Кто из ученых впервые сформулировал принципы наследования на разных сортах посевного гороха

Добавил пользователь Алексей Ф.
Обновлено: 21.09.2024

Какой основной метод изучения наследственности он разработал?

Мы наследуем от своих родителей не только цвет глаз и волос, форму носа и группу крови. Мы наследуем черты темперамента и особенности движений, склонность к изучению языков и способность к математике. Мы рождаемся на свет, имея свой уникальный наследственный материал, ту программу, на основе которой под влиянием факторов внешней среды мы станем такими, какие мы есть – неповторимые и в то же время похожие на предыдущие поколения.

Наследственность и изменчивость – два свойства живых организмов, неразрывно связанные друг с другом как две стороны одной медали. Закономерности наследственности и изменчивости изучает одна из самых важных областей биологии – генетика.

Наследственность – это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Наследственность обеспечивает материальную и функциональную преемственность между поколениями, сохраняя определённый порядок в природе. Некоторые виды могут оставаться относительно неизменными на протяжении сотен миллионов лет. Например, многие современные акулы мало чем отличаются от акул, живших в раннем меловом периоде более 130 млн лет тому назад.

Клетки организмов не содержат готовых признаков взрослой особи, наследование признаков происходит на молекулярном уровне. Основными структурами, которые обеспечивают материальную основу наследственности, являются хромосомы. Строго говоря, мы наследуем не свойства, а генетическую информацию. Элементарной структурной единицей наследственности является ген – участок ДНК, содержащий информацию о структуре одного белка, тРНК или рРНК. Генотип – это сумма всех генов организма, т. е. совокупность всех наследственных задатков.

Изменчивость – свойство, противоположное наследственности. Оно заключается в способности живых организмов приобретать в процессе индивидуального развития отличия от других особей своего и других видов.

Совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды, называют фенотипом. Мы рождаемся с определённым цветом кожи, но стоит нам летом съездить в более южные края, как наша кожа приобретает смуглый оттенок. С возрастом светлеет радужка глаз и седеют волосы. Перенесённые в детстве болезни могут нарушить рост или развитие каких-то органов. Реализация наследственной информации находится под постоянным давлением факторов окружающей среды. Однако следует отметить, что существуют признаки, проявление которых не зависит от влияния внешней среды. Где бы мы ни жили: на севере или на юге, как бы нас ни кормили в детстве и какими бы болезнями мы ни болели, группа крови, с которой мы родились, останется неизменной на протяжении всей жизни.

У истоков генетики. Основные закономерности наследования признаков впервые были описаны во второй половине XIX в. австрийским учёным Грегором Менделем (1822–1884). Мендель не был первым учёным, который пытался ответить на вопрос: как передаются из поколения в поколение свойства и признаки? Многие исследователи до него скрещивали разнообразные организмы, стараясь увидеть какую-то систему в получаемых результатах. Стремясь добиться успеха как можно быстрее, исследователи скрещивали разные виды, получая при этом бесплодное потомство, брали для изучения сложные, трудно определяемые признаки, не вели точных математических подсчётов.

Рассмотрим основные особенности работы Менделя, которые позволили ему добиться успеха:

– в качестве экспериментальных растений Мендель использовал разные сорта посевного гороха, поэтому потомство, получаемое в таких внутривидовых скрещиваниях, было плодовито;

– горох – самоопыляющееся растение, т. е. цветок защищён от случайного попадания посторонней пыльцы; при постановке нужного скрещивания Мендель удалял тычинки, чтобы исключить возможность самоопыления, а затем кисточкой переносил на пестик пыльцу другого родительского растения;

– горох неприхотлив и имеет высокую плодовитость;

– при обработке получаемых данных Мендель вёл строгий математический учёт фенотипов всех растений и семян.

В течение восьми лет Мендель экспериментировал с 22 сортами гороха, которые отличались друг от друга по семи признакам. За это время он изучил в общей сложности более 10 тыс. растений. Скрещивая различные организмы и исследуя получаемое потомство, Мендель, по сути, разработал основной и специфический метод генетики. Гибридологический метод – это система скрещиваний в ряду поколений, дающая возможность при половом размножении анализировать наследование отдельных свойств и признаков организмов, а также обнаруживать возникновение наследственных изменений.

Работа Менделя значительно опередила уровень развития науки того времени. Лишь когда в 1900 г. сразу в трёх лабораториях открыли заново закономерности наследования, учёный мир вспомнил, что 35 лет тому назад они уже были сформулированы. 1900 год считается годом рождения генетики, но закономерности, установленные в своё время Грегором Менделем, справедливо носят его имя.

Вопросы для повторения и задания

2. Кто впервые открыл закономерности наследования признаков?

3. На каких растениях проводил опыты Г. Мендель? Докажите, что выбранные учёным растения были оптимальным объектом в данных экспериментах.

4. Благодаря каким особенностям организации работы Г. Менделю удалось открыть законы наследования признаков?

Подумайте! Выполните!

1. До Г. Менделя многие исследователи предпринимали попытки установить закономерности наследования признаков от родителей к детям. Однако все они заканчивались неудачно. Как вы можете это объяснить?

2. Опишите фенотипы известных всем современников (актёров театра и кино, эстрадных артистов, политических деятелей и др.). Предложите одноклассникам по описанию определить человека.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Колибри острова Хуан Фернандес как пример изменчивости и естественного отбора

Колибри острова Хуан Фернандес как пример изменчивости и естественного отбора Три вида колибри островов Хуан Фернандес и Мас-а-Фуэра обладают некоторыми в высшей степени замечательными особенностями. Они образуют особый род Eustephanus, один вид которого встречается как в

12. Молекулы наследственности и микробы

12. Молекулы наследственности и микробы Каждая живая клетка представляет собой микрокосмос, в котором нуклеиновая кислота выступает в качестве диктатора, обычно к нам благоволящего; но в случае рака она становится деспотом-садистом, а в вирусных частицах —

Причины изменчивости.

Причины изменчивости. Когда мы сравниваем особей одной и той же разновидности или под-разновидности наших издревле разводимых растений и животных, нас прежде всего поражает то обстоятельство, что они вообще больше различаются между собой, чем особи любого вида или

Часть, чрезмерно или исключительным образом развитая у какого-нибудь вида по сравнению с этой же частью у близких видов, обнаруживает наклонность к сильной изменчивости.

Часть, чрезмерно или исключительным образом развитая у какого-нибудь вида по сравнению с этой же частью у близких видов, обнаруживает наклонность к сильной изменчивости. Несколько лот назад я был очень поражен одним замечанием в этом смысле, сделанным м-ром Уотерхаучом.

Взаимодействие наследственности и среды

Взаимодействие наследственности и среды Иногда спрашивают: что важнее — наследственность или окружающая среда? На этот вопрос не так легко ответить. Если под этим подразумевать, чт? имеет наибольшую силу воздействия, то и тогда следует ограничиться частными случаями.

Менделевские законы наследственности

Менделевские законы наследственности Законы передачи наследственных факторов, установленные Менделем на растении, применимы и к человеку. Предположим, что рыжеволосая женщина вышла замуж за брюнета и все их дети будут брюнетами (при условии что мужчина не является

Глава 4. Закономерности наследственности

Глава 4. Закономерности наследственности Ключевой проблемой биологии, по-видимому, можно считать вопрос о том, как увековечивает свой опыт живая материя. М. Дельбрюк (1906–1981), американский генетик, лауреат Нобелевской премии 1969 г. Общебиологическое значение генетики

Самуэль Ганеман — основоположник гомеопатии

Самуэль Ганеман — основоположник гомеопатии В сознании каждого человека гомеопатический метод лечения неразрывно связан с именем его основателя — гениального немецкого врача Самуэля Ганемана, одного из величайших мыслителей в истории медицины. Его имя по праву стоит

Что изучает наука генетика?

Что изучает наука генетика? Генетика – это наука о наследственности и изменчивости живых организмов и методах управления ими. В зависимости от объекта исследования выделяют генетику растений, генетику животных, генетику микроорганизмов, генетику человека и т. д., а в

Благодаря какой случайности Грегор Мендель был заслуженно признан основоположником учения о наследственности?

Благодаря какой случайности Грегор Мендель был заслуженно признан основоположником учения о наследственности? В середине XIX века австрийский монах и ботаник-любитель Грегор Мендель (1822–1884) проводил опыты по скрещиванию (посредством искусственного опыления) растений

Тема 4. Закономерности наследственности

Тема 4. Закономерности наследственности Не беда появиться на свет в утином гнезде, если ты вылупился из лебединого яйца. Г. Х. Андерсен (1805–1875), датский писатель Общебиологическое значение генетики вытекает из того, что законы наследственности справедливы для всех

27. Хромосомная теория наследственности

27. Хромосомная теория наследственности Вспомните!Что такое хромосомы?Какую функцию они выполняют в клетке и в организме в целом?Какие события происходят в профазе I мейотического деления?В середине XIX в., когда Г. Мендель проводил свои эксперименты и формулировал


22 июля 1822 года – в небольшой деревушке на территории современной Чехии родился ученый Г. Мендель, который при крещении был назван Иоганном.

В 1843 году Мендель был принят в августинский монастырь святого Томаша и выбрал орденское имя Грегориус.

В 1854 году Менделю был выдан участок земли (35х7 м), на котором он весной впервые посеял горох.

Весной 1868 года Мендель был избран новым аббатом августинского монастыря святого Томаша.

В январе 1884 года вследствие тяжелой болезни сердца и почек основатель генетики Иоганн Грегор Мендель умер.

Первые свои опыты Мендель проводил на таком растении, как Горох посевной. Почему именно этот объект он выбрал? Ниже приведены признаки, по которым можно считать, что выбранный объект был удачным:

- Удобство в культивировании гороха;

- Четко выраженные признаки;

- Крупные цветки, хорошо переносящие кострирование и защищенные от чужой пыльцы;


Мендель выделил 7 пар альтернативных признаков:

Окраска кожуры семян,

Гибридологический метод Менделя. Законы Менделя при моногибридном скрещивании.

Гибридологический метод – это система скрещиваний, позволяющая проследить закономерности наследования и изменения признаков в ряду поколений.

Предпосылки создания метода.

Моногибридное скрещивание – это скрещивание особей, отличающихся по одной паре контрастных альтернативных признаков.

I закон Менделя (закон единообразия гибридов первого поколения, закон доминирования):

При скрещивании двух родительских особей, относящихся к разным чистым линиям (ГМЗ) и отличающихся по одной паре контрастных альтернативных признаков, все гибриды первого поколения будут единообразны как по генотипу, так и по фенотипу.

1. Доминирование – это явление преобладания признаков одного из родителя у гибридов первого поколения. Признак, проявляющийся у гибридов первого поколения называется, доминантным, а подавляемый – рецессивным.

2. Если при скрещивании двух родительских особей с противоположными признаками в фенотипе, в их потомстве все гибриды одинаковы или единообразны, то исходные родительские особи были ГМЗ.

3. Гипотеза чистоты гамет:

Гаметы чисты, т. к. несут только 1 ген (наследственный фактор) из пары. Гибриды получают оба наследственных фактора – один от матери, второй – от отца.

II закон Менделя (закон расщепления признаков):

Рецессивный признак не исчезает бесследно, а находится в подавленном состоянии у гибридов первого поколения и проявляется у гибридов второго поколения в соотношении 3:1.

1. Расщепление признаков – это явление появления в потомстве разных фено- и генотипических классов.

2. Если при скрещивании двух родительских особей с одинаковыми признаками в фенотипе, в потомстве произошло расщепление в соотношении 3:1, то исходные особи были ГТЗ.

Цитологический механизм:

1. Соматические клетки диплоидны и содержат парные аллельные гены, отвечающие за развитие каждой пары контрастных признаков.

2. в результате мейоза в гаметы попадает 1 ген из каждой пары, т.к . гаметы гаплоидны.

3. при оплодотворении происходит слияние гамет и восстановление диплоидного набора хромосом (восстанавливается парность генов)

Анализирующее скрещивание.

Это скрещивание, проводимое с целью установления генотипа исследуемой особи с доминантными признаками в фенотипе.

Для этого исследуемую особь скрещивают с рецессивной ГМЗ и по потомству судят о генотипе исследуемой особи:

ВЗАИМОДЕЙСТВИЕ АЛЛЕЛЬНЫХ ГЕНОВ:

Взаимодействие генов – явление, когда за развитие признака отвечает несколько генов (аллелей).

          • Если взаимодействуют гены одной аллельной пары, такое взаимодействие называется аллельным, а если разных аллельных пар – неаллельным.
          • ПОЛНОЕ ДОМИНИРОВАНИЕ – такое взаимодействие, при котором 1 ген полностью подавляет (исключает) действие другого признака.

          1. Доминантный аллель в ГТЗ состоянии обеспечивает синтез продуктов достаточный для проявления признака такого же качества и интенсивности, как и в состоянии доминантной ГМЗ у родительской формы.

          2. Рецессивный аллель либо совсем неактивен, либо продукты его активности не взаимодействуют с продуктами активности доминантного аллеля.

          • НЕПОЛНОЕ ДОМИНИРОВАНИЕ - промежуточный характер наследования. Это такой тип взаимодействия аллельных генов, при котором доминантный ген не полностью подавляет действие рецессивного гена, в следствие чего гибриды первого поколения (ГТЗ) имеют промежуточный между родительскими формами фенотипический вариант.

          При этом во втором поколении расщепление по генотипу и фенотипу совпадает и равно 1:2:1.

          1. Рецессивный аллель не активен.

          2. Степень активности доминантного аллеля достаточна, чтобы обеспечить уровень проявления признака, как у доминантной ГМЗ.

          • КОДОМИНИРОВАНИЕ - это явление, при котором оба гена находят свое проявление в фенотипе потомства, при этом ни один из них не подавляет действие другого гена. Кодоминантные гены являются равнозначными. (Например, чалая окраска крупного рогатого скота формируется при одновременном присутствии в генотипе генов рыжей и белой масти. ; группа крови у человека). При кодоминировании 1:2:1.
          • СВЕРХДОМИНИРОВАНИЕ – это такой тип взаимодействия аллельных генов, когда доминантный ген в ГТЗ состоянии демонстрирует более яркое проявление признака, чем этот же ген в ГМЗ состоянии.
          • МНОЖЕСТВЕННЫЙ АЛЛЕЛИЗМ – это внутриаллельное взаимодействие генов, при котором за развитие одного признака отвечает не одна аллель, а несколько, при этом кроме основных доминантного и рецессивного аллеля появляются промежуточные, которые по отношению к дом. ведут себя как рецесивные , а по отношению к рецессивным, как доминантные.

          (например, у сиамских кошек, у кроликов: С – дикий тип, С/ - сиамские, С// - альбинос; группы крови у человека)

          Множественными называют аллели, которые представлены в популяции более, чем двумя аллельными состояниями, возникающими в результате многократного мутирования одного и того же локуса хромосомы.

          Законы Менделя при дигибридном скрещивании.

          Дигибридное скрещивание – это скрещивание особей, отличающихся по двум парам контрастных альтернативных признаков.

          Комбинативная изменчивость – это появление новых комбинаций генов и признаков в результате скрещивания. Причины:

          Коньюгация и кроссинговер, случайные расхождения хромосом и хроматид в анафазы мейоза, случайное слияние гамет при оплодотворении.

          III закон Менделя (закон свободного независимого комбинирования признаков):

          Отдельные пары признаков при дигибридном скрещивании ведут себя независимо, свободно сочетаясь друг с другом во всех возможных комбинациях.

          ВЗАИМОДЕЙСТВИЕ НЕАЛЛЕЛЬНЫХ ГЕНОВ:

          Неаллельное взаимодействие – это взаимодействие генов разных аллельных пар.

          КОМПЛЕМЕНТАРНОСТЬ – это такой тип взаимодействия неаллельных генов, при котором они взаимно дополняют друг друга и при совместном нахождении в генотипе (А-В-) обуславливают развитие качественно нового признака по сравнению с действием каждого гена в отдельности (А-вв, ааВ-).

          Комплементарные гены – это взаимодополняющие гены.

          ЭПИСТАЗ - это тип взаимодействия неаллельных генов, при котором один неаллельный ген подавляет действие другого неаллельного гена.

          Ген, который подавляет называется эпистатическим, геном-супрессором или ингибитором.

          Ген, подавляемый, называется гипостатическим.

          (дом. аллель эпистатирует – подавляет проявление доминантного аллеля другого гена)

          (рецессивный аллель подавляет проявление доминантного аллеля другого гена)

          ПОЛИМЕРИЯ – это обусловленность развития определенного, обычно количественного признака, несколькими эквивалентными полимерными генами.

          Когда неважно количество доминантных генов в генотипе, а важно их присутствие)

          Когда число доминантных аллелей влияет на степень выраженности данного признака, и чем больше доминантных аллелей, тем ярче выражен признак

          Например, окраска кожи у человека, рост, масса тела, величина артериального давления.

          Доминантные гены, одинаково влияющие на развитие одного признака, называются генами с однозначными действиями (А1, А2, А3..), а признаки называются полимерными.

          Пороговый эффект - это минимальное количество полимерных генов, при которых проявляется признак.

          СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ ГЕНОВ.

          Группа сцепления – это совокупность генов, локализованных в одной хромосоме и наследующихся, как правило, совместно.

          Полное сцепление – это явление, при котором группа сцепления не нарушается кроссинговером и гены, локализованные в одной хромосоме передаются совместно.

          У потомства проявляются только родительские признаки.

          Неполное сцепление – это явление, при котором группа сцепления нарушается кроссинговером. Гены, локализованные в одной хромосоме не всегда будут передаваться вместе. И в потомстве появляются новые сочетания признаков, наряду с известными родительскими.

          ̘ЕНДЕЛЬ (Mendel) Грегор Иоганн (1822-84), австрийский естествоиспытатель, монах, основоположник учения о наследственности (менделизм) . Применив статистические методы для анализа результатов по гибридизации сортов гороха (1856-63), сформулировал закономерности наследственности

          1.Первые попытки экспериментального решения проблем, связанных с передачей признаков из поколения в поколение, предпринимались уже в XVIII в. Ученые, скрещивая между собой различающиеся особи и получая помесное потомство, стремились узнать, как наследуются родительские свойства. Однако неверный методический подход — одновременное изучение большого количества признаков — приводил к невозможности выявить какие-либо закономерности.

          2.Многие ботаники путем скрещивания родительских форм, обладающих разными вариантами одного и того же признака, пытались выявить механизмы наследования. Однако честь открытия количественных закономерностей наследования признаков принадлежит чешскому бо­танику- любител ю Г р е г о р у Мспде- л ю (1822—1884). Первое, на что обратил внимание учспый, это выбор объекта исследования. Для своих опытов Мендель взял горох. Основанием для такого выбора было то, что эти растения относительно просто разводить и они имеют короткий период развития. Кроме того, в распоряжении Менделя были сорта, четко отличавшиеся друг от друга по целому ряду признаков. Одним из самых существенных моментов во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Мендель впервые осознал, что, начав с самого простого случая — различия родителей по одному-единственному признаку и постепенно усложняя задачу, можно па- деяться распутать весь клубок закономерностей наследования признаков. Здесь с особой силой выявилась строгая матема- тичность его мышления. Именно такой подход к постановке опытов позволил Менделю четко планировать дальнейшее усложнение экспериментов. В этом отношении Мендель стоял выше всех совре­менных ему биологов.

          3. Другой важной особенностью его исследований было то, что он выбрал для экспериментов организмы, относящиеся к чистым линиям, т. е. таким растениям, в ряду поколений которых при самоопылении не наблюдалось расщепления по изучае­мому признаку. Не менее важно и то, что он наблюдал за наследованием альтернативных, т. с. взаимоисключающих, контрастных признаков. Например, цветки у одного растения были пурпурными, у другого — белыми, рост растения высокий или низкий и т. д

          База современной генетики была заложена в XIX веке исследованиями нескольких европейских ученых. Результаты этих работ были обобщены Георгом Менделем, который на их основании сформулировал несколько гипотез. Дальнейшее развитие науки подтвердило его правоту.

          Грегор Иоганн Мендель

          В краткой форме о проделанной работе он рассказал в докладе Брюннскому обществу естествоиспытателей в 1865 году, но его исследования не заинтересовали научное сообщество. Впоследствии ученый пытался проверить свои выводы на других видах растений и животных, но потерпел неудачу, из-за чего разуверился в своих достижениях и больше к подобным изысканиям не возвращался.

          Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

          Настоящее признание к нему пришло уже после смерти, в начале XX века, когда генетика стала оформляться как самостоятельное направление в биологии. В это время несколько ученых самостоятельно друг от друга пришли к тем же выводам, что и Грегор Мендель, и открытые им принципы пережили второе рождение.

          Законы Менделя

          В первой половине XIX века учеными Европы была проделана большая работа, заложившая базу для дальнейших исследований по скрещиванию:

          Исследователями были выявлены принципы доминантности, сходства потомков в первом поколении, расщепление и комбинаторику признаков при повторном смешивании. При этом не был открыт всеобщий закон, регулирующий образование гибридов и численное выражение получаемых результатов — в этом заключается главная заслуга Георга Менделя.

          Им были сформулированы и доказаны:

          • Закон единообразия гибридов первого поколения — неизменность (несмешиваемость) признаков при первоначальном смешивании.
          • Закон расщепления — рецессивный ген проявляется в следующих поколениях в определенном соотношении.
          • Закон чистоты гамет — при формировании репродуктивных клеток используется только по одному аллелю из генов родителей.
          • Закон наследования признаков — если особи отличаются по двум и более параметрам, то при скрещивании эти качества передаются и комбинируются независимо друг от друга.

          Закон единообразия гибридов первого поколения

          Первый закон Менделя — при моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

          При моногибридном скрещивании, исследуется наследование только одной пары альтернативных признаков (например, только мягкий или кислый вкус), при дигибридном — две (дополнительно это может быть форма семян — округлая или угловатая), при полигибридном — несколько (еще и другие качества — цвет, фактуру кожуры и пр.).

          Альтернативные признаки — взаимоисключающие дискретные признаки, которые обычно не могут присутствовать у организма одновременно (например, желтая или зеленая окраска горошин, красная или белая окраска цветков у гороха).

          Фенотип — набор признаков, характерных для организма на определенной стадии развития. Например, у растений это форма листьев, цвет плодов и др.

          Генотип — совокупность генов у конкретного организма.

          В соответствии с этим Законом единообразия гибридов первого поколения, при возможности наследовать два однотипных признака все потомки первого поколения приобретают одно и то же качество. Оно переходит к ним в неизменной форме без смешивания. Мендель назвал такой признак доминантным, более слабый, подавляемый — рецессивным.

          Например, можно провести скрещивание гороха с генотипом желтого (АА) и зеленого (аа) цвета зерен. При доминировании первого признака, ген (А) в первом поколении будет подавлять (а) и не даст ему появиться. Полученные семена (Аа) будут иметь желтый цвет, который такой же, как и у одного из родителей. Другое название приведенного Закона — принцип доминирования признаков.

          По сложившейся традиции, приписными буквами (А) обозначается доминантный ген, срочными (а) — рецессивный.

          Формулировка этого закона основывалась на наличии чистой линии — возможности организмов полностью передавать некоторые признаки. К примеру, это могут быть сорта растений, потомство которых при самоопылении будет морфологически сходным и генетически идентичным.

          Дальнейшее развитие биологии уточнило выводы Грегора Менделя. Так для некоторых типов генов возможно неполное доминирование. В этом случае подавление происходит только частично, что приводит к смешиванию признаков. Например, при скрещивании цветков ночной красавицы с красными (АА) и белыми (аа) лепестками, потомство будет иметь розовый (Аа) цвет.

          В отдельных случаях возможно кодоминирование, когда признаки выступают смешанно (синхронно). Например, это проявляется, когда ребенок наследует группу крови типа АВ0 от родителей (тут А и В – доминантные гены, 0 – рецессивный). Возможные ситуации:

          • 00 – I группа;
          • АА и А0 – II гр.;
          • ВВ и В0 – III гр.;
          • АВ - IV гр.

          Например, в соответствии с указанной схемой, у родителей со II и III группами крови, в 25% случаев у ребенка будет IV гр.

          С учетом неполного доминирования и кодоминирования можно уточнить исходную формулировку Менделя — при гибридизации чистых линий с противоположными признаками, потомство первого поколения всегда будет идентичным, при этом:

          • проявится наиболее сильное качество, если они находятся в отношении доминирования-подавления;
          • обнаружится смешанная форма, если они будут в состоянии кодоминирования или неполного доминирования.

          Закон расщепления

          Второй закон Менделя — при моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

          Гетерозиготные особи — такие организмы, у которых копии генов в хромосомах представлены разными аллелями. В результате неполного или полного доминирования может проявляться как смесь этих признаков (АВ), так и один из них (Аb). Противоположностью гетерозиотности является гомозиготность, когда аллели гена в хромосомах идентичны.

          Аллель — различные формы одного и того же гена, расположенные в одинаковых участках хромосом.

          В соответствии со вторым законом Менделя, при скрещивании гетерозиготных особей происходит расщепление, когда часть потомства несет доминантный признак, а часть — рецессивный. Проявление более слабых характеристик свидетельствует о том, что они не подавляются полностью.

          Так, расщепление при скрещивании двух особей типа Аb (где А — доминантный зеленый цвет, b — рецессивный желтый) покажет следующие результаты: АА, Аb, Аb и bb, которые в соответствии со вторым законом Менделя будут различаться:

          • По фенотипу — на 1 потомка с проявлением зеленого цвета (bb) будет приходится 3 желтых (АА, Аb, Аb).
          • По генотипу — на 1 особь типа АА, будет приходится 2 Аb и 1 bb.

          Необходимо знать, что для выполнения второго закона Менделя необходимо соблюдение нескольких условий. К наиболее важным относятся:

          • Изучение большого числа потомков или скрещиваний.
          • Отсутствие избирательности при оплодотворении — гаметы с разными аллелями сливаются с одинаковой вероятностью.
          • Родители должны изначально относиться к чистым линиям, то есть гомозиготны по выбранному гену (AA и aa).
          • У разных генотипов должна быть одинаковая выживаемость.

          Закон чистоты гамет

          Закон чистоты гамет подразумевает, что в эту клетку попадает только один аллель из пары, имеющейся у гена родителя.

          Гаметы — репродуктивные клетки, имеющие одинарный набор хромосом и участвующие в половом размножении.

          По гипотезе Менделя, понадобившейся ему для обоснования Закона расщепления, при слиянии мужской и женской гамет наследственные признаки не смешиваются, а передаются в изначальном виде (то есть остаются чистыми). Позднее было подтверждено, что от отцовского и материнского организмов зигота получает по половине хромосом.

          Из всех закономерностей, установленных Менделем для наследственности, этот закон имеет наиболее общий характер, то есть, выполняется для самого широкого круга обстоятельств.

          Закон наследования признаков

          Третий закон Менделя — если особи отличаются двумя (и более) парами признаков, то при скрещивании эти особенности наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

          Согласно этому правилу, если гены находятся в разных хромосомах, дигетерозиота АаBb может образовать 16 типа гамет: АB, Аb, аB и аb (где А — желтые семена, а — зеленые, В — гладкие, b — морщинистые). Из 16-ти возможных комбинаций они образуют следующие фенотипы:

          • Желтые гладкие (ААВВ и др.) — 9 шт.
          • Желтые морщинистые (ААbb и др.) — 3 шт.
          • Зеленые гладкие (aaВВ и др.) — 3 шт.
          • Зеленые морщинистые (ааbb) — 1 шт.

          Таким образом, из представленной схемы видно, что среди гибридов второго поколения расщепление идет в соотношении 9:3:3:1. Исследованиями биологов было установлено, что важным условием выполнения этого Закона является ситуация, при которой гены, отвечающие за конкретные признаки должны находиться в разных парах хромосом.

          Читайте также: