Менделем при моногибридном скрещивании гетерозиготных растений гороха

Добавил пользователь Валентин П.
Обновлено: 21.09.2024

Желтую горошину – в горшок, зеленую – в плетеную миску, снова желтую – в горшок. Нет, это не Золушка по заданию мачехи перебирает семена, чтобы, окончив работу, пойти на бал. Это монах и ученый Грегор Мендель в саду Августинского монастыря в чешском городе Брно собирает урожай с выращенных особым способом гороховых кустов, чтобы определить, как наследуется цвет у гороха.

Попытки скрещивать растения и изучать полученное потомство предпринимались исследователями и раньше. Но определенные выводы ученые сделать не смогли из-за большого разнообразия признаков среди потомков. И, поскольку, основы гибридологического анализа отсутствовали, а статистику для исследования наследственности никто не применял, ни один из исследователей не смог определить точные формулы наследования.

Для своих опытов Мендель выбрал горох не случайно:

  • Это неприхотливое растение легко выращивать, и в условиях теплой погоды в Чехии за один год можно получить несколько поколений.
  • Потомство одного семени довольно многочисленно: вспомните, сколько стручков на растении, выросшем из одной горошины.
  • Сорта гороха разнообразны в своих фенотипических проявлениях, а отличительные признаки наследуются.
  • Горох — самоопыляющееся растение. Это значит, что опыление происходит внутри одного цветка. Пыльца с другого растения в дикой природе попасть в другой цветок не может, поскольку органы размножения гороха защищены от проникновения пыльцы с других растений.
  • И вместе с тем, у исследователя есть возможность после удаления тычинок материнского растения искусственно перенести пыльцу с другого растения с помощью инструментов для получения растений-гибридов.
  • Гибриды, полученные в результате искусственного оплодотворения, способны давать свое потомство, что важно для прослеживания наследования признаков в поколениях.

Для того, чтобы оценить масштабы проделанной ученым работы, представьте, что на всех семеноводческих хозяйствах Чехии ученый заказал сорта выращиваемого там гороха. В результате ему прислали 34 образца, из которых для исследований он отобрал 22 варианта.

Исследуемый Менделем горох отличался по следующим признакам:

  • цвет семян (желтый или зеленый);
  • вид кожуры семян (гладкая или сморщенная);
  • высота стебля (высокое растение или низкое);
  • оттенок цветков (белые или розовые);
  • форма бобов (простые или членистые);
  • расположение цветов (верхушечные или пазушные).

Биология. Общая биология. 10-11 класс. Базовый уровень. Рабочая тетрадь. С тестовыми заданиями ЕГЭ. Вертикаль. ФГОС

Биология. Общая биология. 10-11 класс. Базовый уровень. Рабочая тетрадь. С тестовыми заданиями ЕГЭ. Вертикаль. ФГОС

Тетрадь содержит различные репродуктивные и творческие вопросы и задания, в том числе в виде лабораторных работ, познавательных задач, таблиц, схем и рисунков. В тетрадь включены также тестовые задания, которые помогут ученикам подготовиться к успешной сдаче ЕГЭ. Специальными знаками отмечены задания, направленные на формирование метапредметных умений (планировать деятельность, выделять различные признаки, сравнивать, классифицировать и др.) и личностных качеств учеников.

В своих опытах Мендель учел ошибки предшественников, которые пытались сравнивать растения одновременно по разным признакам и потерпели фиаско.

Исследователь решил начать с изучения наследования лишь одного признака — цвета горошин. Именно благодаря тому, что ученый сознательно сузил задачу, его ждал успех и он смог четко установить определенные закономерности наследования.

Мендель вручную оплодотворил растения, семена которых имели желтый цвет кожуры, пыльцой с растений с зеленой кожурой. Когда ученый собрал урожай высаженных растений, то обнаружил, что кожура у всех потомков желтая.

Повторив эксперименты с морщинистыми и гладкими горошинами, с кустами гороха разной высоты, растениями с разной окраской цветков и стручков и т.д., Мендель отметил, что все потомки в первом поколении унаследовали признак одного из родительских организмов, т.е. по фенотипу не отличаются друг от друга.

Ведущее свойство, характерное для всех семян, полученных в первом поколении, Мендель обозначил как доминантное. Свойство другого родителя, которое не проявилось у гибридов первого поколения, ученый определил как рецессивное. Закономерность получила название первого закона Менделя, или закона единообразия гибридов I-го поколения, или закона доминирования.

Все выращенные образцы нужно было собрать, сосчитать и выделить определенные закономерности. Одним из первых Мендель использовал и применил конкретные количественные методы для обработки данных. Зная о теории вероятности, он понимал необходимость исследования большого числа семян гороха, полученных в результате скрещиваний, чтобы избежать статистической ошибки из-за случайных отклонений.

Для выведения законов наследования Мендель изучил более двадцати тысяч семян — гибридов второго поколения. Согласитесь, для обычного монаха, который жил в конце XIX века, без доступа к современным исследовательским инструментам, с лупой и микроскопом, в перерывах между молитвами и проповедями — это ли не подвиг!

Горох – самоопыляющееся растение, поэтому в следующем поколении ученый предоставил работу по опылению матушке-природе, чем облегчил себе задачу исследовательскую, но не статистическую. Учитывая, что способ размножения гороха – половой, неопыленные цветки просто-напросто не дадут потомство, и случайные отклонения не искажали итоги экспериментов с растениями.

Мендель продолжил опыты с одинаково желтыми гибридами первого поколения. И для исследователя было большим сюрпризом увидеть примерно треть зеленых горошин в корзинке семян с новым урожаем.

Когда ученый проанализировал результаты экспериментов с гибридами второго поколения, он увидел следующую закономерность: гибриды разделились на два различных по внешнему виду, т.е. фенотипу, класса. Бо´льшая часть унаследовала доминантные признаки, меньшая — рецессивные.

Генетические законы Менделя

Далее ученый начал проводить опыты с растениями, у которых отличались две пары признаков, и использовал гомозиготные семена гороха, отличающиеся цветом и формой семян. Такой тип скрещивания ученый назвал дигибридным. Для определения гомозиготности растений он использовал анализирующее скрещивание

У потомков во втором поколении треть горошин имеет проявления доминантного фенотипа, однако при этом отличается по генотипу (Аа и АА). И чтобы определить генотип, Мендель использовал семена с проявлениями рецессивного признака. Поскольку рецессивные свойства проявляются только в гомозиготном состоянии генов (аа), потомки, в зависимости от генотипа исходной особи, будут иметь единый фенотип, если родительская особь гомозиготна, согласно 1 закону Менделя, либо произойдет расщепление в соотношении 1:1.

В результате искусственного опыления гладких (B) и желтых (A) растений с морщинистыми (b) и зелеными(a), в первом поколении все растения дали потомство с желтыми гладкими горошинами, что подтвердило первый закон Менделя о единообразии гибридов первого поколения при дигибридном скрещивании.

Генетические законы Менделя

Замеченные Менделем закономерности о наследовании генов подтвердились при анализе итогов экспериментов со всеми семью парами признаков. В ходе анализа результатов ученый пришел к выводу об универсальности закономерностей наследования и вывел Третий закон Менделя, или закон независимого распределения признаков.

Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары. В опытах по скрещиванию организмов с гомозиготным набором генов, при анализе по двум и более парам отличающихся качеств, у гибридов в третьем поколении (получены при скрещивании гибридов второго поколения) наблюдается независимое комбинирование свойств и кодирующих их генов разных аллельных пар.

Опыты ученого, проведенные с тысячами гороховых зерен в монастырском саду, и тщательная статистическая работа по анализу признаков, проявившихся у потомков, позволили ученому доложить на заседании Общества естествоиспытателей в г. Брно в 1865 году о своих выводах.

Мендель утверждал, что:

Из-за неудачи с другими растениями и пчелами сам Мендель разочаровался в своем открытии. А с 1868 года, после того, как получил сан аббата монастыря, биологией больше не занимался.

И только в начале XX века, благодаря пересмотру законов Менделя, генетика смогла сделать огромный шаг вперед.

Он проводил скрещивание растений гороха, при котором родительские формы анализировались по одной паре альтернативных признаков. Такое скрещивание называется моногибридным.

Если у родительских форм учитываются две пары альтернативных признаков, скрещивание называется дигибридным, более двух признаков – полигибридным.

Прежде чем проводить опыты, Г. Мендель получил чистые линии горохов с альтернативными признаками, т. е. гомозиготные доминантные (АА) – желтые и гомозиготные рецессивные (аа) зеленые особи, которые в дальнейшем скрещивались друг с другом.


При анализе результатов скрещивания оказалось, что все потомки в первом поколении одинаковы по фенотипу (проявляется доминантный признак желтой окраски – закон доминирования) и генотипу (гетерозиготны).

Первый закон Менделя – закон единообразия гибридов первого поколения: при скрещивании гомозиготных особей, отличающихся по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.


По фенотипу особи АА и Аа неотличимы (желтые), поэтому наблюдается расщепление в отношении 3:1 (три части потомков с желтыми семенами и одна часть – с зелеными). По генотипу соотношение будет: 1АА (одна часть – желтые гомозиготы):2Аа (две части – желтые гетерозиготы):1аа (одна часть – зеленые гомозиготы).

Второй закон Менделя – закон расщепления: при скрещивании гибридов первого поколения наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Доминантный ген не всегда полностью подавляет действие рецессивного гена. В таком случае все гибриды первого поколения не воспроизводят признаки родителей – имеет место промежуточный характер наследования.

Промежуточный характер наследования

Во втором поколении доминантные гомо- и гетерозиготы будут отличаться фенотипически и расщепление по фенотипу и генотипу одинаково (1:2:1). Например, при скрещивании гомозиготных растений ночной красавицы с красными (АА) и белыми (аа) цветками первое поколение получается с розовыми цветками (промежуточное наследование).

Во втором поколении расщепление по фенотипу, как и по генотипу, будет: одна часть растений с красными цветками, две части – с розовыми и одна часть – с белыми.


Анализирующее скрещивание. При полном доминировании судить о генотипе организма по его фенотипу невозможно, поскольку и доминантная гомозигота (АА), и гетерозигота (Аа) обладают фенотипически доминантным признаком. Для того чтобы отличить доминантную гомозиготу от гетерозиготной, используют метод, называемый анализирующим скрещиванием, т. е. скрещивание исследуемого организма с организмом, гомозиготным по рецессивным аллелям. В этом случае рецессивная форма (аа) образует только один тип гамет с аллелем а, что позволяет проявиться любому из двух аллелей исследуемого признака уже в первом поколении.

Моногибридным скрещиванием называется

Чистой линией называют

В потомстве, полученном от скрещивания двух розовых гетерозиготных растений, были растения с цветками красной, белой и розовой окраски. Каков процент розовых цветков?

При скрещивании двух высокорослых (С) растений было получено 25% семян, из которых выросли низкорослые растения. Каковы генотипы низкорослых растений?

Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы с рогатым быком? Ген комолости B доминирует.

Анализирующее скрещивание проводят для того, чтобы

Первый закон Г. Менделя заключается в

Расщепление в F2 в соотношении 9:3:3:1 по фенотипу и (1:2:1) 2 по генотипу характеризует

При скре­щи­ва­нии двух мор­ских сви­нок с чер­ной шер­стью (до­ми­нант­ный при­знак) по­лу­че­но потом­ство, среди ко­то­ро­го особи с белой шер­стью со­ста­ви­ли 25%. Ка­ко­вы ге­но­ти­пы ро­ди­те­лей?

Ожидаемый фенотип у потомства двух морских свинок с белой шерстью (рецессивный признак)

По фенотипу, формула расщепления – 3 желтых гороха, 1 зеленый горох. Значит, формула расщепления по генотипу будет

Генетические изменения признаков в потомстве F2 моногибридного скрещивания

Определите соотношение расщепления по генотипу и фенотипу у гибридов F2 при моногибридном скрещивании

Свидетельство и скидка на обучение каждому участнику

Тема: Моногибридное скрещивание. Закон доминирования. Закон расщепления. * Д/.

Описание презентации по отдельным слайдам:

Тема: Моногибридное скрещивание. Закон доминирования. Закон расщепления. * Д/.

Тема: Моногибридное скрещивание. Закон доминирования. Закон расщепления. * Д/З § 24,25 вопросы (задачи)

Цель: 1. Раскрыть цитологические основы закономерностей наследования при моно.

Цель: 1. Раскрыть цитологические основы закономерностей наследования при моногибридном скрещивании.

Грегор Иоганн Мендель Разработал гибридологический метод в основе которого ле.

Грегор Иоганн Мендель Разработал гибридологический метод в основе которого лежит скрещивание организмов, отличающихся друг от друга какими-либо признаками. Родился - 22 июля 1822 года.

Гибридологический анализ. В его основе лежит метод скрещивания организмов, от.

Гибридологический анализ. В его основе лежит метод скрещивания организмов, отличающихся друг от друга какими-либо признаками (альтернативными) – взаимоисключающими. Н-р: окраска цветков – белая и красная; окраска плодов (гороха) – желтая и зеленая; форма плодов (гороха) – гладкая и морщинистая. Правила генетики (скрещивания): Скрещиваемые организмы должны принадлежать к одному виду; Скрещиваемые организмы должны четко различаться по отдельным признакам; Изучаемые признаки должны быть постоянными – прослеживаться в ряду поколений; Необходим количественный учет всех полученных результатов скрещивания.

Моногибридное скрещивание Г.Мендель проводил скрещивание растений гороха, при.

Моногибридное скрещивание Г.Мендель проводил скрещивание растений гороха, при котором родительские формы анализировались по одной паре альтернативных признаков. Такое скрещивание называется моногибридным. Прежде чем проводить опыты, были получены чистые линии (однородное генетическое потомство) растений гороха с альтернативными признаками: Гомозиготные доминантные (АА, с желтыми семенами) и гомозиготные рецессивные (аа, с зелеными семенами) особи, которые в дальнейшем скрещивались друг с другом. См. рис 43,42 с . 109-108.

Типы моногибридного скрещивания: 1. Полное доминирование – при котором проявл.

Типы моногибридного скрещивания: 1. Полное доминирование – при котором проявляется только доминантный признак. I закон Менделя – закон единообразия гибридов 1-го поколения. (При скещивании двух особей с противоположными признаками в первом поколении все гибриды одинаковы и похожи на одного из родителей.) II закон Менделя - закон расщепления. (При скрещивании гибридов первого поколения наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 – по генотипу. 2. Неполное доминирование - при котором проявляется признак имеющий промежуточное значение между доминантным и рецессивным.

Запись скрещивания. Закон доминирования. P(родители) G (гаметы) F1 (потомки).

Моногибридное скрещивание у растений

Моногибридное скрещивание у растений

Моногибридное скрещивание у животных

Моногибридное скрещивание у животных

Кроме нормальных доминантных и рецессивных признаков у человека известно боль.

Кроме нормальных доминантных и рецессивных признаков у человека известно большое количество аномальных признаков. Аномалии могут быть как рецессивными, так и доминантными. Примером доминантной аномалии – наследственная близорукость. Близорукость имеет много проявлений и наследуется различно.

Цвет волос у человека определяется взаимодействием нескольких генов. Признак.

Неполное доминирование – доминантный ген не полностью подавляет рецессивный.

Неполное доминирование – доминантный ген не полностью подавляет рецессивный, а оба аллеля проявляют своё действие. Но F1 характеризуется одинаковым проявлением исследуемого признака. При скрещивании 2-х гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды F1 будут единообразны. (Правило единообразия гибридов 1-го поколения.)

Задачи по генетики. Моногибридное скрещивание У человека ген длинных ресниц д.

Задачи по генетики. Моногибридное скрещивание У человека ген длинных ресниц доминирует над геном коротких ресниц. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчину с короткими ресницами. 1) сколько типов гамет образуется у женщины? 2) Сколько типов гамет образуется у мужчины? 3) Какова вероятность рождения в данной семье ребенка с длинными ресницами (в%)? 4) Сколько разных генотипов и сколько фенотипов может быть среди детей данной супружеской пары (назовите их)? У собак висячее ухо доминирует над стоячим. От скрещивания гетерозиготных собак с висячим ухом с гомозиготными собаками, имеющими висячее ухо, получено 245 щенков. 1) Сколько типов гамет может образоваться у гомозиготной собаки? 2) Сколько различных генотипов и сколько фенотипов может быть в первом поколении?

3. Ген, вызывающий сахарный диабет, рецессивен по отношению к гену нормальног.

3. Ген, вызывающий сахарный диабет, рецессивен по отношению к гену нормального состояния. У здоровых супругов родился ребенок с сахарным диабетом. 1) Сколько типов гамет может образоваться у отца? 2) Сколько типов гамет может образоваться у матери? 3) Какова вероятность (в%) рождения здорового ребенка в данной семье? 4) Сколько разных генотипов может быть среди детей этой супружеской пары? 5) Какова вероятность (в%), что второй ребенок в этой семье тоже будет страдать сахарным диабетом?

Неполное доминирование 4. У человека серповидноклеточная анемия наследуется.

Неполное доминирование 4. У человека серповидноклеточная анемия наследуется как неполностью доминантный признак: у рецессивных гомозигот развивается сильная анемия, которая обычно заканчивается смертельным исходом, а у гетерозигот анемия проявляется в легкой форме. Малярийный плазмодий не может усваивать аномальный гемоглобин, в связи с чем, эти люди, имеющие ген серповидной анемии, не болеют малярией. В семье у обоих супругов легкая форма анемии. 1) Сколько типов гамет продуцирует каждый супруг? 2) Сколько разных фенотипов может быть среди детей этой пары? 3)Какова вероятность (в%) рождения в семье ребенка с тяжелой формой анемии? 4) Какова вероятность (в%) рождения ребенка, устойчивого к малярии? 5) Какова вероятность (в%) рождения в семье ребенка, неустойчивого к малярии? 5. От скрещивания сортов земляники с красными и белыми ягодами получились гибриды с розовыми ягодами, а во втором поколении (F2) оказалось примерно 1000 растений с белыми ягодами, 2000 – с розовыми и 1000 – с красными. 1) Сколько типов гамет образует гибрид F1? 2) Сколько разных генотипов среди гибридов F2 с розовыми ягодами? 3) Сколько разных фенотипов получится от возвратного скрещивания гибрида F1 с белоплодным сортом? 4) Сколько разных генотипов получится от скрещивания гибрида F1 с белоплодным сортом? 5) Сколько разных фенотипов получится от скрещивания гибридов F1 с красноплодным сортом?


Скрещиванием называют метод селекции животных и растений, при котором получают потомство от генетически различающихся организмов. Это могут быть особи разных видов, или разных рас одного вида. При моногибридном скрещивании потомство получают от родителей, различающихся по одному признаку.

Опыты Грегора Менделя

Закономерности наследования при моногибридном скрещивании были открыты в середине 19 века чешским исследователем Г. Менделем.


Рис. 1. Портрет Г. Менделя

Мендель работал с сортами гороха, отличающимися по одному признаку.
Этим признаком могла быть:

  • форма семян (гладкие и морщинистые);
  • цвет семян (жёлтые и зелёные);
  • цвет лепестков;
  • высота растения (низкие и высокие).


Признаки при скрещивании должны быть взаимоисключающими (альтернативными), т. е. они не могут присутствовать у особи одновременно.

Семена, используемые Менделем, являлись чистыми линиями (чистосортными), что означает, что они были единообразными:

  • по фенотипу (внешним признакам);
  • по генотипу (набору генов).

Р (Perenta – родители): АА х аа

А – означает ген, обеспечивающий жёлтый цвет семян.

которые читают вместе с этой





а – ген зелёного цвета семян.

АА и аа обозначают соматические клетки, каждая из которых содержит наследственную информацию от своих родителей (этого же сорта).

При размножении в каждую гамету идёт один ген:

G (gametes): А а

В результате первое поколение (F1) имеет генотип Аа.


Горох – самоопыляющееся растение, но при исследовании проводилось искусственное опыление, поэтому в потомстве не было комбинаций АА и аа.

Взаимоотношения генов

В природе одни гены доминируют над другими. Это значит, что если с гаметами в зиготу попадают гены, отвечающие за разные признаки (например, разный цвет лепестков), то будет проявляться один из них, доминантный.

Ген непроявленного альтернативного признака называется рецессивным и проявляется внешне только в комбинации аа.

При записи это различие показывается величиной буквы:

А означает, что признак доминантный. Ген зелёного цвета семян гороха доминирует над жёлтым.

а – признак рецессивный.

Если особь несёт и доминантные, и рецессивные признаки, то она называется гетерозиготной: Аа.

При наличии у особи либо только доминантных (АА), либо только рецессивных (аа) признаков, она называется гомозиготной.

В первом поколении в опытах Менделя все особи были одинаковы как по фенотипу, так и по генотипу. Эта закономерность названа первым законом Менделя, или законом единообразия первого поколения.


Рис. 2. Схема 1 закона Менделя

Закон расщепления

Второе поколение при моногибридном скрещивании получается иным:

Р: Аа х Аа

G: А А х а а

F2: АА Аа Аа аа

Как видим, по генотипу происходит расщепление на три разных комбинации генов: АА, Аа, аа.

В фенотипе также происходит расщепление и подавленный в первом поколении признак проявляется в 25 % случаев. Остальные 75 % организмов будут носить доминантный признак А.


Рис. 3. Схема 2 закона Менделя

Как мы видим, рецессивный ген не теряется, не поглощается доминантным, а сохраняется в генотипе и может проявиться в фенотипе.

Это явление сохранности генов и их возможности входить в гаметы и потенциально обеспечивать появление признака, называется гипотезой чистоты гамет.

Что мы узнали?

При моногибридном скрещивании учитывается только один признак организмов, например, цвет лепестков. 1 и 2 законы Менделя описывают, как наследуются признаки при таком скрещивании в случае с чистыми линиями. В первом поколении все особи гетерозиготны и внешне одинаковы. Во втором поколении наблюдается расщепление по фенотипу в пропорции 3:1. Расщепление по генотипу при моногибридном скрещивании происходит в пропорции 1:2:1.


В ходе урока вы познакомитесь с австрийским биологом и ботаником Грегором Менделем, а также с его работами по моногибридному скрещиванию. Узнаете о том, что основной работой Менделя стала разработка гибридологического метода. Также вы познакомитесь с законом частоты гамет. В данном уроке приводятся следующие понятия: гибридизация, чистая линия, моногибридное скрещивание, аллельные гены, гомозиготный организм, гетерозиготный организм, доминантный признак, рецессивный признак, расщепление


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Работы Менделя. Моногибридное скрещивание"

Генетика — это наука, которая изучает закономерности наследственности и изменчивости организмов.

Наследственность — это свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение.

Элементарными единицами наследственности являются гены ─ участки ДНК хромосом. Ген содержит информацию о первичной структуре одного белка.

С давних времён люди задумывались над тем, почему дети похожи на своих родителей. Родители передают определённые признаки своему потомству.

Первым кто начал систематически изучать законы наследственности был монах августинского ордена Грегор Мендель.


В 1843 (в возрасте 22 лет) Мендель постригся в монахи Августинского монастыря Святого Фомы в Брюнне (ныне Брно, Чехия) и взял имя Грегор.

Грегор Мендель экспериментировал со скрещиванием гороха и других растений, и даже не догадывался что открывает совершенно новое направление в биологии. Он изучал закономерности, по которым признаки предаются из поколения в поколение.


Для своих первых опытов Мендель выбирал растения, чётко различающиеся по какой-либо паре признаков, например, такие как форма и цвет семян, цвет соцветий и высота растения.

Основой работы Менделя был – гибридологический метод. Суть этого метода заключается в скрещивании (гибридизации) организмов, которые отличаются друг от друга какими-либо признаками, и в последующем анализе характера наследования этих признаков у потомства.

Ставя опыты, Мендель придерживался нескольких правил.

Во-первых, работая с садовым горохом, он использовал растения, которые относятся к различным сортам. Например, у одного сорта горошины всегда жёлтые, а у другого всегда зелёные.


Так как горох самоопыляемое растение то в природных условиях эти сорта не скрещиваются. При самоопылении они дают генетически идентичное и морфологически сходное потомство. Такие сорта называют чистыми линиями.

Во-вторых, чтобы получить больше материала для анализа законов наследственности, Мендель работал не с одной, а с несколькими парами гороха.

В-третьих, он намеренно упростил задачу и наблюдал не за всеми наследуемыми признаками сразу, а только за одним ─ за цветом семян гороха, например.

Если скрещивать организмы, которые будут отличаться только по одному признаку (например, по цвету семян или только по форме семян), за которые отвечают аллели одного гена, то такое скрещивание называют моногибридным.

В-четвертых. В своих работах Мендель применил для обработки данных количественные методы. Он не просто замечал, каков цвет семян гороха у потомства, но и точно подсчитывал, сколько таких семян появилось.

Если пользоваться терминами, которые появились через много лет после работ Менделя, то можно сказать, что клетки растений гороха одного сорта содержат по два гена только жёлтой окраски, а гены растений другого сорта – по два гена только зелёной окраски. Гены ответственные за развитие только одного признака (например, цвет семян) получили название аллельных генов.


Аллели — это различные формы одного и того же гена, которые расположены в одинаковых участках (локусах) гомологичных хромосом и определяют противоположные варианты развития одного и того же признака.

Если организм содержит два одинаковых аллельных гена (например, оба гена жёлтого цвета семян) то такие организмы называют гомозиготными.

Если же аллельные гены различны (то есть один из них определяет жёлтую, а другой зелёную окраску семян). То такие организмы называют гетерозиготными.

Простые, но точные опыты помогли учёному проникнуть в тайны наследования.

Мендель начал с моногибридного скрещивания. Он собрал семена гороха, у растений, которые отличаются только по одному признаку (окраской цветков, или различной высотой стебля, другие растения отличались формой семян, или имели семена разного цвета).


Горох был выбран для опытов неслучайно. Он легко выращивать в условиях Чехии, он размножается несколько раз в год. Сорта гороха отличаются друг от друга рядом хорошо заметных признаков.

Горох — это самоопыляющееся растение в его цветках пестик и пыльники, надёжно прикрыты лепестком лодочкой. Сюда не может проникнуть пыльца с другого растения.

Но опытным путём можно опылять растение пыльцой другого растения, то есть перекрёстно. Что и сделал Мендель.

Опыт Менделя по скрещиванию гороха с жёлтыми и зелёными семенами. Из цветков одних растений он удалил все пыльники. Затем с растений, приносящих семена другого цвета он собрал пыльцу и опылил цветки, лишённые пыльников.


Гибридный горох созрел. Все горошины оказались жёлтого цвета.


От растений с пурпурными и белыми цветками получились гибриды с пурпурными цветками. При скрещивании гороха с гладкими и морщинистыми семенами, наследовалась гладкая форма семян.

Преобладающий признак (желтизну семян или гладкость семян) Мендель назвал доминантными, а подавляемый признак (то есть зелёный цвет семян или морщинистость семян) – рецессивным.

Доминантный признак принято обозначать большой латинской буквой (А, В, C), а рецессивный – малой.

Исходя из данных опытов Мендель вывел закон о единообразии гибридов первого поколения.

Который гласит что при скрещивании двух гомозиготных организмов, которые отличаются друг от друга одним признаком, все гибриды 1-го поколения будут иметь признак одного из родителей и поколение по данному признаку будет единообразным.


Но установленные факты требовали логического объяснения.

Учёный рассуждал… Родители имели разный цвет семян. Очевидно, что в половых клетках находились различные наследственные факторы

Факторы, влияющие на развитие доминантного жёлтого цвета семени он обозначил заглавной буквой (А- большое). Рецессивный фактор, влияющий на развитие зелёного цвета – прописной (а-малое).


В оплодотворённую яйцеклетку попали оба гена. Но что произошло с зелёным цветом семени, совсем исчез?

Что бы выяснить это Мендель посеял семена первого поколения. Теперь оплодотворение происходило как обычно – самоопылением. Какими же будут семена у второго поколения гибридов? Среди жёлтых горошин оказались зелёные. Значит рецессивный ген не исчезал совсем. А был подавлен. Мендель сорвал все бобы гороха. И подсчитал все горошины. Получилось, что 6022 горошины были жёлтого цвета, а 2001 зелёного. То есть соотношение жёлтых и зелёных семян получилось три к одному (3:1).

Проследим каким образом получается такое соотношение.

При скрещивании гибридов первого поколения образуются такие сочетания AA Aa Aa aa. Сочетание где есть доминантный ген даёт жёлтую горошину. И только при сочетании рецессивных генов (аa) – зелёную горошину. Этим и объясняется расщепление в отношении три к одному.

Явление, при котором скрещивание приводит к образованию потомства частично с доминантными, частично с рецессивными признаками, получило название расщепления.


Опыты с другими признаками подтвердили эти результаты. Такое же расщепление наблюдалось и у растений с различной окраской цветов и у различных горошин.

И Мендель сформулировал правила расщепления гибридов во втором поколении: при скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются организмы с рецессивными признаками. Они составляют одну четвертую часть от всего числа потомков второго поколения.


Закон частоты гамет

Закон частоты гамет Менделя гласит что: при образовании гамет в каждую из них попадает только один из двух аллельных генов.

Из опытов Менделя по моногибридному скрещиванию, помимо закона частоты гамет, следует также, что гены передаются из поколения в поколение не меняясь.


Иначе невозможно объяснить тот факт, что в первом поколении после скрещивания гомозигот с жёлтыми и зелёными горошинами все семена были жёлтые, а во втором поколении снова появились зелёные горошины.

Значит, ген зелёного цвета горошин не исчезал и не превратился в ген жёлтого цвета, а просто не проявился в первом поколении, подавленный доминантным геном желтизны.

Изучим символы, принятые в традиционной генетике.

Символом зеркало Венеры обозначается женский организм, символом копье Марса мужской, знак – скрещивания, Р – радетельское поколение,

F1− первое поколение потомков, а F2 – второе поколение потомков.

Эф три – третье поколение потомков.

АВС – доминантные гены.

а b c – рецессивные гены.

АA BB CC – генотипы организмов моногомозиготных по доминантному признаку.

Aa bb cc– генотипы рецессивных особей.

Aa Cc Bb – генотипы моногетерозиготных особей.

Связь между поколениями обеспечивается через половые клетки − гаметы.

Рассмотрим как происходит наследование признаков.

Выделим гомологичную пару хромосом. Обозначим гены (отвечающие за жёлтую окраску семян) на хромосомах условно точкой. Перед мейозом каждая хромосома удваивается. Во время первого деления гомологичные хромосомы расходятся к полюсам. Образуется две клетки.

В результате второго деления мейоза они снова делаться. Получаются 4 половые клетки – гаметы. Каждая гамета содержит только один ген, который обуславливает жёлтую окраску семян.

Таким же образом получаются гаметы, которые содержат гены зелёной окраски семян.

При слиянии женской и мужской гамет образуется оплодотворённая яйцеклетка зигота. В ней восстанавливается двойной набор генов. Теперь каждая зигота несёт гены и жёлтой и зелёной окраски семян. Зигота развивается в гибридный организм.

Из семени на будущий год во время цветения вновь происходит мейоз. И вновь образуются гаметы. Гены не смешались. Каждая хромосома несёт либо жёлтый, либо зелёный ген окраски семян.


Проследим за дальнейшей судьбой гамет.

При слиянии женских и мужских гамет может образоваться такие сочетания. В трёх из них присутствуют доминантные гены. И лишь в одном оба гена рецессивные. Дающие зелёные семена.


Таким образом цитологические данные подтвердили идею Менделя о чистоте гамет.

В 1856 году Мендель опубликовал трактат о своих исследованиях и разослал его исследователям ботаникам, но его работы тогда остались без внимания.

Однако сейчас в городе Брно в Старобрненском монастыре августинцев установлена мемориальная доска и памятник Грегору Менделю. В этом городе работает Музей Менделя Масарикова университета. Каждый год в нем производят опыты Менделя и выращивают гибридный горох. И каждый год расцветает памятник великому открытию.

Читайте также: