От скрещивания растений тыквы с зелеными и желтыми плодами

Добавил пользователь Morpheus
Обновлено: 20.09.2024

Генетика является точной наукой. В ней есть законы и правила, которые можно проверить через задачи.

Генетика изучает закономерности изменчивости и наследственности. Каждый биологический вид воспроизводит себе подобные организмы. Однако нет идентичных особей, все потомки в большей или меньшей степени отличаются от своих родителей. Генетика дает возможность прогнозировать и анализировать передачу наследственных признаков. Для этого нужно уметь решать задачи по генетике.

При решении задач используются символы.

Латинской буквой Р обозначаются родители,

буквой F — гибридное потомство.

Заглавными буквами обозначаем доминантные гены, а прописными — рецессивные гены.

Заглавной и прописной буквой записываются аллельные гены.

Одинаковыми заглавными буквами обозначаем доминантные гомозиготы, а прописными — рецессивные гомозиготы.

Х — знак скрещивания.

Существуют специальные правила оформления задач по генетике. Предлагаем внимательно посмотреть на образец записи задачи.

Первым принято записывать генотип женской особи, а затем — мужской.

Гены одной аллельной пары всегда пишутся рядом.

При записи генотипа буквы, обозначающие признаки, всегда пишутся в алфавитном порядке, независимо от того, какой признак — доминантный или рецессивный — они обозначают.

Под генотипом всегда пишут фенотип.

У особей определяют и записывают типы гамет, а не их количество.

Правила оформления генетических задач

При решении задач на дигибридное скрещивание для определения генотипов потомства рекомендуется пользоваться решёткой Пеннета. По вертикали записываются типы гаметы от материнской особи, а по горизонтали — отцовской. На пересечении столбца и горизонтальной линии записываются сочетание гамет, соответствующие генотипу образующейся дочерней особи

Рассмотрим правила при решении задач по генетике.

Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков, то эти особи гетерозиготны.

Если в результате скрещивания особей, отличающихся фенотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по этой же паре признаков, то одна из родительских особей гетерозиготна, а другая — гомозиготна по рецессивному признаку.

Задачи по генетике имеют единые принципы решения. Но чтобы правильно решать задачи, необходимо определить их тип. Задачи могут быть на моногибридное, дигибридное скрещивание.

Рассмотрим технологию решения задач на моногибридное скрещивание.

У арбуза зеленая окраска плодов доминирует над полосатой окраской. Определите окраску плодов арбузов, которые получаются от скрещивания растений, имеющих гетерозиготные и гомозиготные генотипы.

Для решения этой задачи запишем объект исследования и обозначение генов. Нам дан объект исследования — арбуз. Признак для исследования — окраска арбуза. Доминантный признак зеленой окраски обозначаем заглавной буквой А, а рецессивный признак полосатый окраски — прописной буквой а.

Нам известны генотипы родительских форм.

Необходимо определить окраску плодов арбузов, то есть фенотип первого поколения.

Так как исследуется только один признак — окраска, то задача на моногибридное скрещивание.

Записываем формулу скрещивания для родительских форм.

Определяем тип гамет.

Записываем генотипы первого поколения.

Определяем фенотипы первого поколения.

Записываем ответ. В результате скрещивания растений имеющих гетерозиготные и гомозиготные генотипы, в первом поколении вероятность появления зеленых и полосатых арбузов равна 50% на 50%.

Решим еще один тип задач на моногибридное скрещивание. Условие задачи.

У мышей длинные уши наследуются как доминантный признак. Короткие уши наследуются как рецессивный признак. Скрестили гомозиготного самца с длинными ушами с самкой с короткими ушами. Определить генотип самца, самки и фенотип первого поколения.

Нам дан объект исследования — мыши. Признак для исследования — длина уха. Доминантный признак длинное ухо обозначаем заглавной буквой А, а рецессивный признак — короткое ухо — прописной буквой а.

Определяем генотипы родительских форм. У гомозиготного самца с длинными ушами обозначаем генотип двумя заглавными буквами АА, а у самки генотип двумя маленькими буквами аа.

Необходимо определить фенотип первого поколения.

Записываем формулу скрещивания для родительских форм.

Определяем тип гамет.

Записываем генотипы первого поколения.

Определяем фенотипы первого поколения.

Рассмотрим решение задач на дигибридное скрещивание.

Послушайте условие задачи.

У фигурной тыквы белая окраска плодов А доминирует над желтой а, а дисковидная форма В — над шаровидной b.

Ответьте на вопрос: как будет выглядеть F1и F2 от скрещивания гомозиготной белой шаровидной тыквы с гомозиготной желтой дисковидной?

Рассмотрим решение задачи.

Сначала определяем объект исследования — это тыква, исследуемые признаки: цвет и форма плодов.

Записываем и обозначаем цвет плодов: ген А — белый,

ген а — желтый; форма плодов: ген В — дисковидная

ген b — шаровидная .

Определяем ге­нотипы родительских тыкв. По условиям задачи, тыквы гомозиготны, следо­вательно, содержат две одинаковые аллели каждого признака.

Запишем схему скрещивания родительских растений и определим генотип и фенотип первого поколения.

Как вы видите из схемы скрещивания, генотипы первого поколения тыкв все будут гетерозиготны по двум признакам.

А по фенотипу все белые и дисковидные.

Далее находим генотипы и фенотипы второго поколения. Для этого строим решетку Пеннета и вносим в нее все возможные типы гамет: по горизонтали вносим гаметы женской особи, по вертикали — мужской особи. На пересечении получаем возможные генотипы потомства второго поколения.

Выпишем расщепление гибридов по фенотипу. Они будут следующие: 9 белых дисковидных*, 3 белых шаровидных**, 3 желтых дисковидных, 1 желтая шаровидная***.

Запишем ответ: первое поколение — все белые дисковидные. Во втором поколении — 9 белых дисковидных, 3 белых шаровидных, 3 желтых дисковидных, 1 желтая шаровидная.

Задание № 7412

Скрестили растения тыквы с жёлтыми шаровидными плодами и растения тыквы с белыми дисковидными плодами. В результате получили растения с двумя фенотипами: растения с белыми дисковидными плодами и растения с жёлтыми дисковидными плодами. При скрещивании растений тыквы с жёлтыми шаровидными плодами с растениями с белыми шаровидными плодами всегда получали только растения с белыми шаровидными плодами. Определите генотипы родительских форм и гибридов в F1 и F2. Составьте схемы двух скрещиваний. Какой закон наследственности проявляется в данном случае?

Правило пятое . Если при скрещивании двух фенотипически одинаковых особей в потомстве происходит расщепление признаков в отношениях 9:3:4, 9:6:1, 9:7, 12:3:1, 13:3, 15:1, то это свидетельствует о явлении взаимодействия генов; при этом расщепление в отношениях 9:3:4, 9:6:1 и 9:7 свидетельствует о комплементарном взаимодействии генов, расщепление в отношениях 12:3:1 и 13:3 – об эпистатическом взаимодействии, а 15:1 – о полимерном взаимодействии.

Задача . при скрещивании двух растений тыквы со сферической формой плодов получено потомство, имеющее только дисковидные плоды. При скрещивании этих гибридов между собой ( с дисковидными плодами) были получены растения с тремя типами плодов: 9 частей с дисковидными плод15:1ами, 6 со сферическими и 1- с удлиненными. Каковы генотипы родителей и гибридов первого и второго поколений?

Исходя из результатов первого скрещивания, можно определить, что родительские растения были гомозиготны, так как в первом поколении гибридов все растения имеют одинаковую форму плодов.При скрещивании этих гибридов между собой происходит расщепление в отношении 9:6:1, что говорит о комплементарном взаимодействии генов ( при таком взаимодействии генотипы, объединяющие в себе два доминантных неаллельных гена Аи В, как в гомо-, так и в гетерозиготном состоянии определяют появление нового признака).

Составим условную схему скрещивания:

Р сферические? сферические

F 1 дисковидные

F 2 9 дисковидных; 6 сферических;

Если в данном примере присутствует комплементарное взаимодействие генов,то можно предположить, что дисковидная форма плодов определяется генами А иВ, а удлиненная, видимо, рецессивным генотипом аавв. Ген А при отсутствии гена В определяет сферическую форму; ген В при отсутствии гена А тоже определяет сферическую форму плода. отсюда можно предположить, что родительские растения имели генотипы ААвв и ааВВ.

При скрещивании растений с генотипами ААвв и ааВВ в первом поколении гибридов все растения будут иметь дисковидную форму плодов с генотипом АаВв. При скрещивании этих гибридов между собой наблюдается то расщепление, которое дано в условии задачи, следовательно, в данном примере действительно имело место комплементарное взаимодействие генов.

Задача . У душистого горошка два белоцветковых, но разных по происхождению растения при скрещивании дали в первом поколении пурпурноцветковые гибриды. При скрещивании этих гибридов между собой в потомстве наблюдалось следующее расщепление: 9 растений с пурпурными цветками, 7- с белыми. Каковы генотипы родительских растений?

Составим условную схему скрещивания:

Р белоцветковое ? белоцветковое

F 9 пурпурноцветковых; 7 белоцветковых.

Анализируя результаты скрещивания, можно сделать вывод о том, что пурпурная окраска цветка определяется взаимодействием доминантных генов А и В. Отсюда генотип этих растений – АаВв.

Ген А при отсутствии гена В и ген В при отсутствии гена А определяют белоцветковость. Отсутствие в генотипе доминантных генов А и В обусловливает отсутствие пигмента, т. е. растения с рецессивным генотипом аавв тоже будут иметь цветки белой окраски.

Отсюда следует, что исходные родительские растения имели генотипы ААвв, ааВВ. Первое поколение гибридов – АаВв (дигетерозиготные).

Задача. При скрещивании растений тыквы с белыми и желтыми плодами все потомство имело плоды белой окраски. При скрещивании полученных растений между собой наблюдалось следующее расщепление: 204 растения с белыми плодами, 53 — с желтыми и 17 — с зелеными плодами. Определите генотипы родителей и их потомства.

Запишем условную схему скрещивания: Р желтоплодное X белоплодное р! белоплодное р9 204 белых; 53 желтых; 17 зеленых.

Расщепление 204:53:17 соответствует пример­но отношению 12:3:1, что свидетельствует о яв­лении эпистатического взаимодействия генов (когда один доминантный ген, например А, до­минирует над другим доминантным геном, на­пример В).

Отсюда белая окраска плодов определяется присутствием доминантного гена А или наличием в генотипе доминантных генов двух аллелей АВ; желтая окраска плодов определяется геном В, а зеленая окраска плодов генотипом аавв. Следовательно, исходное растение с желтой окраской плодов имело генотип ааВВ, а бело­плодное — ААвв. При их скрещивании гибрид­ные растения имели генотип АаВв (белые плоды).


На этом уроке подробно рассмотрены примеры решения задач на аллельное и неаллельное взаимодействие генов: кодоминирование, комплементарность, доминантный эпистаз, полимерию. Также этот урок включает пример решения задачи на плейотропное действие гена


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Решение генетических задач. Взаимодействие генов"

Аллельное взаимодействие генов.

Кодоминирование.

Задача 1. У матери четвёртая группа крови, а у отца – первая. Может ли их ребёнок унаследовать группу крови своей матери?

Решение: вспомним обозначения и комбинации генов, определяющие фенотипические признаки при наследовании групп крови у человека.


Возвращаемся к задаче.
Записываем генотипы родительских форм. У матери – I A I B , у отца – I 0 I 0 .
Определяем гаметы, которые дают родительские организмы. Поскольку от гомогаметного отца ребёнок не может получить ни ген I A , ни ген I B , то у него не может быть четвёртой группы крови. У половины потомков этих родителей может быть только вторая группа крови, а у другой половины – только третья.


Ответ: нет, не может.

Задача 2. В родильном доме перепутали двух малышей. Первая пара родителей имеет I и II группы крови, вторая пара – II и IV. У одного из детей – II группа крови, а у второго – I группа. Помогите медперсоналу определить родителей обоих детей.

Решение: рассмотрим варианты генотипов первого ребёнка со второй группой крови. Это могут быть I A I A или I A I 0 . Анализируем генотипы родителей. И делаем вывод, что родителями ребёнка может быть как одна пара, так и другая.


Со вторым ребёнком всё значительно проще. Он гомогаметен, поскольку имеет первую группу крови. Значит, у обоих его родителей в генотипе должен быть ген I 0 . Такой вариант возможен только с первой парой родителей.
Ответ: ребёнок со второй группой крови – наследник второй пары родителей; ребёнок с первой группой крови рождён первой парой родителей.

Неаллельное взаимодействие генов.

Комплементарность (дополнительное взаимодействие).

Задача 3. У душистого горошка окраска цветков проявляется только при наличии двух доминантных генов: А и В. Если в генотипе имеется только один доминантный ген, то окраска не развивается. Какое потомство в первом и втором поколении получится от скрещивания растений с генотипами ААbb и ааВВ?

Решение: из условия задачи видно, что гены А и B отвечают за образование пигмента и его проявление. Но это происходит только у тех особей, в генотипе которых они встречаются вместе. В остальных случаях окраска не проявляется и цветки остаются белыми.

Записываем данные нам генотипы родительских форм. По фенотипу это два белых растения. Поскольку они гомозиготы, то образуют по одному типу гамет: Ab и aB.

В первом поколении получаем единообразие гибридов: 100% красноцветковых дигетерозигот.


Скрещиваем гибридов первого поколения между собой.

Дигетерозиготные особи дают по четыре типа гамет.

Строим решётку Пеннета.


Во втором поколении гибридов получаем два варианта потомков по фенотипу – крас-ные и белые. Девять красных и семь белых. Девять к семи – это одно из соотношений расщепления, характерное для комплементарного взаимодействия генов.

Ответ: в первом поколении гибридов все особи с красными цветками дигетерозиготные. Во втором – наблюдаем расщепление: девять красноцветковых растений к семи белоцветковым.

Задача 4. При скрещивании растений одного из сортов тыквы с жёлтыми и белыми плодами всё потомство первого поколения имело белые плоды. При скрещивании гибридов F1 между собой во втором поколении было получено: 204 растения с белыми плодами, 53 – с жёлтыми и 17 – с зелёными. Определите генотип родителей и тип наследования.

Решение: определяем тип наследования. Для этого составляем соотношение расщепления.


Получаем 12:3:1. Такая пропорция говорит нам о том, что это эпистаз.

Вводим буквенные обозначения генов и записываем признаки, которые эти гены определяют. Пускай А – ген, определяющий жёлтую окраску, а – зелёную. Ген B подавляет образование пигмента, а b – не оказывает влияния на окраску.

Расщепление во втором поколении 12:3:1 означает, что родительские формы этих гибридов были дигетерозиготными, поскольку дали четыре типа гамет. А так как в первом поколении гибридов наблюдалось их единообразие, значит родительские формы гибридов первого поколения были гомозиготами по двум признакам. Одни из аллелей этих гомозигот доминантные, а другие – рецессивные.

Записываем генотипы родительских форм гибридов первого поколения: AAbb и aaBB. Проверяем соответствие записанных генотипов с фенотипами, данными по условию задачи. Одни родительские формы жёлтые, другие – белые.

Получаемое первое поколение гибридов – белые дигетерозиготы.


Скрещиваем их между собой.

Получаем заданное расщепление по фенотипу у гибридов второго поколения.


Записываем ответ задачи. Родители: доминантная гомозигота по первому признаку и рецессивная гомозигота по второму, и рецессивная гомозигота по первому признаку, доминантная гомозигота по второму. Тип наследования – доминантный эпистаз.

Задача 5. Рост человека определяется взаимодействием нескольких пар генов: А1a1A2a2А3a3. Люди с генотипом a1a1a2a2a3a3 имеют рост 150 см. С генотипом А1А1A2A2А3А3 – около 180 см (каждый доминантный ген добавляет к росту 5 см). Племя людей низкого роста порабощается ордой воинов с ростом в 180 см. Победители убивают мужчин и женятся на их женщинах. Какой рост будет у детей первого поколения от этих браков?

Решение: все гены отвечают за рост человека.

Записываем генотипы родителей. По условию – это доминантные и рецессивные гомозиготы.
Гомозиготы дают по одному типу гамет. В результате гибриды первого поколения будут гетерозиготами по трём парам генов.


Поскольку каждый доминантный ген прибавляет к самому малому росту в 150 сантиметров по 5 см, а доминантных гена в данном случае три, значит потомки будут иметь рост 165 сантиметров.

Ответ: 165 см.

Плейотропия.

Задача 6. У мышей ген доминантной жёлтой пигментации шерсти обладает гомозиготным летальным действием. Его аллель определяет рецессивную чёрную пигментацию и обеспечивает жизнеспособность мышей. Скрещены две жёлтые особи. Какое расщепление по окраске шерсти ожидается у гибридов первого поколения?

Решение: вводим буквенные обозначения генов. Пускай ген А обуславливает жёлтую окраску шерсти, а ген а – чёрную.
При этом отмечаем, что в гомозиготном состоянии доминантные гены приводят к нежизнеспособности потомства.

Записываем генотипы родительских форм.
Жёлтые жизнеспособные мыши могут быть только гетерозиготами.
Записываем генотипы гибридов первого поколения.


Получаем четыре части гибридов, из которых одна часть доминантных гомозигот оказывается нежизнеспособной.

Ответ: живыми в потомстве окажутся две части мышей с жёлтой шерстью и одна часть – с чёрной.

ВложениеРазмер
anohina_sbornik_zadach_po_genetike.docx 99.67 КБ

Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №450 Курортного района Санкт-Петербурга

Решение задач по генетике

Взаимодействие неаллельных генов

Анохина Елена Викторовна,

учитель биологии высшей категории

ГБОУ СОШ № 450 Курортного района

Сборник включает задачи на взаимодействие неаллельных генов:

  1. Комплементарность
  2. Эпистаз
  3. Полимерия

I Комплементарность – форма взаимодействия неаллельных генов, при которой признак формируется в результате суммарного сочетания продуктов их доминантных аллелей.

Имеет место при наследовании ореховидной гребня у кур, синей окраски баклажанов, зеленого оперения у волнистых попугайчиков и др.

Ореховидная форма гребня у кур обуславливается взаимодействием двух доминантных аллелей комплементарных генов А и В (А_В_) . Сочетание одного из этих генов в доминантном, а другого в рецессивном состоянии вызывает формирование либо розовидного ( А_bb ), либо гороховидного гребня ( aa_B ). У особей с генотипом aabb - листовидный (простой) гребень.

P ♀ AaBb х ♂ AaBb

Знаки гамет

9/16 – ореховидная форма гребня; 3/16 - розовидная форма гребня; 3/16 - гороховидная форма гребня; 1/16 – листовидная (простая) форма гребня.

Расщепление по фенотипу: 9 : 3 : 3 : 1

http://foxford.ru/uploads/tinymce_image/image/9566/%D0%B3%D1%80%D0%B5%D0%B1%D0%BD%D0%B82.jpg

Темно-синяя окраска плодов баклажанов формируется в результате взаимодействия продуктов двух неаллельных доминантных генов А и В . Растения, гомозиготные по любому из соответствующих рецессивных аллелей a и b или по ним обоим, имеют белые плоды.

Знаки гамет

9/16 – синяя окраска плодов у баклажанов; 7/16 – белая окраска плодов у баклажанов.

Расщепление по фенотипу 9 : 7

При комплементарном действии генов расщепление по фенотипу может быть не только 9 : 3 : 3 : 1 и 9 : 7, но и 9 : 6 : 1 и 9 : 3 : 4.

Образцы решения задач:

  1. При скрещивании белых морских свинок с черными потомство получается серое, а во втором поколении наблюдается расщепление 9 (серые) : 3 (черные) : 4 (белые).
  1. Какой характер наследования окраски шерсти у морских свинок?
  2. Какое потомство можно ожидать от скрещивания дигетерозиготного самца и гомозиготной по первому рецессивному и гетерозиготной по второму признаку самки?

А_bb – черная окраска

aaB_ и aabb – белая окраска

А_ B_ - серая окраска

P ♀ aaBb х ♂ Aa B b

P ♀ aaBb х ♂ Aa B b

Знаки гамет

  1. Окраска шерсти наследуется по типу комплементарного взаимодействия генов;
  2. В F 1 расщепление по фенотипу 3(серые) : 1 (черные) : 4 (белые)
  1. Зоопарк прислал заказ на белых попугайчиков. Однако скрещивание имеющихся на ферме зеленых и голубых особей не давало белых попугайчиков.

Каковы генотипы птиц, которых не было на ферме?

P ♂ А_ B_ х ♀ aaB_

  1. Заказ получен на попугайчиков, имеющих именно белый цвет. Но бесцветное оперение волнистых попугайчиков возникает только в том случае, если удастся создать дигоморецессивный генотип aabb .
  2. Голубые попугаи имеют генотип либо aaBB , либо aaBb . Но если зеленый родитель не имеет дигетерозиготного генотипа, то излишни подробности о том, каков генотип голубого родителя

Подходящими производителями белых попугайчиков могут быть особи с генотипами АaBb и aaBb .


P ♂ АaBb х ♀ aaBb

Знаки гамет

Ответ: на ферме не было зеленых попугайчиков с генотипом АaBb и голубых попугайчиков с генотипом aaBb .

  1. Эпистаз – форма взаимодействия неаллельных генов, при которой одна пара генов подавляет (не дает проявиться в фенотипе) другую пару генов.

Ген – подавитель называют эпистатичным, подавляемый ген – гипостатичным.

Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I(i) .

Если эпистатичный ген - доминантный, то эпистаз также называется доминантным. Расщепление по фенотипу при доминантном может идти в отношении 12 : 3 : 1, 13 : 3, 7 : 6 : 3. Если эпистатичный ген - рецессивный, то эпистаз также называется рецессивным, и в этом случае расщепление по фенотипу может быть 9 : 3 : 4, 9 : 7, 13 : 3.

Примером доминантного эпистаза является наследование белой окраски плодов тыквы. При этом ген B отвечает за желтую окраску плодов тыкв, b – зеленую окраску , I – эпистатичный ген, подавляет B и b, вызывая белую окраску, ген i на формирование окраски влияния не оказывает.

Читайте также: