Микроклональное размножение сахарной свеклы

Добавил пользователь Дмитрий К.
Обновлено: 21.09.2024

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

На сегодня разработан ряд различных способов биотехнологии микроклонального размножения. В их основе лежат четыре принципиальных подхода:

1) активация развития растительных меристем (апекс побега, пазушные и спящие почки побега);

2) образование адвентивных почек из тканей эксплантаты;

3) индукция соматического эмбриогенеза;

4) дифференциация адвентивных почек в первичной и перевивний каллусных ткани.

Иногда, как отдельную модель выделяют культуру пыльников.

Основным методом микроклонального размножения растений является активация пазушных меристем. Этот метод уже стал промышленным при производстве посадочного материала некоторых культур. Эта модель является наиболее надежной по плодовых и ягодных растений. Впервые эта модель была разработана на землянике в начале 70-х годов прошлого века. Этот метод базируется на снятии апикального доминирования, чего можно достичь двумя путями:

1. Получением побегов нормальных пропорций с последующим их разделением на "однобрунькови микроживци", которые используются как вторичные эксплантаты для повторения цикла размножения. Теоретическая возможность такого способа размножения составляет примерно 10 000 - 1 000 000 побегов в год.

2. Введением в питательную среду веществ с цитокининовым активностью, что приводит к формированию побегов с относительно укороченными междоузлиями, а пазушные почки дают начало новым побегам. Эксплантаты на таких средах приобретают вид пучков маленьких побегов, каждый из которых можно рекультивировать. Теоретически, возможность этого метода может составлять до 15000000000 почек или побегов в год от одного эксплантаты. Считают, что этот метод имеет минимальную степень риска относительно получения неоднородного потомства и частота появления мутантных растений не превышает частоты появления таких при обычном размножении. Метод относительно универсальный и имеет хорошую воспроизводимость в пределах вида и даже рода растений.

Второй метод - это индукция образования адвентивных почек непосредственно тканями эксплантаты. Он основан на способности изолированных частей растений при благоприятных условиях питательной среды восстанавливать недостающие органы и регенерировать целые растения (исключение составляет корневой органогенез). Почти все органы и ткани растений могут образовывать Адвентивная почки. Этот процесс, как правило, происходит на питательных средах, содержащих только цитокининов или в сочетании с ауксином в соотношении 10:1 или 100:1. С ауксинов в этом случае чаще всего используют ИОК или НОК.

Этим путем можно размножать нарциссы, лилии, гладиолусы, чеснок, лук, цветную капусту, землянику, малину, яблоню, грушу и другие.

Однако, некоторые исследователи считают, что при размножении таким способом не исключена возможность получения неоднородного потомства. Дело в том, что в тканях эксплантаты могут быть клетки с нарушенной плоидность. Прежде всего это касается тканей, состоящих из клеток, быстро отмирают, например, клетки корневого чехлика. И хотя вероятность регенерации растений из таких клеток относительно низкая, ею нельзя пренебрегать, так как in vitro эти клетки могут получить преимущество в развитии.

В некоторых случаях эффективным способом размножения растений in vitro может быть соматический эмбриогенез - это формирование зародкоподибних структур (эмбриоидов) из соматических клеток в условиях in vitro, которые при переносе на соответствующее питательную среду способны развиваться в целое растение. Соматический эмбриогенез наглядно демонстрирует тотипотентность растительных клеток.

Основное отличие образования зародышей in vitro от in vivo заключается в том, что соматические зародыши развиваются асексуальных вне зародышевым мешком и по своему внешнему виду напоминают биполярные структуры, в которых одновременно наблюдается развитие апикальных меристем стебля и корня. В некоторых случаях эмбриоидов образуются непосредственно из клеток ткани, культивируемой in vitro, - это так называемый прямой эмбриогенез. В других случаях сначала формируется Калюс, а уже из него развиваются зародыши-это косвенный эмбриогенез.

Эмбриоидов образуются из одиночных клеток, расположенных в основном на поверхности каллуса. Они отличаются плотной цитоплазмой, относительно большим ядром с увеличенным ядрышком, содержат мелкие вакуоли. Это метаболически активные клетки, богатые белками и РНК. Окружающие вакуолизирован клетки выполняют функцию "ткани-няни".

Формирование эмбриоидов в культуре тканей проходит в два этапа. На первом этапе клетки эксплантаты дедиференциюються за счет добавления в питательную среду ауксинов, как правило, 2,4-Д и превращаются в эмбриональные. На следующем этапе из этих клеток развиваются эмбриоидов. Происходит это при уменьшении концентрации ауксина или вообще полного его исключения из состава питательной среды.

Эмбриогенез легче происходит у молодых культурах. По мере удлинения срока культивирования ембриогенна активность клеток ослабляется. Так в моркови эмбриоидов начинают образовываться через 4-6 недель после получения каллуса, оптимальный возраст культуры для индукции соматического эмбриогенеза - 1520 недель 30-40-недельная культура часто теряет ембриогенний потенциал.

Четвертый метод микроклонального размножения - дифференциация адвентивных почек в первичной и перевивний каллусных ткани. Этот метод мало используется для получения посадочного метериала in vitro. Это связано с тем, что при длительном культивировании каллуса наблюдаются изменения плоидности клеток, структурные перестройки хромосом, накопления генных мутаций и уменьшение или и потеря морфогенном потенциала. Поэтому этот метод микроклоноального размножения целесообразно использовать только для тех растений, для которых присуща генетическая стабильность каллусных ткани, а вариабельность между растениями-регенерантов не превышает уровня естественной изменчивости. К таким растениям можно отнести томаты, спаржу, некоторые древесные породы. Через каллусных культур были также размножены сахарная свекла, кукуруза, рис, пшеница, подсолнечник, лен, картофель, огурец.

Для семенных растений характерно два способа размножения: семенной и вегетативный. Оба эти способа имеют как преимущества, так и недостатки. К недостаткам семенного размножения следует отнести, в первую очередь, генетическую пестроту получаемого посадочного материалa и длительность ювенильного периода. При вегетативном размножении сохраняется генотип материнского растения и сокращается продолжительность ювенильного периода. Однако для большинства видов (в первую очередь для древесных пород) проблема вегетативного размножения остается до конца не решенной.

Это обусловлено следующими причинами:

- не все породы, даже на ювенильной стадии, могут размножаться вегетативным способом с требуемой эффективностью (дуб, сосна, ель, орехоплодные и др.);

- практически невозможно с помощью черенкования размножать многие виды древесных пород в возрасте старше 10—15 лет;

- не всегда удается получать стандартный посадочный материал (возможность накопления и передачи инфекции);

- трудоемкостью и сложностью операций при размножении взрослых (древесных) растений с помощью прививок;

- неэффективностью разработанных технологий для получения достаточного количества генетически однородного материала в течение года.

Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения — клонального микроразмножения (получение в условиях in vitro (в пробирке), неполовым путем растений, генетически идентичных исходному экземпляру). В основе метода лежит уникальная способность растительной клетки реализовывать присущую ей тотипотентность, то есть под влиянием экзогенных воздействий давать начало целому растительному организму.

Этот метод, несомненно, имеет ряд преимуществ перед существующими традиционными способами размножения:

- получение генетически однородного посадочного материала;

- освобождение растений от вирусов за счет использования меристемной культуры;

- высокий коэффициент размножения (105—106 — для травянистых, цветочных растений, 104—105 — для кустарниковых древесных, 104 — для хвойных);

- сокращение продолжительности селекционного процесса;

- ускорение перехода растений от ювенильной к репродуктивной фазе развития;

- размножение растений, трудно размножаемых традиционными способами;

- возможность проведения работ в течение года и экономия площадей, необходимых для выращивания посадочного материала;

Первые достижения в области клонального микроразмножения были получены в конце 50-х годов XX столетия французским ученым Жоржем Морелем, которому удалось получить первые растения-регенеранты орхидей. Успеху Ж. Мореля в микроразмножении способствовала уже разработанная к тому времени техника культивирования апикальной меристемы растений в условиях in vitro. Как правило, исследователи в качестве первичного экспланта использовали верхушечные меристемы травянистых растений: гвоздики, хризантемы, подсолнечника, гороха, кукурузы, одуванчика, салата и изучали влияние состава питательной среды на процессы регенерации и формирования растений. Ж. Морель в своих работах также использовал верхушку цимбидиума (сем. орхидные) состоящую из конуса нарастания и двух-трех листовых зачатков, из которой при определенных условиях наблюдал образование сферических сфер — протокормов. Сформировавшиеся протокормы можно было делить и затем культивировать самостоятельно на вновь приготовленной питательной среде до образования листовых примордиев и корней. В результате им было обнаружено, что этот процесс бесконечен и можно было получать в большом количестве высококачественный и генетически однородный, безвирусный посадочный материал.

В России работы по клональному микроразмножению были начаты в 60-х годах в лаборатории культуры тканей и морфогенеза Института физиологии растений им. К. А. Тимирязева РАН. Под руководством чл.-корр. РАН, академика РАСХН Бутенко Р. Г. были изучены условия микроразмножения картофеля, сахарной свеклы, гвоздики, герберы, фрезии и некоторых других растений и предложены промышленные технологии. Таким образом, первые успехи в клональном микроразмножении связаны с культивированием апикальных меристем травянистых растений на соответствующих питательных средах, обеспечивающих в конечном итоге получение растений-регенерантов.

Однако область применения микроразмножения разнообразна и имеет тенденцию к постоянному расширению. Это в первую очередь относится к размножению in vitro взрослых древесных пород, особенно хвойных, и использование техники in vitro для сохранения редких и исчезающих видов лекарственных растений. В настоящее время в этом направлении наметился положительный сдвиг.

Первые работы по культуре тканей древесных растений были опубликованы в середине 20-х годов XX столетия и связаны с именем французского ученого Готре.

В них сообщалось о способности камбиальных тканей некоторых видов вяза и сосны к каллусогенезу in vitro. В последующих работах 40-х годов было выяснено о способности различных тканей вяза листового к образованию адвентивных почек. Однако дальнейший рост и формирование побегов авторами не были получены. Лишь к середине 60-х годов Матесу удалось получить первые растения-регенеранты осины, которые были доведены до почвенной культуры. Культивирование тканей хвойных город in vitro долгое время использовалось как объект исследования. Это было связано со специфическими трудностями культивирования ювенильных и тем более взрослых тканей, изолированных с растения. Известно, что древесные, и особенно хвойные, характеризуются медленным ростом, трудно укореняются, содержат большое количество вторичных соединений (фенолы, терпены и другие вещества), которые в изолированных тканях окисляются различными фенолазами. В свою очередь, продукты окисления фенолов обычно ингибируют деление и рост клеток что ведет к гибели первичного экспланта или к уменьшению способности тканей древесных пород к регенерации адвентивных почек которая с возрастом растения-донора постепенно исчезает полностью. Однако, несмотря на все трудности, ученые все чаще используют в качестве объектов исследований различные ткани и органы древесных растений В настоящее время насчитывается более 200 видов древесных растений из 40 семейств, которые были размножены in vitro (каштан, дуб, береза, клен, осина, гибриды тополей с осиной, сосна, ель, секвойя и др.), а работы в этом направлении ведутся в научных учреждениях Москвы, Санкт-Петербурга, Воронежа, Уфы, Новосибирска, Архангельска, Киева, Одессы, Ялты и др.

Этапы микроклонального размножения растений

Процесс клонального микроразмножения можно разделить на 4 этапа:

1. Выбор растения-донора, изолирование эксплантов и получение хорошо растущей стерильной культуры.

2. Собственно микроразмножение, когда достигается получение максимального количества меристематических клонов.

3. Укоренение размноженных побегов с последующей адаптацией их к почвенным условиям, а при необходимости депонирование растений-регенерантов при пониженной температуре (+2оС, +10оС).

4. Выращивание растений в условиях теплицы и подготовка их к реализации или посадке в поле.

Для культивирования тканей на каждом из четырех этапов требуется применение определенного состава питательной среды.

На первом этапе необходимо добиться получения хорошо растущей стерильной культуры. В тех случаях, когда трудно получить исходную стерильную культуру экспланта, рекомендуется вводить в состав питательной среды антибиотики (тетрациклин, бензилпенициллин и др.) в концентрации 100—200 мг/л. Это в первую очередь относится к древесным растениям, у которых наблюдается тенденция к накоплению внутренней инфекции.

На первом этапе, как правило, используют среду, содержащую минеральные соли по рецепту Мурасига и Скуга, а также различные биологически активные вещества и стимуляторы роста (ауксины, цитокинины) в различных сочетаниях в зависимости от объекта. В тех случаях, когда наблюдается ингибирование роста первичного экспланта, за счет выделения им в питательную среду токсичных веществ (фенолов, терпенов и других вторичных соединений), снять его можно, используя антиоксиданты. Это возможно двумя способами: либо омывкой экспланта слабым его раствором в течение 4—24 ч, либо непосредственным добавлением в питательную среду. В качестве антиоксидантов используют: аскорбиновую кислоту (1 мг/л), глютатион (4—5 мг/л), дитиотриэтол (1—3 мг/л), диэтилдитиокарбомат (2—5 мг/л), поливинилпирролидон (5000—10000 мг/л). В некоторых случаях целесообразно добавлять в питательную среду адсорбент - древесный активированный уголь в концентрации 0,5—1%. Продолжительность первого этапа может колебаться от 1 до 2 месяцев, в результате которого наблюдается рост меристематических тканей и формирование первичных побегов.

2 этап — собственно микроразмножение. На этом этапе необходимо добиться получения максимального количества мериклонов, учитывая при этом, что с увеличением субкультивирований увеличивается число растений-регенерантов с ненормальной морфологией и возможно наблюдать образование растений-мутантов.

Как и на первом этапе, используют питательную среду по рецепту Мурасига и Скуга, содержащую различные биологически активные вещества, а также регуляторы роста. Основную роль при подборе оптимальных условий культивирования эксплантов играют соотношение и концентрация внесенных в питательную среду цитокининов и ауксинов. Из цитокининов наиболее часто используют БАП в концентрациях от 1 до 10 мг/л, а из ауксинов—ИУК и НУК в концентрациях до 0,5 мг/л.

При долгом культивировании растительных тканей на питательных средах с повышенным содержанием цитокининов (5—10 мг/л) происходит постепенное накопление их в тканях выше необходимого физиологического уровня, что приводит к появлению токсического действия и формированию растений с измененной морфологией. Вместе с тем, возможно наблюдать такие нежелательные для клонального микроразмножения эффекты, как подавление пролиферации пазушных меристем, образование витрифицированных (оводненных) побегов и уменьшение способности растений к укоренению. Отрицательное действие цитокининов возможно преодолеть, по данным Н.В. Катаевой и Р.Г. Бутенко, путем использования питательных сред с минимальной концентрацией цитокининов, обеспечивающих стабильный коэффициент микроразмножения, или путем чередования циклов культивирования на средах с низким и высоким уровнем фитогормонов.

3 и 4 этапы — укоренение микропобегов, их последующая адаптация к почвенным условиям и высадка в поле являются наиболее трудоемкими этапами, от которых зависит успех клонального микроразмножения. На третьем этапе, как правило, меняют основной состав среды: уменьшают в два, а иногда и в четыре раза концентрацию минеральных солей по рецепту Мурасига и Скуга или заменяют ее средой Уайта, уменьшают количество сахара до 0,5—1% и полностью исключают цитокинины, оставляя один лишь ауксин. В качестве стимулятора корнеобразования используют β-индолил-3-масляную кислоту (ИМК), ИУК или НУК.

Укоренение микропобегов проводят двумя способами:

1) выдерживание микропобегов в течение нескольких часов (2—24 ч) в стерильном концентрированном растворе ауксина (20—50 мг/л) и последующее их культивирование на агаризованной среде без гормонов или непосредственно в подходящем почвенном субстрате (импульсная обработка);

2) непосредственное культивирование микропобегов в течение 3—4 недель на питательной среде, содержащей ауксин в невысоких концентрациях (1—5 мг/л в зависимости от исследуемого объекта). В последнее время предложен метод укоренения пробирочных растений в условиях гидропоники. Этот метод позволяет значительно упростить этап укоренения и одновременно получать растения, адаптированные к естественным условиям. Для картофеля возможно использовать безсубстратную гидропонику для получения мини-клубней. Затенение нижней части культуральных сосудов плотной черной материей или добавление в питательную среду активированного угля способствует укоренению микропобегов.

Пересадка растений-регенерантов в субстрат является ответственным этапом, завершающим процесс клонального микроразмножения. Наиболее благоприятное время для пересадки пробирочных растений — весна или начало лета.

Растения с двумя-тремя листьями и хорошо развитой корневой системой осторожно вынимают из колб или пробирок пинцетом с длинными концами или специальным крючком. Корни отмывают от остатков агара и высаживают в почвенный субстрат, предварительно простерилизованный при 85—90° С в течение 1—2 ч. Для большинства растений в качестве субстратов используют торф, песок (3:1); торф, дерновую почву, перлит (1:1:1); торф, песок, перлит (1:1:1). Исключение составляют семейство орхидных, для которых готовят субстрат, состоящий из сфагнового мха, смеси торфа, листьев бука или дуба, сосновой коры (1:1:1).

Приготовленным заранее почвенным субстратом заполняют пикировочные ящики или торфяные горшочки, в которых выращивают растения-регенеранты. Горшочки с растениями помещают в теплицы с регулируемым температурным режимом (20—22° С), освещенностью не более 5 тыс. лк и влажностью 65—90%. Для лучшего роста растений создают условия искусственного тумана. В тех случаях, когда нет возможности создать такие условия, горшочки с растениями накрывают стеклянными банками или полиэтиленовыми пакетами, которые постепенно открывают до полной адаптации растений.

Через 20—30 дней после посадки хорошо укоренившиеся растения подкармливают растворами минеральных солей Кнудсона, Мурасига и Скуга, Чеснокова, Кнопа (в зависимости от вида растений) или комплексным минеральным удобрением. По мере роста растений их рассаживают в большие емкости со свежим субстратом. Дальнейшее выращивание акклиматизированных растений соответствует принятой агротехнике выращивания для каждого индивидуального вида растений.

Процесс адаптации пробирочных растений к почвенным условиям является наиболее дорогостоящей и трудоемкой операцией. Нередко после пересадки растений в почву наблюдается остановка в росте, опадение листьев и гибель растений. Эти явления связаны, в первую очередь, с тем, что у пробирочных растений нарушена деятельность устьичного аппарата, вследствие чего происходит потеря большого количества воды. Во-вторых, у некоторых растений в условиях in vitro не происходит образования корневых волосков, что приводит, в свою очередь, к нарушению поглощения воды и минеральных солей из почвы. Поэтому целесообразно на третьем или четвертом этапах клонального микроразмножения применять искусственную микоризацию растений (для микотрофных), учитывая их положительную роль в снабжении растений минеральными и органическими питательными веществами, водой, биологически активными веществами, а также в защите растений от патогенов.

Индийскими учеными предложен простой метод предотвращения быстрого обезвоживания листьев растений, выращенных in vitro, во время их пересадки в полевые условия. Метод заключается в том, что листья в течение всего акклиматизационного периода следует опрыскивать 50%-ным водным раствором глицерина или смесью парафина, или жира в диэтиловом эфире (1:1). Применение этого метода помогает избежать длинных и затруднительных процессов закаливания пробирочных растений и обеспечивает 100%-ную их приживаемость.

Методы клонального микроразмножения

Существует много методов клонального микроразмножения, а также различных их классификаций. Согласно одной из них, предложенной Мурасиге в 1977 году, процесс можно осуществлять следующими путями:

1. Активация пазушных меристем.

2. Образование адвентивных побегов тканями экспланта.

3. Возникновение адвентивных побегов в каллусе.

4. Индукция соматического эмбриогенеза в клетках экспланта.

5. Соматический эмбриогенез в каллусной ткани.

6. Формирование придаточных эмбриоидов в ткани первичных соматических зародышей (деление первичных эмбриоидов).

Н.В. Катаева и Р.Г. Бутенко (1983) выделяют два принципиально различных типа клонального микроразмножения:

1. Активация уже существующих в растении меристем (апекс стебля, пазушные и спящие почки стебля).

2. Индукция возникновения почек или эмбриоидов de novo :

а) образование адвентивных побегов непосредственно тканями экспланта;

б) индукция соматического эмбриогенеза;

в) дифференциация адвентивных почек в первичной и пересадочной каллусной ткани.

Основной метод, использующийся при клональном микроразмножении растений - активация развития уже существующих в растении меристем. Он основан на снятии апикального доминирования.

Этого можно достичь двумя путями: а) удалением верхушечной меристемы стебля и последующим микрочеренкованием побега in vitro на безгормональной среде; б) добавлением в питательную среду веществ цитокининового типа действия, индуцирующих развитие многочисленных пазушных побегов. Как правило, в качестве цитокининов используют 6-бензиламинопурин (БАП) или 6-фурфуриламинопурин (кинетин) и зеатин.

Над созданием новых отечественных гибридов в Рамонском ВНИИСС трудятся десятки научных сотрудников. Они занимаются исследованиями сахарной свёклы, начиная от клетки и генома и до проблем хранения и переработки сырья. Есть среди них и молодые перспективные учёные.

Кандидат биологических наук Елена Колесникова заведует лабораторией культуры ткани сахарной свеклы и молекулярной биологии, генетики и биотехнологии. Она окончила педагогический университет, затем очно поступила в аспирантуру Всероссийского НИИ сахарной свеклы и сахара, где и ныне трудится. Вместе со своими коллегами занимается разработкой методов для создания новых гибридов сахарной свеклы, чтобы затем их можно было включить в селекционный процесс.

Среди них: микроклональное размножение, получение в условиях in vitro (в пробирке) неполовым путем растений, генетически идентичных исходному экземпляру, а также отбор на селективных питательных средах, который позволяет вывести селекционные материалы сахарной свёклы, устойчивые к стрессам.

– Процесс этот сложный и кропотливый. Необходимо отобрать материал, нужный для исследования, простерилизовать его и ввести культуру в in vitro. Затем мы должны создать такие условия, которые будут комфортными для экспланта и подобрать питательные вещества для того, чтобы простимулировать рекреационные процессы в тканях сахарной свёклы, – рассказывает Елена Колесникова. – Потом полученный материал мы передаем селекционерам для скрещивания и дальнейшего создания гибридов сахарной свеклы.

После гибриды передают в комиссию Госсортоиспытания, их высевают в нескольких местах и в течение трех лет проверяют основные характеристики корнеплода на сахаристость и урожайность. Если показатели соответствуют всем стандартам, то по решению комиссии полученный гибрид заносят в Государственный реестр достижений, допущенных к использованию на территории России.

Не только в лабораториях работают ученые Рамонского ВНИИСС. Дальнейшие исследования проходят на полях. Ведь именно от элементов питания и структуры микробного сообщества зависит плодородие почвы, высокий уровень которого так необходим для роста сахарной свеклы. Так как сахарная свекла выращивается в определенном севообороте – предшествующей ей культурой может быть в том числе и озимая пшеница – возник логичный вопрос: куда девать после её уборки оставшуюся на почве солому, масса которой может достигать 5 тонн на гектар? Из-за сокращения поголовья крупного рогатого скота солому стали меньше применять как подстилку, а сжигать прямо на полях – значит разрушать плодородный слой.

Ответить на этот непростой вопрос попыталась кандидат сельскохозяйственных наук Марина Колесникова.Начинала она старшим научным сотрудником в лаборатории эколого-микробиологических исследований почв, а сейчас – заместитель директора института по научной работе. Именно её работа под руководством доктора сельскохозяйственных наук Надежды Безлер стала отправной точкой в исследованиях по разрушению в полевых условиях соломы зерновых культур. Делается это с помощью выделенного из чернозема выщелоченного целлюлозолитического микромицета, видовую принадлежность которого официально подтвердили в Всероссийской коллекции промышленных микроорганизмов, как Humicola fuscoatra ВНИИСС 016.

– Солома содержит большое количество углерода и микроэлементов, которые в итоге способны повысить плодородие почвы. При её запашке в почву возвращается (в пересчете на один гектар) до 15 килограммов азота, 8 килограммов фосфора и 30 килограммов калия. Однако трансформация соломы в естественных условиях затягивается на 3-5 лет. Ускорить процесс деструкции соломы зерновых культур можно с помощью внесения в почву микромицета штамма Humicola fuscoatra ВНИИСС 016, – рассказала Марина Владимировна. – Большой интерес представляет работа нашего старшего научного сотрудника лаборатории кандидата биологических наук Ирины Черепухиной, которая изучала процесс разложения ячменной соломы в полевых условиях под воздействием микроорганизма.

Ирина Черепухина обнаружила, что при совместной трансформации соломы ячменя и Humicola fuscoatra происходит активизация фотосинтетических процессов в листовом аппарате сахарной свёклы. Это является важным фактором для ее нормального развития. В результате на фоне повышения общей биологической активности почвы и улучшения процесса фотосинтеза увеличивается и урожайность сельхозкультуры.

Многолетние труды ученых института были вознаграждены. В этом году научный коллектив получил патент на изобретение штамма этого микроорганизма. В планах у сотрудников лаборатории – активно использовать запатентованный микроорганизм, который должен помочь в формировании плодородия почвы, к уровню которого так требовательна сахарная свекла.


Пионером клонального микроразмножения считается французский ученый Жан Морель, который в 50-х годах двадцатого века получил первые растения - регенеранты орхидей. В это время техника культивирования апикальных меристем in vitro была уже хорошо разработана. Как правило, исследователи в качестве первичного экспланта использовали верхушечные меристемы травянистых растений: гвоздики, хризантемы, подсолнечника, гороха, кукурузы и т.д. В нашей стране работы по клональному микроразмножению были начаты в 30-х годах в лаборатории культуры тканей и морфогенеза ИФРа. Под руководством Р.Г.Бутенко были изучены условия микроразмножения картофеля, сахарной свеклы, гвоздики, герберы и др. растений и предложены промышленные технологии. В дальнейшем исследования по клональному микроразмножении охватили и древесные растения.

Первые работы по культуре тканей древесных растений были опубликованы в середине 20-х годов нашего столетия и связаны с именем Готре, который показал, что камбиальные ткани некоторых растений способны к каллусогенезу in vitro. Но первые растения - регенеранты осины, доведенные до почвенной культуры, были получены лишь в середине 60-х годов Матесом.

Культивирование тканей хвойных пород in vitro долгое время редко использовалось как объект исследования. Это было связано со специфическими трудностями культивирования тканей, изолированных из растения. Известно, что древесные, и особенно хвойные растения характеризуются медленным ростом, трудно укореняются, содержат большое количество вторичных соединений (фенолы, терпены и т.д.), которые в изолированных тканях активируются. Окисленные фенолы обычно ингибируют деление и рост клеток, что ведет к гибели первичного экспланта или уменьшению способности тканей древесных растений к регенерации адвентивных почек, которая с возрастом растения-донора исчезает практически полностью. В настоящее время, несмотря на перечисленные трудности, насчитывается более 200 видов древесных растений из 40 семейств, которые были размножены in vitro (каштан, дуб, береза, клен, сосна, ель, секвойя и др.).

Этапы микроклонального размножения:

1. Выбор растения-донора, изолирование эксплантов и получение хорошо растущей стерильной культуры.

2. Собственно микроразмножение, когда достигается получение максимального количества меристематических клонов.

3. Укоренение размноженных побегов с последующей адаптацией их к почвенным условиям, а при необходимости депонирование растений-регенерантов при пониженной температуре (+2 о С, +10 о С).

4. Выращивание растений в условиях теплицы и подготовка их к реализации или посадке в поле.

Для культивирования тканей на каждом из четырех этапов требуется применение определенного состава питательной среды.

На первом этапе необходимо добиться получения хорошо растущей стерильной культуры. В тех случаях, когда трудно получить исходную стерильную культуру экспланта, рекомендуется вводить в состав питательной среды антибиотики (тетрациклин, бензилпенициллин и др.) в концентрации 100—200 мг/л. Это в первую очередь относится к древесным растениям, у которых наблюдается тенденция к накоплению внутренней инфекции.

На первом этапе, как правило, используют среду, содержащую минеральные соли по рецепту Мурасига и Скуга, а также различные биологически активные вещества и стимуляторы роста (ауксины, цитокинины) в различных сочетаниях в зависимости от объекта. В тех случаях, когда наблюдается ингибирование роста первичного экспланта, за счет выделения им в питательную среду токсичных веществ (фенолов, терпенов и других вторичных соединений), снять его можно, используя антиоксиданты. Это возможно двумя способами: либо омывкой экспланта слабым его раствором в течение 4—24 ч, либо непосредственным добавлением в питательную среду. В качестве антиоксидантов используют: аскорбиновую кислоту (1 мг/л), глютатион (4—5 мг/л), дитиотриэтол (1—3 мг/л), диэтилдитиокарбомат (2—5 мг/л), поливинилпирролидон (5000—10000 мг/л). В некоторых случаях целесообразно добавлять в питательную среду адсорбент - древесный активированный уголь в концентрации 0,5—1%. Продолжительность первого этапа может колебаться от 1 до 2 месяцев, в результате которого наблюдается рост меристематических тканей и формирование первичных побегов.

2 этап — собственно микроразмножение. На этом этапе необходимо добиться получения максимального количества мериклонов, учитывая при этом, что с увеличением субкультивирований увеличивается число растений-регенерантов с ненормальной морфологией и возможно наблюдать образование растений-мутантов.

Как и на первом этапе, используют питательную среду по рецепту Мурасига и Скуга, содержащую различные биологически активные вещества, а также регуляторы роста. Основную роль при подборе оптимальных условий культивирования эксплантов играют соотношение и концентрация внесенных в питательную среду цитокининов и ауксинов. Из цитокининов наиболее часто используют БАП в концентрациях от 1 до 10 мг/л, а из ауксинов—ИУК и НУК в концентрациях до 0,5 мг/л.

При долгом культивировании растительных тканей на питательных средах с повышенным содержанием цитокининов (5—10 мг/л) происходит постепенное накопление их в тканях выше необходимого физиологического уровня, что приводит к появлению токсического действия и формированию растений с измененной морфологией. Вместе с тем, возможно наблюдать такие нежелательные для клонального микроразмножения эффекты, как подавление пролиферации пазушных меристем, образование витрифицированных (оводненных) побегов и уменьшение способности растений к укоренению. Отрицательное действие цитокининов возможно преодолеть, по данным Н.В. Катаевой и Р.Г. Бутенко, путем использования питательных сред с минимальной концентрацией цитокининов, обеспечивающих стабильный коэффициент микроразмножения, или путем чередования циклов культивирования на средах с низким и высоким уровнем фитогормонов.

3 и 4 этапы — укоренение микропобегов, их последующая адаптация к почвенным условиям и высадка в поле являются наиболее трудоемкими этапами, от которых зависит успех клонального микроразмножения. На третьем этапе, как правило, меняют основной состав среды: уменьшают в два, а иногда и в четыре раза концентрацию минеральных солей по рецепту Мурасига и Скуга или заменяют ее средой Уайта, уменьшают количество сахара до 0,5—1% и полностью исключают цитокинины, оставляя один лишь ауксин. В качестве стимулятора корнеобразования используют β-индолил-3-масляную кислоту (ИМК), ИУК или НУК.

Читайте также: