накопительную куль­туру из пробирок. Окрашивание производят по Граму. Окрашенный препарат микроскопируют, пользуясь объективами ´40 и ´90. Просматривая препараты, делают зарисовки микроорганизмов, обращая внимание на форму, взаимное положение клеток и на соотношение размеров бактерий при разном увеличении микроскопа; определяют отношение к окраске по Граму.

В растительных и животных остатках, попадающих в почву и водоемы, всегда содержатся органические азотсодержащие вещества — белок и мочевина. Под действием микроорганизмов происходит минерализация этих веществ, сопровождающаяся накоплением аммиака. Разложение белка связано с развитием гнилостных микроорганизмов. Это сложный, многоступенчатый процесс, начинающийся с расщепления белков на пептоны под действием микробных ферментов про-теиназ. Далее пептоны расщепляются до аминокислот при участии ферментов пептиназ. Образующиеся в процессе распада белков различные аминокислоты в свою очередь подвергаются разложению.[ . ]

Когда организмы умирают, гетеротрофные бактерии разлагают их органические структуры, обращая в свои элементарные компоненты. Аминокислоты опять возвращаются в аммиачную форму, которая вновь усваивается другими организмами в процессах синтеза. На этот процесс расходуется много кислорода, при этом он превращается в диоксид углерода; потери кислорода вызывают увеличение нитрифицирующего потребления кислорода.[ . ]

Аммонификация — процесс разложения органических веществ, протекающий с участием специфических аммонифицирующих микроорганизмов и ведущий к образованию N43 или ЫН ¡. Ион аммония может быть выщелочен или поглощен в почвенном комплексе или необменно фиксирован трехслойными глинистыми минералами с расширяющейся решеткой. Содержание фиксированного аммония в почвах меняется от 1—2 до 10—12 ммоль/100 г почвы. Аммонификация — первая стадия минерализации азотсодержащих органических соединений.[ . ]

АММОНИФИКАЦИЯ — процесс разложения микроорганизмами азотсодержащих органических соединений (белков, нуклеиновых кислот и др.) с выделением аммиака. АМПЛИТУДА ЭКОЛОГИЧЕСКАЯ [лат. amplitude — величина] — пределы приспособляемости вида или сообщества к изменяющимся условиям среды.[ . ]

Аммонификация осуществляется аэробными и анаэробными микроорганизмами, которые составляют обширные группы бактерий, актиноми-цетов и плесневых грибов. Из них типичными представителями бактерий являются: Bact. vulgare, Bact. putidum, Bact. subtilis, Bact. mesentericus, Bact. niicoides; представителями плесневых грибов — Aspergillus, Pénicillium, Trichoderma koningi. Аммиак образуется во всех почвах при разной реакции среды, в присутствии воздуха и без него, но в анаэробных условиях при сильнокислой и щелочной реакции аммонификация сильно замедляется. На скорость аммонификации оказывают действие также температура почвы, влажность и другие факторы.[ . ]

Аммонификация — это образование из аминокислот солей аммония .[ . ]

Аммонификация — это переход азота органических веществ в аммиачную форму. Дальше под влиянием других микроорганизмов — нитрификаторов происходит так называемая нитрификация — окисление аммиака в азотную кислоту. Процесс нитрификации протекает также в двух стадиях: первой — в окислении аммиака до азотистой кислоты, второй — в переходе азотистой кислоты в азотную кислоту. Далее азотная кислота соединяется с основаниями почзы и образует соли — нитраты. Динамика нитратов в почве зависит от погодных условий, от почвенной реакции, от обработки и сильно меняется во времени.[ . ]

Тормозит аммонификацию и нитрификацию разведенных сточных вод в концентрации I мг/л [I].[ . ]

Это процесс аммонификации, то есть разложения (минерализации) органических веществ, протекающий с участием специфических аммонифицирующих микроорганизмов и ведущий к образованию аммиака ЫН3 или иона аммония ЫН4+.[ . ]

Рис; 2. Влияние титана на аммонификацию и нитрификацию.[ . ]

Белковый азот в результате аммонификации разлагается до аммонийного, который и используется при очистке сточных вод в качестве источника азота. Под БПК здесь понимается наличие в воде источника углеродного питания клеток. Наиболее интенсивно азот используется в период логарифмической фазы роста клеток, а в период окисления клеток азот высвобождается вновь в виде аммиака. Выделившийся аммонийный азот может окисляться до нитритов и нитратов либо повторно использоваться для нового цикла синтеза. Таким образом, для цикла превращений азота справедливы реакции (4.141) — (4.143).[ . ]

Влияние ДХНХ на процессы аммонификации.Влияние ДХНХ на процессы аммонификации.

Интенсивность процессов аммонификации в зависимости от дозы торфа и минеральных удобренийИнтенсивность процессов аммонификации в зависимости от дозы торфа и минеральных удобрений

Поглощает кислород из воды. Задерживает аммонификацию разведенных сточных вод при 10—100 мг/л.[ . ]

Результаты наблюдений за ходом процессов аммонификации и нитрификации в воде показали, что только при снижении концентрации норсульфазола до 0,1 мг/л процессы аммонификации и нитрификации практически близки к, контрольному опыту. Но и в этом случае переход нитритов в высшую форму окисления — в нитраты— задерживается до 10 суток.[ . ]

При минерализации фито- и зоомассы образуется аммиак (аммонификация), который поглощается почвой в виде катионов аммония (ЫЩ) или окисляется в ней. При окислении аммония, поглощенного почвой, и аммиачных солей образуются нитраты и нитриты (нитрификация). Аммонификация и нитрификация — составные элементы биотического и геологического круговоротов азота. Одна часть продуктов нитрификации усваивается растениями, другая превращается в молекулярный азот (динитрификация). Азот, усвоенный растениями, вовлекается в биотический цикл. Молекулярный азот, поступающий в атмосферу, участвует в геологическом круговороте.[ . ]

Концентрация 1 мг/л не влияет на санитарный режим водоемов, аммонификацию, а 10 мг/л повышает БПК воды [1].[ . ]

В процессе брожения белковоподобных веществ происходит их аммонификация и переход аммонийного азота в раствор. Наличие большого количества аммонийного азота (до 500—800 мг/л) — показатель нормально протекающего процесса брожения.[ . ]

Азотсодержащие вещества (белки, например) подвергаются процессу аммонификации, связанному с образованием аммиака, а далее - солей аммония, доступных в ионной форме для ассимиляции растениями. Однако часть аммиака под воздействием нитрифицирующих бактерий подвергается нитрификации, т. е. окислению сначала до азотистой, далее - азотной кислоты, а далее - при взаимодействии последней с основаниями почвы - происходит образование солей азотной кислоты. В каждом процессе участвует особая группа бактерий. В анаэробных условиях соли азотной кислоты подвергаются денитрификации с образованием свободного азота.[ . ]

На ВПК воды не влияет концентрация 0,1 мг/л; 2,5 мг/л тормозит процесс аммонификации и первую фазу нитрификации сточных вод.[ . ]

Файфер [16] указывает, что 10 мг/л метилового спирта тормозит процесс аммонификации.[ . ]

Перспективен ряд новых комбинированных удобрений, получаемых путем аммонификации, смешивания, добавления фосфорной кислоты, гранулирования, придания водоотталкивающих свойств концентрированным простым удобрениям. Так могут быть получены нитроаммофоски и диаммонитро-фоски, содержащие 50% и более питательных веществ в сумме.[ . ]

Проведенные исследования показали, что гликолевая кислота тормозит процессы аммонификации и нитрифи кации (1 фаза), начиная с концентрации 200 мг/л.[ . ]

Концентрация 0,5 мг/л не влияет на динамику изменения БПК воды, до 1 мг/л не влияет на аммонификацию и нитрификацию сточных вод. Концентрация 1—25 мг/л тормозит рост сапрофитной флоры в разведенных сточных водах и окисление органических веществ на 30—50% [11, 12].[ . ]

Пороговая концентрация по влиянию на минерализацию сточных вод составляет 2,5 мг/л; 5 мг/л тормозит процессы аммонификации и первую фазу нитрификации. Максимальная концентрация, не влияющая на сооружения биологической очистки, 600 мг/л.[ . ]

Запах: 1 балл — 3,9 мг/л, 2 балла — 7,3 мг/л; привкус: 1 балл — 0,5 мг/л, 2 балла — 1,0 мг/л [1]. В концентрации до 10 мг/л не изменяет pH, не тормозит аммонификацию и нитрификацию разведенных сточных вод.[ . ]

Для выяснения воздействия норсульфазола на общий санитарный режим водоемов проводились исследования влияния норсульфазола на процессы ВПК, аммонификации и нитрификации органических веществ в воде, а также изучался кислородный режим экспериментальных водоемов. Опыты велись с различными концентрациями норсульфазола (табл. 1).[ . ]

Большой прирост аммонийного азота, наблюдаемый в дальнейшем в опытных растворах, опережающий его количество в контроле, является следствием процесса аммонификации (см. рис. 6).[ . ]

Не влияет на БПК разведенных сточных вод концентрация 1 мг/л, но потребление кислорода увеличивается при концентрации 0,5 мг/л на 5% и при 5 мг/л — на 28%; недействующая концентрация по влиянию на нитрификацию и аммонификацию составляет 0,5 мг/л [1].[ . ]

Основным природным резервом, поставляющим растениям минеральный азот, является органическое вещество почвы. В результате жизнедеятельности микроорганизмов, использующих органическое вещество почвы как источник энергии, происходит аммонификация азотсодержащих органических веществ. Значительная часть освободившегося при этом аммония подвергается нитрификации.[ . ]

Содержится в сточных водах производств красителей, лаков, красок и др. При концентрации 0,5 мг/л привкус не ощущается, горьковатый металлический привкус появляется при 1 мг/л, желтоватый оттенок — при 1 мг/л. Концентрация 10 мг/л тормозит в водоемах аммонификацию и нитрификацию, снижает ВПК [1].[ . ]

В обоих случаях, как при тлении, так и при гниении, образуется аммиак. Этот аммиак подвергается затем при помощи других аэробных бактерий окислению и переходит сперва в азотистую, а затем в азотную кислоты. Соответственно процессы эти называются аммонификацией и нитрификацией.[ . ]

В процессе минерализации азота почвы образуются разнообразные аминокислоты, которые усваиваются микроорганизмами. В результате ферментативной деятельности почвенных микроорганизмов аминокислоты, расщепляясь, выделяют аммиак. Процесс образования аммиака из органических веществ называется аммонификацией. Интенсивность аммонификации зависит от реакции среды, аэрации почвы и других условий. Наиболее интенсивно выделяется аммиак в аэробных условиях (при доступе кислорода). При недостатке кислорода этот процесс замедляется.[ . ]

В хлопковых районах Средней Азии аммиачные соли интенсивно нитрифицируются, азот всех форм азотных удобрений становится одинаково подвижным. Для уменьшения подвижности и локализации азота в корнеобитаемом слое почвы практикуют совместное внесение органических и минеральных удобрений. Процессы аммонификации и нитрификации в этом случае растягиваются на более длительный срок. Для культуры с длинным периодом вегетации и с растянутым периодом потребления питательных веществ, какой является хлопчатник, это имеет существенное значение.[ . ]

С целью выяснения возможно вредного влияния про-пилбензола на общий санитарный режим водоемов и протекающие в нем процессы естественного самоочищения нами в экспериментальных условиях проводились наблюдения за динамикой процессов минерализации органических веществ по величине БПК, развитием процессов аммонификации и нитрификации, развитием сапрофитной микрофлоры. Кроме того, определялись содержание растворенного в воде кислорода, ее активная реакция.[ . ]

В анаэробных условиях не произойдет полного окисления продуктов распада аминокислот. Их превращение пойдет по типу брожения и, кроме углекислого газа и воды, будут накапливаться различные органические Бешенства,-Но и в этом и в другом случае образуется аммиак. Поэтому процесс разложения белков часто называю? аммонификацией. Возбудителями аммонификации белков, наиболее часто встречающимися в почве и водоёмах, являются аэробные споровые палочки Bact. subtHis (сенная палочка), Bact. mesentericus (картофельная палочка), Вас. megatherium, Вас. mycoides (mycoides — грибовидный, так как колонии ее имеют внешнее сходство с колониями плесеней).[ . ]

В производственных сточных водах встречается до 30 видов Bacterium. Эти бактерии усваивают нефть, парафины, нафтены, фенолы и другие соединения. Видовое название бактерий отражает характер усваиваемых соединений: Bact. aliphaticum, Bact. naphtalinicus, Bact. benzoli, Bact. cyrloclastes и др. Из аммонификаторов в сточных водах встречаются Bact. mycoides. Процессы аммонификации белковых соединений — важнейшая составная часть процессов очистки сточных вод. Высвобождающийся аммиак является источником азота, часть его окисляется до нитритов и нитратов. Из групп серобактерий в илах развиваются Thio-bacterium и Thiotrix, окисляющие сульфиды, гипосульфиты, сероводород.[ . ]

Азотобактер в кислых почвах не живет и быстро погибает при высеве бактеризованных им семян. Реакция почвы отражается и на тарификаторах. Как было выяснено опытами автора этого раздела (1932), нитрифицирующие бактерии, подобно растениям, страдают и от повышенной концентрации ионов водорода в почвенном растворе, но еще опаснее для них увеличение подвижности алюминия. Аммонификация же, благодаря тому что в ней принимают участие множество различных микробов, сравнительно слабо изменяется под влиянием почвенной кислотности.[ . ]

Если азота и фосфора меньше, чем требуется для очистки воды определенного состава, то их добавляют в виде фосфатов и хлористого аммония. Добавление солей для биологической очистки необходимо только при обработке производственных сточных вод. В бытовых же водах, доступных бактериям, азота и фосфора всегда достаточно. Аммонийный азот образуется в большом количестве при гидролизе мочевины; кроме того, азот белковый в результате процесса аммонификации также переходит в аммонийную форму.[ . ]

При концентрации меди 0,01 мг/л тормозятся процессы самоочищения водоемов. При концентрации 0,4-0,5 мг/л медь губительно действует на микрофлору и тормозит биологические процессы очистки сточных вод, задерживает размножение микроорганизмов, аммонификацию и нитрификацию сточных вод; при концентрации меди 1,0 мг/л заметно тормозятся процессы аэробной очистки сточных вод активным илом, уменьшается количество окисленного азота в сточных водах, задерживается образование активного ила.[ . ]

Некоторые авторы полагают, что присутствие этой бактерии — плохой показатель для лесных почв, так как свидетельствует о недостатке кислорода. Другие добавляют к этому, что рассчитывать лесоводу на обогащение почвы усвояемым азотом при помощи этой бактерии вряд ли можно. Но надо заметить, что микробиологических исследований в лесу сделано слишком мало для того, чтобы можно было окончательно принять оба эти заключения. Возможно, что в тех случаях, когда нитрификация, аммонификация азота и микоризы отсутствуют, возрастает полезное значение анаэробных фиксаторов азота, в особенности если недостаток кислорода воздуха для корней будет наблюдаться кратковременно.[ . ]

Микроорганизмы – одни из древнейших живых существ, однако некоторые исследователи полагают, что им предшествовали неклеточные формы жизни. Считается, что развитие живого шло от простых к более сложным организмам.

Микроорганизмы были первые обитатели на нашей планете. Около трех миллиардов лет назад они сформировали микробиосферу – древнейшую оболочку биосферы Земли. Биомасса таких существ превышает суммарную биомассу растений и животных. Накопившееся органическое вещество обладает высоким энергетическим потенциалом, поскольку из него образуется залежи нефти, газа угля, и других полезных ископаемых. Энергетика и в настоящее время во многом определяет прогресс науки, техники, а также благосостояние живущих на Земле.

Микроорганизмы активно участвуют в превращение веществ. Они повышают плодородие почвы. Так аммонификаторы разлагают белковые вещества. Продукты из жизнедеятельности (аммиак) окисляются нитрифицирующими бактериями вначале до азотистой, а затем да азотной кислот. Соли азотной кислоты – нитраты – усваиваются высшими растениями. Многие микроорганизмы фиксируют азот из воздуха (азотбактеры и др.), обогащают этим элементом почву, что повышает урожайность сельскохозяйственных культур.

Микроорганизмы превосходят химические сорбенты, как по количеству, так и по специфичности сорбции. Важно и то, что сорбентами могут быть отходы микробиологической промышленности (тысячи тонн), которые закапывают в глубокие траншеи. С помощью микробов-биосорбентов можно очищать промышленные стоки от тяжелых металлов, в том числе и от радиоактивных, что имеет большое значение в предотвращении загрязнения окружающей среды.

Микробы-санитары. Они очищают землю, разлагая трупы животных, остатки растений и загрязненную воду. В настоящее время большое внимание уделяют очистке воды. Чистой пресной воды становиться меньше. Очистка воды техническими целями не всегда достигает цели, поэтому изыскиваются биологические методы обезвреживания отходов производства. В некоторых странах отходы бумажных фабрик очищают с помощью микроорганизмов. Для этого загрязненную воду пропускают через большие емкости с целлюлозоразлагающими микроорганизмами.

Микроорганизмы – продуценты белка. Потребность в пищевом белке возрастает. В определенной степени эту проблему можно разрешить с помощью микроорганизмов. Их рост и развитие не зависят от времени года и погодных условий, а для своего питания они могут использовать непищевое сырьё – отходы сельскохозяйственного производства, целлюлозно-бумажной, лесной промышленности, нефть. По скорости производства белка микроорганизмы не имеют себе равных в мире.

2 Аммонификация мочевины – уравнение реакции, характеристика уробактерий, значение процесса

Животными и человеком ежесуточно выделяется в окружающую среду более 150 тыс. т, а в год более 20 млн.т. мочевинного азота, или 50 млн. т. мочевины. В моче содержится 47% азота, поэтому она считается одним из концентрированных азотистых удобрений.

Мочевина (карбамид) - СО(NH[2])[2]. Получают синтезом из аммиака и диоксида углерода при высоких давлениях и температуре. Белый микрокристаллический продукт, хорошо растворимый в воде. Гигроскопичность при температуре 20 -0С сравнительно небольшая. При хороших условиях хранения слеживается мало, сохраняет удовлетворительную рассеиваемость. Очень хорошими физическим свойствами обладает гранулированная мочевина. Гранулы диаметром 0,2-0,25 мм покрывают жировой оболочкой. В процессе грануляции образуется биурет.

Содержание биурета более 3% угнетает рост растений, поэтому мочевину лучше вносить за 10-15 дней до посева, чтобы биурет разложился. Мочевина непригодна для азотистого питания растений, и только после разложения ее уробактериями она становится усвояемой.

Уробактерии (ureae — моча) были открыты в 1862 г. Л. Пастером. Среди них встречаются как палочковидные, так и шаровидные формы микробов. Обитают в почве, навозе, сточных водах. Представители: (Bacilluspasteurii, Sporosarcinaureae и др.) Наиболее энергичные возбудители разложения мочевины — Вас. probatus и Вас. pasteuri, у которых жгутики расположены по всей поверхности тела. Такие микробы разлагают в 1 л. раствора до 140 г мочевины. Из шаровидных микробов наиболее энергичное действие на мочевину оказывает Sporosarcinaureae. В 1 л раствора она разлагает до 30 г мочевины. Характерный признак этой сарцины — наличие у нее жгутиков. Уробактерии аэробы и хорошо развиваются только в резкощелочной среде. В качестве азота они используют аммиачные соли или свободный аммиак, образующийся при гидролизе мочевины. Углерод из мочевины уробактерии использовать не могут, так как он находится в сильно окисленной форме и при гидролизе не выделяется в виде углерода диоксида. Углерод уробактерии используют из различных органических соединений (соли лимонной, янтарной, яблочной, уксусной и других кислот, а также моносахариды, сахариды и крахмал).

Разложение мочевины происходит под влиянием уреазы уробактерий, мочевина при этом превращается в аммиак и углекислоту. Для накопления данной группы бактерий пользуются средами, содержащими мочевину, которые разливают в колбы. Под ватную пробку подвешивают влажную красную лакмусовую бумажку для обнаружения аммиака.

Мочевина (NH2)2CO растворяется и под действием фермента уреазы превращается в


На богатых гумусом почвах это превращение происходит за 2-3 дня, на песчаных и болотистых несколько медленнее. Углекислый аммоний на воздухе разлагается, образуя бикарбонат аммония и аммиака. Для того чтобы избежать потерь аммиака, удобрения следует сразу заделывать в почву. В почве углекислый аммоний подвергается гидролизу с образованием бикарбоната аммония и гидроксида аммония, который подщелачивает почвенный раствор. Затем в результате процесса нитрификации происходит подкисление. При внесении под рис и чай мочевина действует также, как сульфат аммония, на легких почвах ее действие эффективнее действия аммиачной селитры. Целесообразно применять мочевину в качестве основного удобрения, а также для ранневесенней подкормки озимых и пропашных культур при немедленной заделке в почву. При использовании мочевины в качестве некорневой подкормки раствор концентрацией до 5% не вызывает ожога листьев.

3 Корневая и прикорневая микрофлора, её состав и влияние на растения

Нормальная микрофлора растений представлена ризосферными и эпифитными микробами. Зона почвы, находящаяся в контакте с корневой системой растений, носит название ризосферы , а микроорганизмы, развивающиеся в данной зоне, называются ризосферными. Условно различают два типа ризосферы: ближнюю и отдаленную.

Ближняя располагается непосредственно на поверхности корней и извлекается вместе с ними, отдаленная начинается на расстоянии нескольких миллиметров от корней и распространяется в радиусе 50 см от них. Количество микроорганизмов в ближней и отдаленной ризосфере различно: на поверхности корней их от 50 млн до 10 млрд, на расстоянии 15 см от корней до 5 млн в 1 г. почвы. Число микроорганизмов в ризосфере в 100 раз больше, чем в почве, где растения не произрастают, что связано с выделением корнями растений различных питательных веществ. В свою очередь, почвенные микробы могут оказывать благоприятное воздействие на жизнь растений, что обусловлено: минерализацией органических веществ и растительных остатков; образованием витаминов, аминокислот, ферментов и других факторов роста, усиливающих ферментативные процессы в растениях и способствующих усилению корневого питания и более энергичному обмену веществ растений; антагонистической ролью в отношении фитопатогенных микроорганизмов. Качественный и количественный состав микрофлоры ризосферы специфичен для каждого вида растений. Основная масса прикорневой микрофлоры представлена неспороносными грамотрицательными бактериями рода Pseudomonas , микобактериями и грибами, главным образом, базидиомицетами, реже фикомицетами, аскомицетами. Указанные грибы образуют симбиоз с корнями растений, в том числе и лекарственных, называемый микоризой. В зависимости от морфологических особенностей сожительства грибов с растениями различают эктотрофные и эндотрофные микоризы. Эктотрофные - ассоциации, при которых гриб не проникает внутрь корней, а поселяется на их поверхности, образуя своего рода чехол из мицелия. При эндотрофных микоризах мицелий гриба располагается в клетках коры корней растений, где образует скопления в виде клубков. Высшие растения, являясь основным источником питательных веществ для преобладающего числа микробного населения почв — гетеротрофов — оказывают существенное влияние на микробные ценозы. Зоны, непосредственно примыкающие к корням живых растений, являются областями активного развития микроорганизмов. Это связано прежде всего с выделениями из корней (экзосмосом) органических веществ, синтезированных растениями. Совокупность микроорганизмов, содержащихся в большом количестве в узкой зоне вокруг корней, называют ризосферной микрофлорой, а саму зону — ризосферой. Кроме того, существует представление о ризоплане — непосредственной поверхности корня, заселенной микробами. Ясно, что метаболизм (обмен веществ) корней оказывает большое влияние на почвенную среду, прилегающую к корням. Считают, например, что корни увеличивают кислотность примыкающих к ним микрослоев почвы за счет выделения углекислоты и H+ ионов. Такие изменения возможны в пределах нескольких миллиметров вокруг корня. Важным источником стимуляции почвенного микронаселения является выделение корнями питательных веществ. Патогенные и симбиотические микроорганизмы привязаны к ним либо способны растворять стенку клеток корня и проникать внутрь цитоплазмы. Экзосмос органических веществ из корней растений обусловлен активными процессами, пассивной диффузией или выделениями из отмирающих клеток.Молодые корешки обычно покрыты слизистыми чехликами, обильно заселенными микробами. В продуктах экзосмоса корней обнаружено большое количество различных веществ, в том числе 10 разных Сахаров, 23 аминокислоты, 10 витаминов, полисахаридные слизи, органические кислоты и др. Характер выделений зависит от вида и возраста растений. К сожалению, еще нет достаточных сведений о процессах корневого экзосмоса и использования веществ микроорганизмами в условиях природной нестерильной среды. Сфера воздействия корней на микрофлору в почве определяется лишь приблизительно по увеличению числа микробов по мере приближения к поверхности корня. Большинство трупп микроорганизмов обнаруживается в большем числе в ризосфере (Р), чем в окружающей почве (П), что можно выразить отношением: Р/П.

Список использованной литературы

1) Цветоводство: Удовольствие и Польза. Кузнецов А.

2) "Руководство по медицинской микробиологии" 2003г., под редакцией Е.П. Красноженова, составленное авторским коллективом кафедры: проф. Е.П. Красноженов, проф. М.Р. Карпова, проф. И.Н. Ильинских, доц. Ю.Н. Одинцов, доц. В.Г. Пехенько, доц. Л.С. Муштоватова, ст. преп. Т.Л. Мирютова, асс. М.В. Чубик.

3) Практикум по микробиологии Е.З. Теппер, В.К. Шильникова, Г.И. Переверзева

Аммонификация белков (минерализация азота)

Среди органических соединений, составляющих клетку, первое место по количеству занимают белки — на их долю приходится не менее 50% сухой массы клетки. Значительная часть белков попадает в почву с остатками отмерших растений, животных и микроорганизмов. При разложении белков микроорганизмами азот освобождается в виде аммиака. Этот процесс называют аммонификацией, или минерализацией азота.

Белки могут разлагаться аэробными и анаэробными бактериями, актиномицетами, грибами. Особенно активны в этом отношении представители семейства Pseudomonadaceae рода Pseudomonas (Pseudomonas fluorescens, Ps. aeruginosa), семейства Bacillaceae рода Bacillus (Bacillus mycoides, Вас. cereus, Вас. subtilis) и рода Clostridium (Cl. sporogenes, Cl. putrificus) (рис. 32), семейства Enterobacteriaceae рода Proteus (Proteus vulgaris) и др.

В состав белков обычно входит 20 б-аминокислот. Аминокислоты в полимерной цепи белка располагаются таким образом, что конец одной аминокислоты связан с началом другой пептидной связью. Такие полимерные молекулы, называемые полипептидными цепями, могут содержать сотни аминокислотных звеньев, а белковая молекула состоит либо из одной, либо из нескольких полипептидных цепей. По составу белки подразделяются на простые и сложные. Простые белки при гидролизе дают только аминокислоты, а сложные — также и другие органические и неорганические продукты. Небелковую часть (не состоящую из аминокислот) молекулы сложного белка называют его простетической группой.


К сложным белкам относят нуклеопротеиды, липопротеиды, металлопротеиды и гликопротеиды.

Молекулы белков и большинства пептидов расщепляются ферментами вне клеток микроорганизмов, так как не могут проходить через их цитоплазматическую мембрану. Протеолитические ферменты (протеазы), выделяемые клетками микроорганизмов в окружающую среду, осуществляют гидролиз ряда пептидных связей в молекулах белков. Образующиеся при этом частицы белковой молекулы (полипептиды и олигопептиды) могут использоваться клетками микробов, в которых они разрушаются внутриклеточными протеолитическими ферментами — пептидазами до свободных аминокислот. Образовавшиеся при распаде белка аминокислоты идут на синтез белков клетки или подвергаются дальнейшему расщеплению.

Пути внутриклеточного или внеклеточного расщепления аминокислот различны. Возможны следующие процессы:

А) дезаминирование, происходящее путем отщепления аммиака:


Б) окислительное дезаминирование:


В) восстановительное дезаминирование:




Образующиеся из белков аминокислоты минерализуются с различной скоростью. Некоторые из них (треонин, метионин) более устойчивы, другие, наоборот, весьма легко разлагаются (аргинин, триптофан).

После дезаминирования углеродный остаток подвергается воздействию микробов в аэробных или анаэробных условиях с образованием СО2 и различных органических соединений.

Если в среде имеются амиды, то они первоначально разлагаются до аминокислот, которые затем могут быть трансформированы тем или иным путем. Например, аспарагин под воздействием фермента аспарагиназы превращается в аспарагиновую кислоту:

(Н2N) CO CH2 CHNH2 COOH+H2O→NH3+HOOC CH2 CHNH2 COOH

При аэробной распаде белка основные конечные продукты этого процесса: СО2, аммиак, сульфаты и вода.

В анаэробных условиях при распаде белка образуется аммиак, амины, СО2, органические кислоты (жирные и ароматические – бензойная, ферулиновая и др.), меркаптаны, а также индол, скатол и сероводород, обладающие неприятным запахом.

При анаэробном разрушении белков могут образоваться токсические соединения, в частности первичные амины (диамины) - или птомаины, к числу которых относится кадаверин.

Кадаверин получается из лизина:

NH2CH2 (CH2)3CHNH2COOH →NH2CH2 (СН2)3СН2 NH2 + CO2

Накапливающиеся в анаэробных условиях в почве продукты разложения белков обладают фитотоксическими свойствами и нередко вызывают угнетение роста растений и снижение их урожайности.

При разрушении сложных белков, то есть соединений белка с веществами небелковой природы (липопротеидами, высокомолекулярными углеводами, нуклеиновыми кислотами и т. д.), сначала расчленяются основные компоненты — белок и связанная с ним простетическая группа. В дальнейшем эти соединения подвергаются более глубокой трансформации.

Читайте также: