Мендель скрещивал растения гороха с круглыми и морщинистыми

Добавил пользователь Skiper
Обновлено: 20.09.2024

Мендель скрестил чистую линию желтого гладкого гороха с чистой линией зеленого морщинистого (это дигибридное скрещивание, т.к. родители отличаются по двум признакам). Все потомство получилось желтым гладким (AaBb).

Мендель дал ему самоопылиться. Во втором поколении получилось расщепление 9:3:3:1.
9 A_B_ желтые гладкие
3 A_bb желтые морщинистые
3 aaB_ зеленые гладкие
1 aabb зеленые морщинистые

Общее количество желтых горошин составило 9+3=12, общее количество зеленых 3+1=4; 12:4 – это 3:1; с гладкими/морщиныстыми горошинами получилось то же самое. Как будто два моногибридных скрещивания произошли независимо друг от друга, а затем их результаты совместились.

Третий закон Менделя (закон независимого наследования): расщепление по каждой паре признаков происходит независимо от других пар признаков.

Основываясь на третьем законе, можно рассмотреть дигибридное скрещивание AaBb x AaBb как два независимых моногибридных скрещивания Aa x Aa и Bb x Bb, а затем перемножить вероятности. Например, 3/4 желтых умножить на 3/4 гладких получится 9/16 желтых гладких.

Тесты

1. При скрещивании гомозиготных растений томата с круглыми жёлтыми плодами и с грушевидными красными плодами (красный цвет А доминирует над жёлтым а, круглая форма В над грушевидной b), получится потомство с генотипом
А) BbAa
Б) bbAa
В) Bbaa
Г) BBAA

2. Соотношение расщепления в F2 по фенотипу 9:3:3:1 характерно для скрещивания
А) анализирующего
Б) моногибридного
В) дигибридного
Г) отдаленного

3. Каковы генотипы родителей при дигибридном анализирующем скрещивании
А) AABB х BbBb
Б) AaBb x aabb
В) AABB х AABB
Г) Bb х Aa

4. Правило единообразия первого поколения проявится, если генотип одного из родителей aabb, а другого
А) AABb
Б) AaBB
В) AABB
Г) AaBb

5. При дигибридном расщеплении признаков проявляется закон
А) независимого распределения генов
Б) взаимодействия генов
В) сцепленного с полом наследования
Г) промежуточного наследования

6. Скрещивание морских свинок, у одной из которых белая короткая шерсть, а у другой – черная длинная, называют
А) отдаленным
Б) дигибридным
В) моногибридным
Г) близкородственным

7. Схема AABB х aabb иллюстрирует скрещивание
А) моногибридное
Б) полигибридное
В) анализирующее дигибридное
Г) анализирующее моногибридное

8. Как обозначаются генотипы особей при дигибридном скрещивании
А) ВbВb х АаАа
Б) АаВb х АаВb
В) АаАА х ВbВb
Г) Аааа х ВbВb

9. При скрещивании гомозиготных растений гороха с желтыми круглыми семенами и с зелеными морщинистыми семенами (А - желтые, В - круглые) в F2 соотношение особей с разными фенотипами, равное 9:3:3:1, свидетельствует о проявлении закона
А) доминирования
Б) сцепленного наследования
В) расщепления
Г) промежуточного наследования

10. При дигибридном скрещивании (несцепленное наследование) особей с доминантными и рецессивными признаками в F1 происходит расщепление по фенотипу в соотношении
А) 9:3:3:1
Б) 1:2:1
В) 3:1
Г) 1:1:1:1

11. При скрещивании гетерозиготных растений томата с красными и круглыми плодами с рецессивными по обоим признакам особями (красные А и круглые В - доминантные признаки) появится потомство с генотипами АаВb, ааВb, Ааbb, ааbb в соотношении
А) 3:1
Б) 9:3:3:1
В) 1:1:1:1
Г) 1:2:1

12. Определите соотношение расщепления признаков по фенотипу у потомства, полученного от скрещивания дигетерозиготных растений гороха
А) 1:1
Б) 1:2:1
В) 1:2:2:1
Г) 9:3:3:1

13. Генотип одного из родителей будет АaBb, если при анализирующем дигибридном скрещивании и независимом наследовании признаков наблюдается расщепление по фенотипу в потомстве в соотношении
А) 1:1
Б) 3:1
В) 1:2:1
Г) 1:1:1:1

14. Определите генотип особи желтой фигурной тыквы, если при ее самоопылении в F1 расщепление признаков по фенотипу соответствовало 9:3:3:1
А) AABB
Б) AaBB
В) AaBb
Г) AABb

15. Скрестили два дигетерозиготных растения тыквы с желтыми круглыми плодами. Определите соотношение фенотипов гибридов первого поколения при полном доминировании.
А) 1:1
Б) 1:2:1
В) 3:1
Г) 9:3:3:1

16. У крупного рогатого скота черный цвет (А) доминирует над красным (а), комолость (В) – над рогатостью (b). При скрещивании черных комолых коров с красным рогатым быком все потомство оказалось черным комолым. Укажите генотипы потомства.
А) aaBB
Б) Aabb
В) AaBb
Г) AaBB

17. У морскиз свинок черная шерсть доминирует над белой, а длинная – над короткой. Определите генотип дигетерозиготной особи.
А) AABb
Б) AaBB
В) Aabb
Г) AaBb

18. Женщина со светлыми (a) прямыми (b) волосами вступила в брак с мужчиной, имеющим темные кудрявые волосы. Определите генотип их ребенка, имеющего темные прямые волосы.
А) Aabb
Б) AaBb
В) AABB
Г) AaBB

3 закона Менделя или менделевская генетика являются наиболее важными утверждениями о биологическом наследовании. Грегорио Мендель, монах и австрийский натуралист, считается отцом генетики. В ходе своих экспериментов с растениями Мендель обнаружил, что определенные черты наследуются по определенным закономерностям..

Мендель изучал наследование, экспериментируя с горохом от растения этого вида. Pisum Sativum он был в своем саду. Это растение было отличной тестовой моделью, потому что оно могло самоопыляться или перекрестно оплодотворяться, в дополнение к наличию нескольких признаков, которые имеют только две формы.


  • 1 История Грегора Менделя
  • 2 эксперимента Менделя
    • 2.1 Результаты экспериментов
    • 2.2 Как проводились эксперименты Менделя?
    • 2.3 Почему Мендель выбрал растения гороха?
    • 3.1 Первый закон Менделя
    • 3.2 Второй закон Менделя
    • 3.3 Третий закон Менделя
    • 4.1 Доминирующая
    • 4.2 Рецессивный
    • 4.3 Гибрид
    • 8.1 Наследие, связанное с полом

    История Грегора Менделя

    Грегор Мендель считается отцом генетики, поскольку он оставил свои три закона. Он родился 22 июля 1822 года, и, как говорят, с самого раннего возраста он находился в непосредственном контакте с природой, и это вызвало у него интерес к ботанике..

    В 1843 году он вошел в монастырь Брюнн, а через три года был рукоположен в священники. Позже, в 1851 году он решил изучать ботанику, физику, химию и историю в Венском университете..

    После обучения Мендель вернулся в монастырь, и именно там он провел эксперименты, которые позволили ему сформулировать так называемые законы Менделя..

    К сожалению, когда он представил свою работу, она осталась незамеченной, и говорят, что Мендель отказался от экспериментов по наследству.

    Тем не менее, в начале двадцатого века его работы начали получать признание, когда несколько ученых и ботаников провели аналогичные эксперименты и нашли свои исследования.

    Эксперименты Менделя

    Мендель изучил семь характеристик растения гороха: цвет семени, форму семени, положение цветка, цвет цветка, форму стручка, цвет стручка и длину стебля..


    Для экспериментов Менделя было три основных шага:

    1-путем самооплодотворения производится поколение чистых растений (гомозигот). То есть растения с фиолетовыми цветами всегда производили семена, которые производили фиолетовые цветы. Он назвал эти растения поколением P (родителей).

    2-Затем он скрестил пары чистых растений с разными чертами, и потомки их он назвал сыновьями второго поколения (F1)..

    3-Наконец, он получил третье поколение растений (F2) путем самоопыления двух растений поколения F1, то есть скрещивания двух растений поколения F1 с одинаковыми признаками.

    Результаты экспериментов

    Мендель нашел невероятные результаты своих экспериментов.

    Поколение F1

    Мендель обнаружил, что поколение F1 всегда производило одну и ту же черту, хотя у обоих родителей были разные характеристики. Например, если вы пересекли растение с фиолетовыми цветами с растением с белыми цветами, все растения-потомки (F1) имели фиолетовые цветы..

    Это потому, что фиолетовый цветок является чертой доминирующий. Поэтому белый цветок - это черта рецессивный.


    Поколение F2

    В поколении F2 Мендель обнаружил, что 75% цветов были фиолетовыми и 25% были белыми. Ему показалось интересным, что хотя у обоих родителей были фиолетовые цветы, у 25% потомства были белые цветы.

    Появление белых цветов связано с геном или рецессивным признаком, присутствующим у обоих родителей. Вот диаграмма Punnett, показывающая, что у 25% потомков было два гена "b", которые произвели белые цветы:


    Как проводились эксперименты Менделя?

    Эксперименты Менделя были проведены с растениями гороха, довольно сложная ситуация, так как каждый цветок имеет мужскую часть и женскую часть, то есть самоопыляющуюся..

    Так как же Мендель мог контролировать потомство растений? Как я мог их пересечь?.

    Ответ прост: чтобы иметь возможность контролировать потомство растений гороха, Мендель создал процедуру, которая позволила ему предотвратить самооплодотворение растений..

    Процедура состояла в том, чтобы срезать тычинки (мужские органы цветов, которые содержат пыльцевые мешочки, то есть те, которые производят пыльцу) из цветов первого растения (называемого ВВ) и посыпать пыльцу из второго растения в пестик (женский орган цветов, который находится в его центре) первого.

    Этим действием Мендель контролировал процесс оплодотворения, ситуацию, которая позволяла ему проводить каждый эксперимент снова и снова, чтобы всегда получать одно и то же потомство..

    Вот как он достиг формулировки того, что сейчас известно как законы Менделя..

    Почему Мендель выбрал горох?

    Грегор Мендель выбрал растения гороха для проведения своих генетических экспериментов, потому что они были дешевле, чем любое другое растение, и потому что время их образования очень короткое и имеет большое количество потомства.

    Потомки были важны, так как было необходимо провести много экспериментов, чтобы сформулировать свои законы..

    Он также выбрал их из-за большого разнообразия, которое существовало, среди прочего, зеленого горошка, желтого горошка, круглых стручков..

    Разнообразие было важно, потому что было необходимо знать, какие признаки могут быть унаследованы. Вот где возникает термин менделевского наследства.

    3 закона Менделя суммированы

    Первый закон Менделя


    Первый закон Менделя или закон единообразия гласит, что при скрещивании двух чистых индивидуумов (гомозигот) все потомки будут равны (однородны) по своим признакам.

    Это связано с преобладанием некоторых персонажей, их простой копии достаточно, чтобы замаскировать эффект рецессивного персонажа. Следовательно, как гомозиготные, так и гетерозиготные потомки будут иметь одинаковый фенотип (видимый признак)..


    Второй закон Менделя

    Второй закон Менделя, также называемый законом сегрегации персонажей, гласит, что при образовании гамет аллели (наследственные факторы) разделяются (сегрегируются) таким образом, что потомство получает аллель от каждого родственника..


    Третий закон Менделя

    Третий закон Менделя также известен как закон независимого разделения. При формировании гамет персонажи разных черт наследуются независимо друг от друга..

    В настоящее время известно, что этот закон не распространяется на гены на одной хромосоме, которые будут наследоваться вместе. Тем не менее, хромосомы отделяются независимо во время мейоза.


    Термины, введенные Менделем

    Мендель придумал несколько терминов, которые в настоящее время используются в области генетики, в том числе: доминантный, рецессивный, гибридный.

    доминирующий

    Когда Мендель использовал доминирующее слово в своих экспериментах, он имел в виду характер, который внешне проявлялся в человеке, был ли он только один или два из них.

    рецессивный

    Под рецессивным Мендель подразумевал, что это характер, который не проявляется вне индивидуума, потому что доминирующий характер препятствует этому. Поэтому, чтобы это преобладало, человеку необходимо будет иметь два рецессивных символа.

    гибрид

    Точно так же именно он установил использование заглавной буквы для доминантных аллелей и строчных букв для рецессивных аллелей..

    Впоследствии другие исследователи завершили свою работу и использовали остальные термины, которые используются сегодня: ген, аллель, фенотип, гомозигот, гетерозигот.

    Менделевское наследство применительно к людям

    Черты человеческих существ могут быть объяснены через менделевское наследство, пока семейная история известна.

    Необходимо знать семейную историю, так как с их помощью вы можете собрать необходимую информацию о той или иной особенности.

    Для этого создается генеалогическое древо, в котором описывается каждая из черт членов семьи, и, таким образом, можно определить, от кого они унаследованы..

    Пример наследования у кошек


    В этом примере цвет шерсти обозначается буквой B (коричневый, доминантный) или b (белый), а длина хвоста - S (короткий, доминантный) или s (длинный)..

    Когда родители гомозиготны по каждому признаку (SSbb и ssBB), их дети в поколении F1 гетерозиготны по обоим аллелям и показывают только доминантные фенотипы (SsbB).

    Если потомки спариваются друг с другом, в поколении F2 создаются все комбинации цвета меха и длины хвоста: 9 - коричневые / короткие (фиолетовые прямоугольники), 3 - белые / короткие (розовые прямоугольники), 3 - коричневый / длинный (синие прямоугольники) и 1 белый / длинный (зеленое поле).

    4 примера менделевских черт

    -альбинизмэто наследственная особенность, которая заключается в изменении выработки меланина (пигмента, которым обладают люди и который отвечает за цвет кожи, волос и глаз), поэтому во многих случаях наблюдается отсутствие Всего этого. Эта черта рецессивна.

    -Мочки свободного уха: это доминирующая особенность.

    -Мочки ушей соединены: это рецессивная черта.

    -Волосы или клюв вдовы: эта особенность относится к тому, как кончик волоса заканчивается на лбу. В этом случае это закончится вершиной в центре. Те, кто представляет эту функцию, имеют форму буквы "w" вверх ногами. Это доминирующая особенность.

    Факторы, которые меняют менделевскую сегрегацию

    Наследственность, связанная с сексом

    Наследование, связанное с полом, относится к тому, что связано с парой половых хромосом, то есть тех, которые определяют пол индивида..

    У людей есть Х-хромосомы и Y-хромосомы. У женщин есть ХХ-хромосомы, а у мужчин - Х-Y..

    Некоторые примеры наследования, связанного с полом:

    -Дальтонизм: это генетическое изменение, которое делает цвета не различимыми. Обычно вы не можете различить красный и зеленый, но это будет зависеть от степени дальтонизма, который человек представляет.

    Дальтонизм передается рецессивным аллелем, связанным с Х-хромосомой, поэтому, если мужчина наследует Х-хромосому, которая представляет этот рецессивный аллель, он будет дальтоником.

    В то время как для женщин, чтобы иметь это генетическое изменение, необходимо, чтобы они имели две измененные Х-хромосомы. Именно поэтому число женщин с дальтонизмом ниже, чем у мужчин.

    -гемофилия: это наследственное заболевание, которое, как и дальтонизм, связано с хромосомой X. Гемофилия - это заболевание, вызывающее неправильную свертываемость крови людей..

    По этой причине, если человек, страдающий гемофилией, порезан, его кровотечение будет длиться намного дольше, чем у другого человека, у которого его нет. Это происходит потому, что у вас недостаточно белка в крови, чтобы контролировать кровотечение.

    -Мышечная дистрофия Дюшенна: это рецессивное наследственное заболевание, которое связано с хромосомой X. Это нервно-мышечное заболевание, для которого характерно наличие значительной мышечной слабости, которая развивается в генерализованном и прогрессирующем виде.

    -гипертрихозЭто наследственное заболевание, присутствующее в Y-хромосоме, которое передается только от отца к ребенку мужского пола. Этот тип наследования называется голодендическим.

    Гипертрихоз - это рост лишних волос, так что у того, кто страдает, есть части тела, которые являются чрезмерно волосатыми. Это заболевание также называют синдромом оборотня, так как многие из тех, кто страдает, почти полностью покрыты волосками..


    Предсказанное соотношение = 3 гладких :1 морщинистое

    Рис. 2.1. Один из экспериментов Менделя по скрещиванию растений, различающихся по одной паре признаков.

    Далее Мендель обнаружил, что если исходные растения, и с-! пользованные в скрещивании, различаются еще по двум контрастирующим признакам, то эти признаки в поколении fs также расщепляются, но при этом не обязательно остаются связанными с первой парой признаков. На основе этого Мендель сформулировал свой второй закон, или принцип независимого распределения: гены, детерминирующие разные признаки, распределяются по гаметам независимо друг от друга. (Последнее далеко не всегда справедливо, но это было установлено позднее.) Один из экспериментов Менделя по изучению наследования двух признаков и истолкование полученных данных представлены на рис. 2.2. Интересные результаты наблюдаются в поколении F2. Существует две возможности: 1) признаки, полученные от одной из родительских особей, передаются совместно, и в таком случае следует ожидать в поколении F2 семена только двух типов — гладкие-желтые и морщинистые-зеленые — в соотношении 3:1, как и прежде (рис. 2.1); 2) эти признаки передаются независимо, как показано на рис. 2.2. В последнем случае в fz должно быть 4 типа семян в соотношении 9 гладких-желтых (доминантный—доминантный), 3 гладких-зеленых (доминантный—рецессивный), 3 морщинистых-желтых (рецессивный—доминантный), 1 морщинистый-зеленый (рецессивный—рецессивный). Мендель получил семена этих четырех типов в соотношении 315 : 108 : 101 : 32, что хорошо соответствует пункту 2.


    Рис. 2.2. Еще один эксперимент Менделя, в котором скрещивали растения, различающиеся по двум парам признаков.

    Как и можно было ожидать, дальнейшие исследования показали, что генетический механизм сложнее, чем представлял себе Мендель. Тем не менее ни одно из этих осложнений не опровергает основных допущений Менделя о дискретности генов и их большой стабильности. Ниже кратко изложены некоторые наиболее значительные осложнения.

    1. Доминирование. Оперение кур андалузской породы отливает синим, но среди цыплят всегда попадаются черные особи и особи с белыми пятнами. На самом деле андалузки гетерозиготны по окраске оперения, но черная окраска не полностью доминирует над пятнистой. Это не может служить доводом в пользу слитной наследственности, потому что в потомстве от скрещиваний между гетерозиготными особями наблюдается выщепле-ние пятнистой и черной окраски в соответствии с менделевски-ми соотношениями.

    Теперь мы знаем, что степень доминирования одного гена над другим зависит от его экспрессивности, а не от каких-либо существенных различий между генетическими системами. При кодоминантности оба аллеля экспрессируются в одинаковой мере (то есть аддитивны), именно это и происходит у кур андалузской породы. При частичном, или неполном, доминировании один из аллелей не активен (не экспрессируется), но другой активен полностью, так что в фенотипе эффект проявляется наполовину. При полном доминировании (то, что наблюдал Мендель) эффект одного аллеля эквивалентен эффекту двух аллелей, а при сверхдоминировании эффект одного аллеля выражен в большей степени, чем эффект двух таких аллелей в гомозигот-ном состоянии. Картина еще больше осложняется в тех случаях, когда экспрессия аллелей, находящихся в одной части (локусе) генного набора, регулируется экспрессией аллелей, находящихся в других локусах. Это явление известно под названием эпис-таза. Например, при скрещивании двух гомозиготных мышей, одна из которых доминантна по окраске шерсти — агути (серая шкурка), а другая — рецессивна (черная шкурка), все потомство должно было бы иметь окраску агути. Большая часть мышат действительно относится к типу агути, однако встречаются и альбиносы, причем частота их выше той, которую можно былом бы отнести за счет мутаций. Происходит это потому, что на ок-" раску шкурки влияет еще и другая пара генов, находящихся в другом локусе. Доминантный аллель в этом локусе определяет нормальную окраску, детерминированную аллелями главного локуса, а рецессивный аллель определяет альбинизм, и любая мышь, гомозиготная по этому аллелю, будет альбиносом независимо от состояния главного локуса.

    Дополнительно

    Взаимозаменяемость, стандартиризация и технические измерения
    Выполнение данной курсовой работы преследует собой следующие цели: – научить студента самостоятельно применять полученное знание по курсу ВСТИ на практике; – изучение методов и процесса работы со справочной литературой и информацией ГОСТ; – приобретение необхо .

    Сегодня Грегор Иоганн Мендель и его эксперименты с горохом не менее известны в научном фольклоре, чем пресловутое яблоко Ньютона. В монастырском саду он вырастил и скрестил гибриды 30 тысяч растений, обследовал 20 тысяч их потомков. Проделал 10 000 опытов и рассмотрел в лупу более 7000 горошин в процессе изучения особенностей наследования семи разных признаков.

    Упорный кропотливый труд длился около восьми лет. В результате Мендель пришел к выводу, что наследственность определяется генами. Однако признание пришло к исследователю лишь спустя 35 лет после сделанного открытия и через 20 лет после смерти ученого.

    Подготовка к эксперименту

    К проведению своих опытов Мендель готовился два года. Из 34 сортов гороха он выбрал 22, которые четко отличались по каким-либо признакам. Особенно тщательно проверялась чистота сорта: потомки всех поколений должны быть сходны между собой и со своими родителями.

    Растение для эксперимента ученый выбрал не случайно. Сорта гороха отличаются друг от друга рядом хорошо заметных признаков (окраска цветков, окраска и форма семян, расположение цветков, длина стебля). Но главный фактор – это способность растения к само­опылению. Без такого свойства опыты Менделя были бы невозможны, ведь в эксперименте естественный процесс легко предотвратить, что позволяет исследователю опылять растение пыльцой с другого растения.

    В отличие от предшественников, Мендель не пытался оценить поколения в целом, он изучал наследование отдельных признаков у всех потомков конкретной пары. Это сужало круг вопросов и давало возможность получить наиболее четкие результаты.

    В 1856 году, прямо в монастырском саду, вдали от научного сообщества, ученый приступает к исследовательской работе.

    Суть опытов

    Труд Менделя был кропотливым и требовал неимоверного внимания. Чтобы опылить цветок гороха пыльцой другого сорта, Мендель обрывал с него пыльники до созревания в них пыльцы. Позднее, когда рыльце было готово к опылению, он наносил на него пыльцу, взятую с цветков нужного ему сорта.

    Мендель пристально следил за тем, чтобы растения опылялись только отобранным для этого материалом. Поэтому часть растений он выращивал в специальном домике, недоступном для насекомых или же надевал на цветки гороха специальные мешочки.

    Сравнивая признаки родительских и допризнаков, которые носят название трех законов Менделя.

    Грегор Мендель – первый ГМО­мейкер. Ученый­-ботаник скрестил два разных вида гороха и показал, что определенные особенности одного вида могут наследоваться другим. Наблюдения Менделя проложили путь для получения в 1983 году первого растения, созданного методами генной инженерии – табака, устойчивого к антибиотикам.

    Гены в законе

    Первые два закона относятся к моногибридному скрещиванию: ученый брал для эксперимента родительские формы, которые отличались только по одному признаку. Третий – был выявлен при дигибридном скрещивании (родительские формы изучались по двум разным признакам).

    Взяв чистую линию растений с желтыми и зелеными семенами, Грегор скрестил их между собой. Все гибриды первого поколения получились желтого цвета и были единообразны. Фенотипический признак, определяющий зеленый цвет семян, исчез. При этом не имело значения, из какого именно семени (желтого или зеленого) выросли материнские (отцовские) растения. Значит, оба родителя в равной степени способны передавать свои признаки потомству. Так исследователь формулирует закон единообразия гибридов первого поколения или первый закон Менделя: при скрещивании чистых линий, обладающих взаимоисключающими признаками, все гибриды первого поколения будут иметь признак одного из родителей.

    Ген (др.-греч. γένος – род) – структурная и функциональная единица наследственности живых организмов.

    Единицу наследственности ученый назвал фактором. Спустя десятилетия термин получил название ген или гены. Признак, проявляющийся у гибридов первого поколения, был обозначен Менделем доминантным, а тот, который подавлялся, – рецессивным.

    Сочетание этих факторов дает предсказуемые схемы наследственности.

    Далее ученый установил, что во втором поколении 75% особей имеют доминантное состояние признака, а 25% – рецессивное (расщепление 3:1). Эта закономерность получила название второго закона Менделя, или закона расщепления.

    Третий закон – независимого наследования признаков – был сформулирован в результате скрещивания растений, которые отличались уже и по цвету, и по морщинистости семян.

    Первая чистая линия гороха имела желтые и гладкие семена, а вторая – зеленые и морщинистые. Ученый получил гибриды первого поколения желтого цвета с гладкими семенами. Во втором поколении, как и полагается, произошло расщепление: часть семян была морщинистой и зеленого цвета, произошла перекомбинация признаков. Следовательно, при дигибридном скрещивании расщепление по каждой паре признаков идет независимо от других признаков. Это и есть третий закон Менделя.


    Католический монастырь Св.Фомы в Брно (Чешская республика). С 1843 по 1884 год здесь жил и трудился основатель современной науки генетики, монах, аббат Грегор Иоганн Мендель. Сейчас в монастыре работает музей ученого.

    Опережая свое время

    8 марта 1865 года Мендель выступил перед Брненским Обществом естествоиспытателей и озвучил законы, объясняющие механизм наследования. Говоря современным языком, это и был первый доклад о генетике.

    Вроде бы пора бить в литавры и аплодировать первооткрывателю. Однако доклад монаха был воспринят более чем прохладно. На заседании Менделю не задали ни одного вопроса.

    Научный мир признал гениальность работы Грегора Менделя о наследственности лишь спустя 35 лет после сделанного открытия и через 20 лет после смерти ученого.

    Историческая справедливость

    В 1868 году основоположник генетики Грегор Мендель, разочаровавшись в своих научных трудах по биологии, стал аббатом, настоятелем монастыря. Он полностью отошел от изучения наследственности и остаток жизни посвятил наблюдениям за жизнью пчел и мышей. В его архивах были найдены также заметки по лингвистике и даже метео­рологии.

    Лишь в 1900 году, в результате проведенных трех независимых исследований, были подтверждены результаты и выводы, сделанные Грегором Менделем. Наконец, весь научный мир признал гениальность работы, которую проделал скромный монах.

    В ХХ веке законы Менделя переросли в область биоинформатики и эволюционной генетики, на их основании были сделали многие новые открытия. А генетика стала самой динамичной специальностью естественных наук. Именно поэтому ХХI столетие называют веком Менделя, что и является наивысшим признанием гения ученого.

    Читайте также: