Зеленые растения поглощают световую энергию и преобразуют ее в механическую

Обновлено: 08.07.2024

воду и минеральные соли), растение питается. 3. В лесу поглощённые растениями минеральные соли возвращаются в почву с опавшими листьями и хвоей. 4. С помощью хлорофилла из углекислого газа и воды в листе образуются органические вещества (сахара). 5. Зелёные растения поглощают энергию солнечного света и преобразуют её в энергию химических связей. 6. С появлением на Земле зелёных растений образовался атмосферный кислород. 7. Дыхание - это расщепление сложных органических веществ на более простые, неорганические, и освобождение энергии химических связей. 8. Обмен веществ - это питание и дыхание растений. 9. Размножение свойственно всем живым организмам. 10. Оплодотворение происходит в зародышевом мешке. 11. Опыление у цветковых - это перенос пыльцы с тычинок на рыльце пестика. 12. Вегетативное размножение свойственно только цветковым растениям. 13. Яблони размножаются только прививкой. 14. Двойное оплодотворение - это слияние одного спермия с яйцеклеткой, а другого- с центральным ядром зародышевого мешка. 15. Половое размножение - это оплодотворение.

Вся жизнь на Земле существует за счет солнечной энергии. На Солнце происходит непрерывное превращение водорода в гелий, а при образовании одного атома гелия из четырех атомов водорода часть массы "исчезает" (если быть точным, при образовании 4,003 г гелия исчезает 0,029 г) и превращается в энергию в соответствии со знаменитым уравнением Эйнштейна E = mс 2 , где E - энергия, m - исчезнувшая масса, с - скорость света, представляющая собой постоянную величину (300000 км/с).

Так как каждую минуту на Солнце исчезает более сотни миллионов тонн массы, а скорость света так велика, то высвобождается огромное количество энергии. Этот избыток энергии не накапливается на Солнце, а излучается в пространство в виде электромагнитных волн разной длины: света, радиоволн, рентгеновских лучей, инфракрасного излучения и т. д. Такой процесс превращения массы в энергию может поддерживаться на Солнце благодаря чрезвычайно высокой температуре; на нашей планете при нормальных условиях он не происходит.



Большая часть приходящей к Земле энергии поглощается атмосферой; это главным образом ультрафиолетовая часть спектра - чрезвычайно опасная для живых организмов. Таким образом теряется 30% падающей на Землю энергии. Около 50% падающей энергии превращается в тепло и вновь излучается во внешнее пространство в форме инфракрасного теплового излучения, а 20% расходуется на испарение воды и образование облаков. И наконец, лишь 0,02% падающей энергии поглощается биосферой (рис.1).

Энергия, поглощенная биосферой, идет на совершение биологической работы живыми организмами, направленной на поддержание их жизни.

Поглощение, превращение и использование энергии растениями

Растения поглощают солнечную энергию при помощи хлоропластов включающих в себя пигмент - хлорофилл, который содержится в листьях и определяет зеленый цвет растений. Листья имеют большую поверхность для поглощения солнечного света и отверстия (устьица) для обмена с окружающей средой кислородом и двуокисью углерода. Поглотив электромагнитную энергию солнца растения в процессефотосинтеза запасают ее в форме сахаров - основного химического источника энергии.

Необходимая для фотосинтеза вода с содержащимися в ней солями подается от корней по "водопроводной" системе, называемой ксилемой, а образовавшийся сахар (питательные вещества) распределяется по всем частям растения с помощью другой проводящей системы, называемой флоэмой. Ксилема и флоэма образуют циркуляторную систему растения (рис. 2), которая распределяет в растениях питательные вещества и энергию.

Созданное растениями в процессе фотосинтеза органическое вещество - это валовая первичная продукция (ВПП). Часть энергии валовой первичной продукции расходуется самим растением на дыхание, остальная часть сохраняется в виде прироста органического вещества и представляет собой накопление чистой первичной продукции (ЧПП): ВПП - Дыхание = ЧПП.

Чистая первичная продукция является тем самым органическим веществом, которое накапливается в растениях. Из него в результате сложных процессов, происходящих в растениях, образуются все их органы - стебли, листья, корни, цветки плоды и другие, которые могут использоваться в пищу гетеротрофными организмами.

Эту чистую первичную продукцию можно выразить в единицах массы: взвесить, например, при уборке урожая (килограмм на 1 га за [период времени] и энергии (при сжигании в калориметре): джоуль на 1 м 2 за период времени, например, сутки, месяц, год). Установлено, что при сжигании 1 г абсолютно сухого вещества выделяется 4 кДж энергии. При этом следует принять во внимание, что равные количества различных биологических веществ не обязательно равны по своим энергетическим показателям. Обычно принимают следующие соотношения: для 1 г углеводов - 4 кДж; протеинов - 4 кДж; липидов - 9 кДж; стволовой древесины - 4,5 кДж; живых листьев - 4,7 кДж; лесной подстилки - 4,5 кДж.

Ежегодно зеленые растения превращают в органическое вещество колоссальные количества углерода (в общем около 200 млрд. т). Около 10% этой массы синтезируют наземные растения; остальное приходится на долю морских растений, главным образом микроскопических водорослей. Как показывают расчеты, благодаря активности зеленых растений вся углекислота, находящаяся в атмосфере и растворенная в воде, обновляется примерно за каждые 300 лет, а весь кислород - примерно за каждые 2000 лет. Ход процесса фотосинтеза почти одинаков у всех зеленых растений - от мельчайшей водоросли до огромного Мамонтова дерева.

Природа многих химических реакций, происходящих при фотосинтезе, была выяснена опытами ван Ниля, Арнона, Кальвина, Гаффрона, Рабиновича и многих других учёных. Большая часть этих исследований проводилась с одноклеточными зелеными водорослями Chlorella или Scenedesmus. Однако эксперименты с листьями фасоли, ячменя, табака, дыни показали, что сходные цепи реакций имеются и у высших растений.

Что входит в перечень работ по подготовке дома к зиме: При подготовке дома к зиме проводят следующие мероприятия.

Эталон единицы силы электрического тока: Эталон – это средство измерения, обеспечивающее воспроизведение и хранение.

Опасности нашей повседневной жизни: Опасность — возможность возникновения обстоятельств, при которых.

Как зарядиться от картошки

По интернету давно бродят фото- и видеоизображения горящих лампочек, присоединенных к картофелине (апельсину, лимону, яблоку). Также в сети полно инструкций, как в домашних условиях изготовить картошкобатарейку. Достаточно взять картофелину, медный и оцинкованный электроды (гвозди, например), соединительные провода и светодиодную лампочку для демонстрации электрического эффекта. В один бок корнеплода (или фрукта) втыкаем цинковый электрод, затем соединяем его с лампочкой, другой полюс лампочки соединяем с медным электродом, который втыкаем в ту же картофелину, но с другого бока.

Все эти действия рациональны и химически объяснимы: кислая среда внутри растительного источника создает необходимое количество свободных протонов (H+). В такой среде при взаимодействии с активным (хорошо отдающим электроны) металлом выделяются свободные носители отрицательного элементарного заряда, готовые бежать по цепи и заставлять лампочку светиться. В свою очередь, поток протонов от анода к катоду, как положено в батарейках, создает электродвижущую силу и замыкает цепь. Катод делается из менее активного металла (цинк против меди). А в качестве активной среды подойдет даже лист или стебель — любая, даже слабокислотная, часть растения.

Важный вопрос: насколько такие аккумуляторы эффективны? (И не полезнее ли будет их употреблять в классическом виде — в пищу?) Для ответа на него есть много экспериментальных демонстраций, которые позволяют рассчитать: чтобы зарядить смартфон, понадобится около 50 килограммов картофеля. Безусловно, конкретные характеристики растительного аккумулятора зависят от многих факторов — кислотности источника энергии (так, лимон явно кислее картофеля), свежести образца и даже кислотности почвы, в которой он вырос. Прибавим сюда качество гвоздей, сплавов, которыми эти гвозди покрыты и так далее. Но, как ни подбирай ингредиенты, явным недостатком вегетарианской подзарядки будет ее невысокая эффективность при большой отходности. Что картофелина, что лимон работать будут недолго, их придется часто менять, и пока зарядится смартфон, не один мешок опустеет.

Так что этот способ — скорее забавная шутка или фантазия для постапокалиптического сценария, чем надежда для удаленных и лишенных промышленных электростанций уголков Земли.

Зеленый лист — солнечная батарея мечты

Солнечная батарея — один из самых популярных экологичных энергетических девайсов. В ее основе лежит красивая идея — взять солнечную энергию, которая и так греет планету, и извлечь из нее электроэнергию без всяких побочных эффектов. Однако у этих устройств, несмотря на то, что они изобретены уже давно и с тех пор постоянно совершенствуются, есть ряд существенных недостатков. Главные из них — низкая эффективность (лишь некоторые коммерческие образцы обладают КПД на уровне 20 процентов) и ограниченная функциональность (работают, только пока светит солнце).

Растения — те же солнечные батареи, просто естественные. В процессе фотосинтеза молекулы пигментов, находящиеся в мембранах тилакоидов, поглощают энергию солнечного света и преобразуют ее в энергию химических соединений.

Более 90 процентов хлорофилла хлоропластов входит в состав светособирающих комплексов — своеобразных антенн, переносящих энергию возбуждения к реакционным центрам первой и второй фотосистемы для последующего первичного разделения зарядов. В этих же фотосистемах сперва происходят окислительно-восстановительные превращения хлорофилла, а затем — фиксация энергии света в химическую энергию. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, далее в ходе нескольких химических реакций образуются кислород и свободные электроны и протоны (H). Кислород удаляется во внешнюю среду, а протоны приводя к тому, что мембрана тилакоида с одной стороны заряжается положительно за счет H+, с другой стороны — отрицательно за счет электронов. Далее процесс продолжается и завершается уже в без участия солнечного света синтезом органики из фиксированного из атмосферы углекислого газа.

Инженеры с завистью смотрят на зеленые листья и думают, как бы им подключиться к этому мембранному конденсатору. Ведь фотосистемы растительных пигментов используют солнечную энергию с очень большой эффективностью (если считать в поглощенных фотонах на вырабатываемый электрон). Некоторые даже утверждают, что нашли путь к хакингу фотосинтеза и уводу электронов прямо из-под носа у реакционных центров.

Биотехнический симбиоз

Биофотогальваника

Вышеописанную систему удалось усовершенствовать, пересадив в илистый реактор водные растения, — именно этот апгрейд позволяет инженерам надеяться на самовоспроизводимость источника питания. Растения, поглощая солнечную энергию и углекислый газ, в процессе фотосинтеза генерируют органические вещества, часть из которых попадает в почву. Симбиотические бактерии, живущие вблизи корней, расщепляют эту органику, выделяя электроны в качестве побочного продукта. Эти электроны могут быть захвачены анодом.

1. Ответьте на вопросы.
1. Весной добывают сладкий берёзовый сок. Для этого в коре берёзы делают разрез. От какого (восходящего или нисходящего) тока веществ берут этот сок ?
Нисходящего.
2. Что произойдет с берёзой, если у неё взять очень много сока ?
Усохнет, так как в соке содержатся органические вещества, необходимые растению.
3. Почему бесполое размножение так широко представлено в царстве растений, т.к. обеспечивает их быстрое расселение и захват новых территорий.

3. Заполните пропуски в тексте. Допишите предложения.
1. Растения получают необходимую для жизнедеятельности энергию с помощью фотосинтеза. Это воздушное питание.
2. Растения образуют органические вещества в процессе фотосинтеза.
3. Существует два типа питания, которые различаются тем , что в процессе воздушного (или фотосинтеза) питания происходит и образуются, а в процессе растение поглощает минеральные соли и воду.
4. Экологические факторы – это факторы: температуры, освещения, влажности, доступности кислорода, наличия минеральных веществ, создающие окружающую среду, в которой развивается растение.
5. Индивидуальное развитие организма растения зависит от суточной периодичности, так как в течение суток происходит смена дня к ночи.
6. Сезонная периодичность характеризуется сменой температуры. Это влияет на такие процессы жизнедеятельности растений, как фотосинтез и испарение воды.

Благодаря уникальной способности к фотосинтезу, растения преобразуют энергию солнца в энергию химических связей, делая ее доступной для дальнейшего использования. Ученые всего мира пытаются искусственно воспроизвести процесс фотосинтеза и тем самым овладеть принципиально новым источником энергии.

Начало начал

Если бы растения, в т.ч. водоросли, и некоторые бактерии не обладали способностью к фотосинтезу, жизнь других живых существ на нашей планете была бы невозможна. Это единственные организмы, которые, используя энергию солнечного света, могут синтезировать органические соединения из неорганических веществ и воды. Фотосинтез растений служит также источником кислорода. И даже основные используемые энергоресурсы (уголь, нефть) имеют фотосинтетическое происхождение.

Фотосинтез включает две стадии — световую , в ходе которой образуются высокоэнергетические вещества и происходит фотолиз, то есть расщепление воды под действием света с выделением протонов водорода и молекул кислорода. И темновую , во время которой с использованием запасов энергии, накопленной на первой стадии, синтезируются органические вещества (сахар).

Таким образом, растение, обеспечивая себя органическими веществами, параллельно освобождает атмосферу от излишков двуокиси углерода и выделяет как побочный продукт кислород, такой ценный для дыхания живых организмов.

Почти как у матушки-природы?

Искусственно воспроизвести фотосинтез или, по крайней мере, отдельные его этапы — задача более чем амбициозная. Ее решение могло бы снять множество энергетических проблем будущего. Исследователи уверены, что открытие подобного рода позволит получать водород или напрямую преобразовывать энергию солнечного света в электрическую. Возможно, с помощью воссоздания природного процесса удастся синтезировать органическое топливо. Посмотрим, каких результатов удалось достичь ученым на сегодняшний день.

В нашей стране проблемами искусственного фотосинтеза занимаются с 1960-х гг. Сегодня над задачей работает несколько исследовательских групп, в том числе ученые из Института фундаментальных проблем биологии (ИФПБ ) РАН (директор – академик Шувалов В.А.), НИИ физико-химической биологии им. А.Н. Белозерского (НИИ ФХБ, МГУ), Института биохимии им. А.Н. Баха РАН , Института химической физики (ИХФ) им Н.Н. Семенова РАН, МГУ имени М.В. Ломоносова и Института физиологии растений (ИФР) им. К.А. Тимирязева РАН.

Вопросами искусственного фотосинтеза занимаются исследовательские группы Японии, США, Швейцарии, Великобритании, Италии, Израиля, Австралии, Китая и др. стран.

В некоторых работах используются элементы, выделенные из живой растительной клетки, в других пытаются воссоздать модель хлоропласта, в третьих — и вовсе в качестве подложек используют весьма экзотическое (в смысле естественного фотосинтеза) вещество.

В поисках стабильности

За пределами исследовательских лабораторий никого не интересует устройство, пусть даже обладающее высоким КПД, но способное проработать всего несколько часов.

Проблемы фотостабильности еще раз подчеркивают, с какой тонкой материей приходится иметь дело тем, кто ищет путь выработки энергии через фотосинтез. Если традиционные солнечные батареи нуждаются в максимуме солнечного излучения, то для фотосинтетических систем, напротив, он губителен.

Одним словом, очевидно, что повышать КПД искусственной фотосинтезирующей системы за счет увеличения интенсивности освещения не получится. Вот если бы удалось создать фотосинтетический аппарат, который не будет разрушаться под воздействием интенсивного света, тогда можно было бы говорить о создании батареи, не имеющей аналогов с точки зрения КПД. Однако возможно ли это?

Увы, нестабильность — не единственная проблема, подстерегающая ученых. Чтобы стало понятнее, какие еще задачи приходится решать разработчикам искусственных фотосинтезирующих систем, познакомимся поближе с концепциями и устройствами, которые предлагают разные научные школы.

Светозависимая стадия: синтез водорода

Ученые из НИИ физико-химической биологии им. А.Н. Белозерского МГУ (группа Алексея Семенова), Института биохимии им. А.Н. Баха РАН (Виталий Никандров) и Института химической физики им Н.Н Семенова РАН (Виктор Надточенко), разрабатывают устройство, использующее солнечный свет для получения водорода и кислорода из воды, на основе фотосинтетических пигмент-белковых комплексов, ферментов, наночастиц полупроводников и металлов.

Процессы световой стадии фотосинтеза

Процессы световой стадии фотосинтеза

В настоящее время создан один из главных компонентов такого устройства — фотопреобразователь солнечной энергии нового типа, позволяющий получать водород под действием видимого света. Фотопреобразователь включает пигмент-белковый комплекс ФС I цианобактерий Synechocystis и гидрогеназу из фотосинтезирующей бактерии Thiocapsa roseopersicina, которые совместно иммобилизованы на нанопористом полупроводниковом носителе, полученном из наночастиц диоксида титана.

Высокие скорости образования водорода фотопреобразователем обеспечиваются эффективным сопряжением ФС I и гидрогеназы: перенос электронов, фотогенерированных в ФС I, к гидрогеназе происходит через наночастицы полупроводника. Модификация полупроводникового носителя наночастицами золота приводит к повышению эффективности образования водорода.

Отличительная особенность и достоинство фотопреобразователя в том, что иммобилизация ФС I и гидрогеназы на нанопористом твердом носителе обеспечивает эффективное поглощение солнечного света при сохранении фотохимической активности ФС I и каталитической активности гидрогеназы в течение длительного времени. Фотопреобразователь может использоваться в различных устройствах для получения водорода под действием солнечного света. Производство таких устройств может быть высокоэкологичным и низкозатратным, так как основные компоненты ФС I и гидрогеназа выделяются из возобновляемых источников: растений, водорослей, бактерий.

Джон Гольбек из Университета штата Пенсильвания (США) предложил обойтись без диоксида титана и связывать ФС I и гидрогеназу без посредников с помощью молекулярных мостиков. Но при этом в фотосистеме используются белки, видоизмененные с помощью генной инженерии. Ученым удалось достичь высокой скорости образования водорода. Увы, процесс протекает в жидкой среде, где белки быстро погибают, то есть стабильности достичь не удается.

Тонкости фотолиза

Что касается фотосистемы II, то ее детально изучает российско-японская группа под руководством Сулеймана Аллахвердиева.

«ФС II — это одна из систем, которую можно применять для создания промышленных модулей для получения водорода и кислорода, — рассказывает С. Аллахвердиев, — но для использования ФС II необходимо значительно модифицировать. Эта фотосистема содержит единственный в своем роде природный ферментный комплекс, способный расщеплять воду и выделять молекулярный кислород, однако он работает только в среде растения. В изолированном виде этот комплекс не может быть использован в качестве технического устройства из-за его чрезвычайно ограниченной стабильности.

Сейчас ученые находятся на пути к созданию эффективно функционирующей искусственной фотосистемы II. Чтобы повысить устойчивость компонентов, используются методы генной инженерии, молекулярной и физико-химической биологии, включая ДНК-микрочипы, разрабатываются молекулярные механизмы адаптации фотосинтетического аппарата растений к неблагоприятным условиям окружающей среды. Результатом исследований должно стать новое биомолекулярное техническое устройство, обеспечивающее расщепление воды на молекулярный кислород и водород за счет энергии солнечного излучения.

Искусственный лист

Светозависимая стадия: прямое преобразование

Несколько научных групп пытаются использовать искусственные элементы фотосинтеза не с целью получения водорода, а как своего рода солнечную батарею, выдающую напрямую электричество. Так, Микаэль Гретцель из Федеральной политехнической школы Лозанны (Швейцария) создал батарею из двух токопроводящих пластин, между которыми расположен пористый слой диоксида титана, содержащий электролит с красителем.

В 2012 г. ученые из Массачусетского университета представили еще одну разработку, выполненную на этот раз под руководством Андреаса Мершина в соавторстве с Федеральной политехнической школой Лозанны. Система Biosolar использует выделенные из скошенной травы молекулы Фотосистемы I, а также трубки из оксида цинка.

В том же году о результатах своих исследований сообщил Барри Брюс из Университета Теннеси (США). Он, как и ученые из НИИ ФХБ, выделил ФС I из цианобактерий (правда, модифицированных). А улавливателем электронов в системе служит оксид цинка, как у коллег из Массачусетса.

Есть и отечественные разработки аналогичного направления. На кафедре биофизики биологического факультета МГУ им. Ломоносова (зав. кафедрой чл.-корр. РАН Андрей Рубин) в лаборатории профессора Владимира Пащенко в 2012 г. был создан фотопреобразователь солнечной энергии на основе реакционного центра пурпурных бактерий. Для увеличения эффективности поглощения света реакционные центры были объединены в гибридные комплексы с полупроводниковыми нанокристаллами – квантовыми точками. Затем эти гибридные комплексы наносились на мезопористую подложку из диоксида титана толщиной в десятки микрон. В результате получилось устройство, способное поглощать 50-70 % падающей световой энергии в УФ-ИК диапазоне и затем преобразовывать этот свет в электрический ток с КПД порядка 6,6 %.

Сравнивая описанные выше подходы, можно отметить – минус прямого преобразования в том, что полученную энергию надо использовать сразу, так как механизмов для ее запасания не предусмотрено. С другой стороны, технологии, ориентированные на выработку водорода, требуют создания топливной ячейки, двигателя или другого механизма для его последующего использования.

Альтернативный взгляд

В 1995 г. в лаборатории фотобионики ИХФ РАН была предложена альтернативная концепция фотосинтеза. В отличие от общепринятых в научном сообществе представлений, она предполагает, что источником выделяющегося кислорода служит не вода, а пероксид водорода (Н2О2) экзо- и эндогенного происхождения. При этом тепловая энергия — не побочный продукт фотосинтеза, а необходимый участник процесса.

«В 1969 г. в Институте химической физики АН СССР была построена фотовольтаическая батарея – функциональная модель хлоропласта, — рассказал Геннадий Комиссаров. — Функцию хлоропласта (выделение из воды кислорода под действием солнечного света) впервые удалось воспроизвести на целиком абиогенной системе, составленной из слоев аналога хлорофилла — фталоцианина, нанесенного на платиновые электроды.

Живые растения как источник энергии

Да, бывает и такое. Ряд исследователей предполагают, что возможно, не углубляясь в разгадку тайн фотосинтеза и не пытаясь его повторить, пользоваться той энергией, которую вырабатывают живые растения.

В 2010 г. Виктория Флексе и Николя Мано из Научно-исследовательского центра им. Поля Паскаля (Франция) разработали биотопливный элемент , который вживляется внутрь кактуса и работает, пока живет растение. Причем на свету процесс выработки становился интенсивнее, чем в темноте.

В 2011 г. Кембриджский университет (Великобритания) и дизайнеры студии Object&Line представили стол Moss , с растущими на нем мхом и водорослями, обеспечивающий питание бытовых электроприборов с малым потреблением.

В 2012 г. в Университете Вагенингена (Нидерланды) создали растительно-микробный топливный элемент. Разработчики полагают, что можно собрать электроны, образующиеся в почве в результате разложения бактериями сока, выделяемого растением через корни.

То, что подобные решения могут найти практическое применение, пока вызывает большие сомнения. Слишком малы получаемые от растений ток и напряжение. К тому же, если методика предполагает внедрение электрода внутрь клетки, вряд ли можно ожидать, что такая клетка проживет сколько-нибудь долго.

Как отмечает Сулейман Аллахвердиев, природные системы не могут быть напрямую использованы в технологических устройствах преобразования энергии солнца, в первую очередь из-за нестабильности биологических компонентов, их подверженности разрушающим факторам внешней среды. Задача ученых все-таки в том, чтобы, разобравшись в деталях природного процесса, создать искусственную технологию преобразования солнечной энергии.

Фотосинтез — в каждый дом?

Поиски способов получения энергии с помощью искусственного фотосинтеза идут уже не один десяток лет. Стоит ли ждать, что в обозримом будущем существующие прототипы выйдут за пределы лабораторий и станут рабочими устройствами, несущими в наши дома свет?

Практических результатов, на мой взгляд, можно ожидать в сравнительно короткие сроки. Уже в ближайшие 10 лет будут созданы фотоэлектрохимические батареи , предназначенные для индивидуальных потребителей — устройства для снабжения электричеством загородных домов. Создание таких батарей для промышленных целей потребует большего времени.

Сегодня исчерпаемость запасов ископаемого топлива воспринимается как куда более близкая перспектива, чем во времена Ж. Верна. Да и проблемы энергетической безопасности делают тему поиска альтернативных, экологически чистых источников энергии все более востребованной. Возможно, разгадка одной из главных тайн природы, сделавшей в свое время возможной жизнь на поверхности Земли, поможет человечеству ненадолго продлить свое мимолетное по геологическим меркам существование, обеспечив себя чистой и дешевой энергией фотосинтеза.

Читайте также: