Говорят что в период сбора урожая помидоры спеют в арифметической прогрессии

Добавил пользователь Валентин П.
Обновлено: 21.09.2024

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.

Другими словами, последовательность (аn) – арифметическая прогрессия, если для любого натурального числа n выполняется условие аn+1n+d, где d – некоторое число. Из данного равенства следует, что можно найти это число d, если вычесть из последующего члена предыдущий, то есть d = аn+1–аn. Число d называют разностью арифметической прогрессии.

Арифметической прогрессией, например, является ряд чисел 3; 8; 13; 18…. так как разница между числами равна 5, мы видим, что каждое последующее на 5 больше предыдущего.

Если известен первый член арифметической прогрессии a1 и разность d, то можно вычислить любой член арифметической прогрессии:

Этот ряд можно продолжать до бесконечности, поэтому надо запомнить, что n-ый член арифметической прогрессии можем получить быстрее, если к первому члену прогрессии добавить (n−1) разностей, то есть:

Формула n-ого члена арифметической прогрессии

где n – порядковый номер члена арифметической прогрессии, a1 – первый член прогрессии, d – разность арифметической прогрессии

Формулу используют, чтобы вычислить заданный член арифметической прогрессии (например, пятнадцатый, двухсотый и т.д.), если известны первый член последовательности и ее разность. Рассмотрим на примерах применение данной формулы.

Пример №1. Найти а20 арифметической прогрессии (аn), если а1=14, d=5. Составляем формулу для а20 и подставляем в нее данные: а20= a1 + d(20−1)=14+5(20−1)=109. Таким образом, мы вычислили, что на 20-ом месте в данной арифметической прогрессии стоит число 109.

Найти а7 арифметической прогрессии (аn), если а1=−8, d=−3. Аналогично работаем, составляя формулу и подставляя в нее данные значения (обращаем внимание на знаки чисел, чтобы не допустить ошибок): а7= a1 + d(7−1)= −8−3(7−1)= −26.

Дана арифметическая прогрессия 10; 12; 14;…… Найти а12. Здесь для нахождения а12 надо сначала найти разность d: d=12−10=2, то есть из последующего вычтем предыдущее. Можно было 14−12, порядок здесь не имеет значения, главное берем два соседних члена прогрессии. Теперь можем составлять формулу и находить а12: а12= a1 + d(12−1)=10+2(12−1)=32.

Любая арифметическая прогрессия может быть задана формулой вида an=kn+b, где k и b некоторые числа. Верно и обратное утверждение: если последовательность чисел задана формулой вида an=kn+b, где k и b некоторые числа, то она является арифметической.

Так, например, формула an=5n+1 задает арифметическую прогрессию, в которой разность d равна 1; по данной формуле можно найти любой член последовательности, например, найдем 20-ый член, подставляя в формулу число 20: a20=5 × 20+1=101.

Свойство арифметической прогрессии

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Формула:

Другими словами, используя данное свойство, мы можем найти член арифметической прогрессии, стоящий между двумя известными членами, без использования разности d. Рассмотрим это на примерах.

Пример №2. Найти а10 арифметической прогрессии (аn), если а9=24; а11=38. Здесь используем свойство, так как видим, что у а10 известны соседние члены. Значит, а10=(а911):2=(24+38):2=31. Таким образом, десятый член равен 31.

Дана арифметическая прогрессия …..23; х; 35. Найти х. Применяем свойство для нахождения х: х=(23+35):2=29. Для наглядности запишем, что ряд чисел выглядит так: …23; 29; 35.

Формулы суммы n первых членов арифметической прогрессии

Для нахождения суммы (обозначим ее буквой S) большого количества членов арифметической прогрессии существует формула, позволяющая это сделать быстро. Формула суммы членов арифметической прогрессии с известными членами

S n = (a 1 + a n )n 2 .

В данной формуле мы видим, что для нахождения суммы нужны первый и последний член прогрессии. Но встречаются случаи, когда аn не известно, но известна разность. Тогда для нахождения суммы применяют вторую формулу.

Формула суммы членов арифметической прогрессии с первым членом и разностью

S n = 2 a 1 + d ( n − 1 ) 2 . . n

Рассмотрим на примерах применение данных формул.

Пример №3. Найти сумму первых пятидесяти членов арифметической прогрессии (аn), если а1=11, а50=39.

Для решения лучше использовать первую формулу, так как здесь есть первый и последний члены: а1=11, а50=39. Поэтому составляем формулу, подставляем в нее данные значения и вычисляем:

S 50 = ( a 1 + a 50 )50 2 . . = ( 11 + 39 ) 50 2 . . = 2500 2 . . = 1250

Найти сумму первых десяти членов арифметической последовательности 3; 18; …. В данном случае задание можно выполнить двумя способами, как по первой формуле, так и по второй, а затем выяснить, какой способ короче, а значит, рациональнее.

Способ №1 (по первой формуле): надо найти разность d, затем десятый член прогрессии, а затем сумму:

S 10 = ( a 1 + a 10 )10 2 . . = ( 3 + 138 ) 10 2 . . = 705

S 10 = 2 a 1 + d ( 10 − 1 ) 2 . . 10 = 2 × 3 + 15 ( 10 − 1 ) 2 . . 10 = 705

Результаты в обоих случаях получились у нас одинаковые. А если сравнить два способа, то видно, что второй способ быстрее, тем более что в большинстве случаев разность арифметической прогрессии можно вычислить устно.

Таким образом, выбор формулы для нахождения суммы n первых членов арифметической прогрессии зависит от заданного условия.

Задание 14OM21R При проведении опыта вещество равномерно охлаждали в течение 10 минут. При этом каждую минуту температура вещества уменьшалась на 80С. Найдите температуру вещества (в градусах Цельсия) через 6 минут после начала проведения опыта, если его начальная температура составляла -60С.

Можно решить данную задачу логическим путем, т.е. без формулы. Так как начальная температура была -6, а потом уменьшалась на 8 градусов в течение 6 минут, то можно сделать следующее:

-6-8=-14 через 1 минуту

-14-8=-22 через 2 минуты

-22-8=-30 через 3 минуты

-30-8=-38 через 4 минуты

-46-8=-54 через 6 минут

Значит, наш ответ -54 0 С

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1407 К концу 2008 года в городе проживало 38100 человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце 2016 года в городе проживало 43620 человек. Какова была численность населения этого города к концу 2012 года?

Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину.

2008 г – 38100 человек

2012 г — ? человек

2016 г. – 43620 человек

Удобно решить данную задачу способом по формуле связи между любыми двумя членами арифметической прогрессии: d= a n − a k k − n . . , где k>n. Число d (разность прогрессии) будет являться ежегодным приростом населения.

Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:

(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.

Теперь можно найти, сколько человек проживало в конце 2012 года.

38100+690(2016 – 2012)= 40860 человек

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1406 Митя играет в компьютерную игру. Он начинает с 0 очков, а для перехода на следующий уровень ему нужно набрать не менее 30000 очков. После первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8 очков и так далее. Таким образом, после каждой следующей минуты игры количество добавляемых очков удваивается. Через сколько минут Митя перейдет на следующий уровень?

Анализируя содержание задачи, можно сказать, что мы имеем дело с геометрической прогрессией, так как после первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8, а это значит, что с каждой последующей минутой количество очков удваивается. То есть знаменатель геометрической прогрессии q равен 2, b1=2 по условию (после 1 минуты 2 очка). Так как очки суммируются, то будем использовать формулу суммы n первых членов геометрической прогрессии Sn= b 1 ( q n − 1 ) q − 1 . . , где Sn>30000, так как для перехода на следующий уровень ему нужно набрать не менее 30000 очков.

Подставляем наши данные в формулу: 2 ( 2 n − 1 ) 2 − 1 . . > 30000

Упрощаем выражение: так как в знаменателе дроби получается 1, то получим 2(2 n -1)>30000; делим обе части на 2: 2 n -1>15000; переносим 1 в правую часть и получим: 2 n >15001. Теперь надо подобрать число n, при котором будет верно наше неравенство. Делать это можно постепенно, возводя 2 в степени, а можно запомнить, что 2 10 =1024. Тогда легко будет добраться до числа, которое меньше 15001, а это 2 14 =16384, где 16384

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1405 В течение 25 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 7-й день акция стоила 777 рублей, а в 12-й день – 852 рубля?

В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7=777; в 12-й день – 852 рубля, это а12=852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25.

1 способ:

В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn=ak+d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а127+d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.

Теперь, зная число d, мы можем найти а25 через, например, а12, используя всё ту же формулу. Получаем: а2512+d(25-12); а25=852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.

2 способ:

Можно решить данную задачу другим способом по формуле связи между любыми двумя членами арифметической прогрессии: d= a n − a k k − n . . , где k>n. Составим формулу для наших а12 и а7, а затем подставим в нее данные: d= a 12 − a 7 12 − 7 . . ; d= 852 − 777 12 − 7 . . =15. Теперь по этой же формуле найдем а25, связывая его с а12: d= a 25 − a 12 25 − 12 . . ; 15= a 25 − 852 13 . . ; найдем отсюда а25, а25=15∙13+852=1047.

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1404 Грузовик перевозит партию щебня массой 176 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что в первый день было перевезено 6 тонн щебня. Определите, сколько тонн щебня было перевезено в последний день, если вся работа была выполнена за 11 дней.

В условии задачи встречаются слова, что норма увеличивалась на одно и то же число. И это значит, что мы имеем арифметическую прогрессию, в которой а1=6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11=176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11.

Итак, если нам встретилась сумма арифметической прогрессии, значит, нам надо воспользоваться формулой суммы n первых членов арифметической прогрессии Sn = а 1 + а n 2 . . ∙ n , куда мы и подставим все данные: 176 = 6 + а 11 2 . . ∙ 11 .

Разделим обе части на 11, получим 16 = 6 + а 11 2 . . ; умножим 16 на 2 (правило пропорции): 32=6+а11. Отсюда найдем а11=32–6=26. Итак, мы нашли, что 26 тонн щебня было перевезено в последний день.

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1403 Для получения витамина D могут быть рекомендованы солнечные ванны. Загорать лучше утром до 10 часов или вечером после 17 часов. Михаилу назначили курс солнечных ванн. Михаил начинает курс с 15 минут в первый день и увеличивает время этой процедуры в каждый следующий день на 15 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 15 минут?

Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1=15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.

Теперь берем формулу n члена арифметической прогрессии аn=a1+d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1402 Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в сумме 7,5 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 60 метрам.

Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше, чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1n=7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn=60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.

Зная формулу суммы n первых членов арифметической прогрессии

Sn = а 1 + а n 2 . . ∙ n , имеем 60= 7 , 5 ∙ n 2 . . . Отсюда находим n, умножая сначала 60 на 2 (по определению пропорции), затем 120 делим на 7,5 и получаем, что n=16. Таким образом, улитка потратила на весь путь 16 дней.

pазбирался: Даниил Романович | обсудить разбор | оценить

Задание OM1401 При проведении химической реакции в растворе образуется нерастворимый осадок. Наблюдения показали, что каждую минуту образуется 0,2 г осадка. Найдите массу осадка (в граммах) в растворе спустя семь минут после начала реакции.

При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число, на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.

Итак, имеем а1=0,2; d=0,2. Ищем а7. По определению n-ого члена арифметической прогрессии имеем формулу аn=a1+d(n – 1). Подставим в нее наши данные: а7=a1+d(7 – 1)=0,2+0,2·6=1,4

Арифметическая прогрессия – это числовая последовательность, в которой, начиная со второго числа, каждое последующее равняется предыдущему плюс постоянное слагаемое.

Общий вид арифметической прогрессии

d – шаг или разность прогрессии; это и есть постоянное слагаемое.

Члены прогрессии:

Цифры 1,2,3… – это их порядковые номера, т.е. место, которое они занимают в последовательности.

Свойства и формулы арифметической прогрессии

1. Нахождение общего n-ого члена ( an )

2. Разность прогрессии

Также для нахождения шага используется такая формула:

3. Характеристическое свойство

Последовательность чисел a1, a2, a3 является арифметической прогрессией, если для любого ее члена выполняется следующее условие:

4. Сумма первых членов прогрессии

Чтобы найти сумму первых членов арифметической прогрессии, необходимо воспользоваться формулой:

Если an заменить на a1 + (n – 1) d , то получится:

5. Сумма членов прогрессии с n-ого по m-ный

Формула суммы членов арифметической прогрессии с n-ого по m-ный

Если am заменить на an + (m – n) d , то получим:

Формула суммы членов арифметической прогрессии с n-ого по m-ный

6. Сходимость прогрессии

Арифметическая прогрессия сходится при d = 0 , во всех остальных случаях она расходится.

Арифметической прогрессией называется числовая последовательность, в которой каждый последующий член получается из предыдущего прибавлением к нему одного и того же числа, называемого разностью прогрессии. Разность прогрессии принято обозначать .

Формулы арифметической прогрессии

Если последовательность , , , , , " width="37" height="11" />
, является арифметической прогрессией, разность которой -a_n" width="115" height="18" />
, то любой член этой прогрессии вычисляется по формуле:

Сумма первых членов арифметической прогрессии вычисляется по формуле:

\[\boxed <S_n=\frac<(a_1+a_n)\cdot n></p>
<p>>\]

Если в этой формуле заменить , то получим:

\[\boxed <S_n=\frac<2a_1+d \cdot (n-1)></p>
<p> \cdot n>\]

Задачи на арифметическую прогрессию

Задача 1

Третий член арифметической прогрессии равен 4, а шестой член равен -5. Сколько нужно взять членов, чтобы их сумма была равна -4.

Решение: По условию задачи имеем , , . Надо найти .

Применяя формулу любого члена арифметической прогрессии, составим систему:

\[\left\< \begin</p>
<p> 4=a_1+2d\\ -5=a_1+5d\\ \end \right.\]

Решая систему, получим: , .

Подставим теперь известные , и в формулу суммы арифметической прогрессии, будем иметь:

\[-4=\frac<2\cdot 10+(-3)(n-1)></p>
<p> \cdot n\]

\[n=\frac<23 \pm \sqrt<529+96></p>
<p>>=\frac\]

n=-\frac<1></p>
<p>откуда  (
не удовлетворяет условиям задачи).

Искомая прогрессия имеет вид: 10, 7, 4, 1, -2, -5, -8, -11, -14…

Задача 2

Найти прогрессию, зная, что сумма первого и пятого членов ее равна 12, а произведение второго члена на четвертый равно 32.

Решение: По первому условию . Следовательно,

;

;

.

По второму условию или .

В полученном равенстве заменим равенством

(6-2d+d) \cdot (6-2d+3d)=32

;

;

;

откуда и .

При первый член арифметической прогрессии и искомая прогрессия имеет вид: 2, 4, 6, 8, 10, 12…

При первый член арифметической прогрессии и искомая прогрессия имеет вид: 10, 8. 6, 4, 2, 0, -2, -4…

Арифметическая (алгебраическая) прогрессия определение, примеры нахождения с решением

Часто, при решении задач, связанных с наблюдениями и присвоением значения определенному событию за определенный промежуток времени, получается ряд чисел, который именуется арифметической прогрессией.

Одна из главных отличительных особенностей такая математическая модель имеет закономерность, по которой можно вычислить любой неизвестный член, что упрощает прогнозирование при вычислении физических ситуаций.

Примерами повседневного использования могут являться наблюдение за температурой воздуха, прогнозирование расходов с занесением результатов в таблицу и др.

Онлайн-калькулятор арифметической прогрессии

Определение и примеры арифметической прогрессии

Это последовательность из чисел, где каждое последующее число ряда (начиная со второго) увеличивается или уменьшается на определенную сумму, являющуюся константой.

Арифметическая (алгебраическая) прогрессия определение, примеры нахождения с решением

Кроме этого для описания используется ряд сопутствующих терминов и определений. Членом (аn) называется единичное число из последовательности.

Разностью (d) называется фиксированное число, на которое увеличивается или уменьшается последующее число прогрессии.

Арифметическая (алгебраическая) прогрессия определение, примеры нахождения с решением

Кроме этого, существуют виды таких рядов:

  • возрастающая – числа ряда увеличиваются по своему значению,
  • убывающая – каждое последующее число ряда уменьшается.

Виды арифметической (алгебраической) прогрессии

Разновидности строятся на основании характеристики разности (d), а именно на основании отличия последней от нуля.

Таким образом, можно встретить определенные вариации:

  • разность d<,0 – прогрессия будет считаться убывающей, а каждый последующий член будет меньше предыдущего,
  • разность d>,0 – это предполагает, что каждый член в ряду будет больше предыдущего, а прогрессию будут называть возрастающей,
  • при d=0 ряд тоже будет иметь свойства прогрессии, которую именуют стационарной, и все члены будут одинаковыми (не будут изменяться).

Если прогрессия не изменяется с каждым шагом на одну и ту же разность, то эта прогрессия непостоянная и арифметической не является.

Важно знать: арифметическая от геометрической отличается тем, что в последней производится увеличение каждого последующего на один и тот же множитель.

Формулы арифметической прогрессии

Одно из важнейших свойств заключается в возможности вычисления любого числа конкретного места ряда.

Арифметическая (алгебраическая) прогрессия определение, примеры нахождения с решением

Чтобы решать это, необходима формула, показывающая, как находится член арифметической прогрессии. В общем виде она будет выглядеть, как значение предыдущего числа в ряду (an-1), к которому прибавляют разность (d):

Также может возникнуть задача, когда надо просуммировать все числа ряда арифметической прогрессии (сумма членов). Если их малое количество, то можно посчитать это вручную, но если количество чисел перевалит за сотню, то проще будет воспользоваться специальной формулой для обработки.

Итак, нам понадобится значение первого числа в ряду (a1) и последнего (an), а также информация об общем количестве чисел в ряду. Рекуррентная формула, показывающая, как искать сумму, будет выглядеть в таком случае следующим образом:

Обратите внимание: под значением n подразумевается именно количество членов ряда, для которых производится нахождение суммы.

Произведение членов арифметической прогрессии можно находить по похожей формуле:

где, Pn – произведение, b1 и bn – соответственно первое и последнее числа, а n – количество членов.

Отдельно следует коснуться такого понятия, как характеристическое свойство прогрессии. Оно сводится к выполнению определенного условия для каждого элемента:

Примеры задач с решением

Рассмотрим как решать задачи на заданную тему.

Пример 1

8)

Вариант рассуждений по примеру 1. Для нахождения любого конкретного элемента ряда нам необходима информация о значении первого члена (a1) и о разности (d). Чтобы вычислить разность, вычитаем из второго члена ряда первый (15 – и получаем d = 7. Теперь мы можем считать по формуле:

Подставляя полученные значения, получим выражение вида a574 = 8 + (574-1) * 7.

После вычисления получаем ответ: a574 = 4019.

Пример 2

Требуется вычислить 544 член ряда, являющийся арифметической прогрессией, при условии, что 154-ый член равен 17, а разность (d) равна 8.

Вариант рассуждений по примеру 2. Пользоваться в данной ситуации мы будем формулой из предыдущего примера:

Подставляя известные значения, получаем выражение – а544 = 17 + (544 1) * 8.

Вычисляя, получаем ответ а544 = 4361.

Пример 3

Для подготовки к экзамену по биологии студенту Смирнову необходимо выучить 730 вопросов (включая загадки). Известно, что он весьма обеспокоен и по мере приближения даты экзамена учит ежедневно на 27 вопросов больше, чем в предыдущий день. Друг Смирнова выяснил, что тот в первый день выучил всего 17 вопросов.

Требуется выяснить, сколько времени у студента ушло на подготовку.

Вариант рассуждений по примеру 3. Очевидно, что случай с подготовкой студента к экзамену решается через формулы арифметической прогрессией (поскольку присутствует фиксированная разность d = 17). Производим подстановку известных данных:

После подстановки получаем выражение: 730 = 17 + (n 1) * 27.

После вычислений определяем ответ – 27 дней.

Арифметическая прогрессия является наиболее простой из всех числовых зависимостей. Использование описанных формул позволит намного ускорить вычисления в задачах, где это требуется.

Кроме этого, для упрощения можно использовать онлайн калькулятор. В школе данную тему изучают в программе за 9 класс, а основные задания касаются нахождения членов и сумм.

Читайте также: