Занимается выращиванием в искусственных условиях клеток растений животных и человека

Добавил пользователь Алексей Ф.
Обновлено: 19.09.2024

Основным методом селекции является искусственный отбор. При ____________(А) селекционер отбирает группу особей с нужными признаками, скрещивает их между собой, опять отбирает, опять скрещивает и повторяет эти операции многократно. При ___________(Б) выбирают отдельную особь и получают от нее потомство. При этом у растений путем самоопыления удается легко получить _____________(В), т.е. группу ____________ (Г) особей.

С1. В 1791 году на одной из ферм США овца принесла коротко­ногого ягненка. Он был скрещен с матерью, и все очередное потом­ство было коротконогим. Так было положено начало анконской породе овец. Назовите метод селекции, который был использован при выведении этой породы, и объясните, используя знания генетики, почему был использован именно этот метод.

С1: речь идет о близкородственном скрещивании. Перед селекционером стояла задача закрепить признак коротких ног, т.е. перевести соответствующий аллель в гомозиготное состояние. Для этих целей в селекции животных используют близкородственное скрещивание, поскольку у родственных организмов выше вероятность наличия сходных скрытых рецессивных мутаций. Видимо, родители коротконого ягненка были гетерозиготны (Аа, где А – ген, определяющий нормальную длину ног, а –ген, определяющий признак коротких ног). Это подтверждает тот факт, что при дальнейшем скрещивании коротконогих овец между собой потомство всегда получалось коротконогим, т.е. все они были рецессивным гомозиготами (аа).


Г.Д. Карпеченко в 1924 году обработал колхицином стерильный гибрид капусты и редьки. Колхицин вызвал нерасхождение хромосом гибрида при гаметогенезе. Слияние диплоидных гамет привело к получению полиплоидного гибрида капусты и редьки (капредьки). Эксперимент Г.Д.Карпеченко можно проиллюстрировать следующей схемой.

I.До действия колхицином.

II.После действия колхицином и искусственного удвоения хромосом:

Одной из причин сахарного диабета является недостаток в организме инсулина — гормона поджелудочной железы. Инъекции инсулина, выделенного из поджелудочных желёз свиней и крупного рогатого скота, спасают миллионы жизней, однако у некоторых пациентов приводят к развитию аллергических реакций. Оптимальным бы решением было бы использование человеческого инсулина. Методами генной инженерии ген инсулина был встроен в ДНК кишечной палочки. Бактерия начала активно синтезировать инсулин. В 1982 году инсулин человека стал первым фармацевтическим препаратом, полученным с помощью методов генной инженерии.Основное действие инсулина заключается в снижении концентрации глюкозы в крови. Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. Таким образом, инсулин оказывает многогранное влияние на обменные процессы практически во всех тканях.

Важным методом селекции является гибридизация (скрещивание). Отдалённая гибридизация заключается в скрещивании разных видов. В растениеводстве с помощью отдалённой гибридизации создана новая зерновая культура — тритикале, гибрид ржи с пшеницей. Классическим примером получения межвидовых гибридов в животноводстве является мулл.

Метод, посредством которого были выведены микроорганизмы для получения и использования в лечебных целях инсулина, гормона роста, интерферона.

Удобными объектами биотехнологии являются микроорганизмы, имеющие сравнительно просто организованный геном, короткий жизненный цикл и обладающие большим разнообразием физических и химических свойств. Этим и занимается новое направление в биотехнологии — генная инженерия. На базе методов генной инженерии в настоящее время уже сформировалась отрасль фармацевтической промышленности, вырабатывающей биологически активные вещества и препараты: инсулин, интерферон, некоторые ферменты и пептидные гормоны.

Человеческий ген, встроенный в геном бактерий, обеспечивает синтез гормона (гормона роста), инъекции которого используются при лечении карликовости и восстанавливают рост больных детей почти до нормального уровня.

Интерферон – защитный белок, вырабатываемый клетками млекопитающих и птиц в ответ на заражение их вирусами. При заражении клетки вирус начинает размножаться. Клетка-хозяин одновременно с этим начинает продукцию интерферона, который выходит из клетки и вступает в контакт с соседними клетками, делая их невосприимчивыми к вирусу. Интерферон не обладает прямым противовирусным действием, но вызывает такие изменения в клетке, которые препятствуют, в том числе и размножению вируса.


Штамм – популяция одного вида выделенная из какого-либо одного источника.Штамм – это генетически однородное потомство микроорганизмов (бактерий, грибов, простейших) или клеток культуры тканей эукариот, обладающее определенными признаками.

В современных условиях развитие общества важное значение имеет интенсификация сельскохозяйственного производства, т.е.получение максимального количества продукции при минимальных затратах. С этой целью создаются высокопродуктивные породы животных и сортов растений, устойчивые к экстремальным условиям среды, к болезням и вредителям, обладающие определёнными необходимыми качествами.

Порода, сорт или штамм — это совокупность особей одного вида, искусственно созданная человеком и характеризующаяся определёнными наследственными свойствами.

Аутбридинг – неродственное скрещивание растений или животных, относящихся к разным линиям внутри породы или сорта, к разным сортам или породам и, наконец, к разным видам или родам. Аутбридинг переводит вредные мутации в гетерозиготное состояние, тем самым, оказывая положительное влияние на организм. Нередко аутбридинг сопровождается явлением гетерозиса. Большинство сортов и пород получено в результате многоступенчатого скрещивания, которое длится по нескольку лет.


Полиплоидия, т. е. кратное увеличение числа хромосом в клетках в результате нарушения их расхождения в митозе или мейозе. Соматические клетки таких организмов содержат 3n, 4n, 8n и т. п. хромосом в зависимости от того, сколько хромосом было в гаметах, образовавших этот организм. Полиплоидия часто встречается у бактерий и растений, но очень редко — у животных (тутовый шелкопряд). Полиплоидны три четверти всех культивируемых человеком злаков. Если гаплоидный набор хромосом (n) для пшеницы равен 7, то основной сорт, разводимый в наших условиях, — мягкая пшеница — имеет по 42 хромосомы, т. е. 6n.

Полиплоидные растения имеют более широкую норму реакции и, следовательно, легче приспосабливаются к неблагоприятным условиям внешней среды. Полиплоидные формы известны в декоративном цветоводстве, например, тюльпаны, нарциссы, гладиолусы, имеющие очень крупные цветки.

Гетерозис – явление мощного развития гибридов первого поколения, полученных при скрещивании чистых линий, одна из которых гомозиготна по доминантным, другая – по рецессивным генам. Этот приём применяется для получения как животных гибридов (мул, лошак, циплята-бройлеры, рыба бестер), так и растительных гибридов (длинноплодные типличные огурцы, крупнозёрная кукуруза). У растений при семенном размножении гетерозисные гибриды дают расщепление; при вегетативном – в течение нескольких поколений сохраняют свои свойства. У полиплоидных форм гибридов гетерозис сохраняется и при семенном размножении.

Генная инженерия – искусственное целенаправленное изменение генотипа микроорганизмов с целью получения культур с заранее заданными свойствами.

Основной метод — выделение необходимых генов, их клонирование и введение в новую генетическую среду. Метод включает следующие этапы работы:

  • выделение гена его объединение с молекулой ДНК клетки, которая сможет воспроизводить донорский ген в другой клетке (включение в плазмиду);
  • введение плазмиды в геном бактериальной клетки — реципиента;
  • отбор необходимых бактериальных клеток для практического использования;
  • исследования в области генной инженерии распространяются не только на микроорганизмы, но и на человека. Они особенно актуальны при лечении болезней, связанных с нарушениями в иммунной системе, в системе свёртывания крови, в онкологии.

Микробиологический синтез – получение микробной массы, богатой белками. Микробную массу выращивают на отходах сельскохозяйственного производства (кочерыжки кукурузы, отходы свекольной промышленности), на продуктах нефтепереработки, на отходах древесины, торфа, опилках, соломе, этиловом и метиловом спиртах. Из одной тонны жидких парафинов нефти микроорганизмы образуют около тонны биомассы.


Получение растений методом культуры клеток и тканей моркови
Корнеплод моркови и группа клеток корнеплодаВыделенные клетки в питательной средеДеление клеток и






Методы культуры тканей дают возможность получать гаплоидные растения из пыльцевых зёрен или яйцеклеток. Такие растения не способны образовывать гаметы, однако обработка этих растений колхицином даёт возможность получать диплоидные плодовитые растения.

Вегетативное размножение на искусственных питательных средах позволяет почти бесконечно размножать одно растение из маленьких кусочков вегетативных органов. Такой метод размножения применяется для овощных, плодовых и декоративных культур. Современные методы позволяют отбирать не взрослые растения, обладающие теми или иными свойствами, а клетки, из которых потом выращивают полноценные растения.

Таким образом, клеточная инженерия — это направление в науке и селекционной практике, которое изучает методы гибридизации соматических клеток, принадлежащих разным видам, возможности клонирования тканей или целых организмов из отдельных клеток. Одним из распространённых методов селекции растений является метод гаплоидов — получения полноценных гаплоидных растений из спермиев или яйцеклеток. Получены гибридные клетки, совмещающие свойства лимфоцитов крови и опухолевых, активно размножающихся клеток. Это позволяет быстро и в нужных количествах получать антитела.

Этапы генной инженерии:

  1. Получение нужного гена – выделение природного гена (с помощью ферментов рестриктаз), или его искусственный синтез
  2. Извлечение плазмиды из бактериальной клетки
  3. Включение этого гена в молекулу ДНК – переносчика (плазмиду) – получение рекомбинантной ДНК
  4. Введение рекомбинантной ДНК в клетку, где она встраивается в её генетический аппарат
  5. Отбор трансформированных клеток, в геном которых включился переносимый ген

Конструирование новых генетических структур успешно реализуют два направления:

1) пересадка природных генов в ДНК бактерий или грибов;

2) встраивание искусственно созданных генов, несущих заданную информацию.

Генетический аппарат бактериальной клетки представлен одной хромосомой — гигантской кольцевой молекулой ДНК, которая имеет мелкие кольцевые молекулы ДНК — плазмиды (содержат специфические гены). Плазмиды способны размножаться без особого контроля со стороны основной хромосомы. При создании особых условий в одной клетке можно получить тысячи копий плазмиды.

Так же, как и у бактерий, с помощью методов генной инженерии можно изменять и наследственный материал эукариотических организмов. Такие генетически перестроенные организмы называются трансгенными или генетически модифицированными организмами (ГМО).

В природе существует бактерия, которая выделяет токсин, убивающий многих вредных насекомых. Ген, отвечающий за синтез этого токсина, был выделен из генома бактерии и встроен в геном культурных растений. К настоящему времени уже созданы устойчивые к вредителям сорта кукурузы, риса, картофеля и других сельскохозяйственных растений. Выращивание таких трансгенных растений, которые не требуют использования пестицидов, имеет огромные преимущества, потому что, во-первых, пестициды убивают не только вредных, но и полезных насекомых, а во-вторых, многие пестициды накапливаются в окружающей среде и оказывают мутагенное влияние на живые организмы.

Один из первых успешных экспериментов по созданию генетически модифицированных животных был произведён на мышах, в геном которых был встроен ген гормона роста крыс. В результате трансгенные мыши росли гораздо быстрее и в итоге были в два раза больше обычных мышей.


Крупнейший русский учёный — генетик Н.И. Вавилов внёс огромный вклад в селекцию растений. Он установил, что все культурные растения, выращиваемые сегодня в разных регионах мира, имеют определённые географические центры происхождения. Эти центры находятся в тропических и субтропических зонах, т.е. там, где зарождалось культурное земледелие. Он обнаружил, что в определённых районах земного шара сконцентрировано наибольшее разнообразие сортов того или иного культурного растения. Например, для картофеля, сладкого перца, томата и др. максимум генетического разнообразия связан с Южной Америкой. (Андийский или Южноамериканский центр). Н.И.Вавилов пришёл к выводу, что районы максимального разнообразия являются центрами происхождения данной культуры. Исходя из этого, он выделил семь таких центров. В зависимости от дробности подразделения территории сейчас обычно выделяют семь-восемь таких очагов.

В настоящее время установлены и главные центры происхождения домашних животных.


Бестер (по первым слогам слов белуга и стерлядь) гибрид двух видов рыб семейства осетровых, полученный путём искусственного скрещивания белуги. Впервые получен в 1952 году в СССР. Бестер сочетает быстрый рост белуги и раннее созревание стерляди. Длина до 1,8 м, масса до 30 кг. Плодовит.


Задание 8 № 46278

Установите последовательность этапов клонирования овцы. Запишите в таблицу соответствующую последовательность цифр.

1) пересадка соматического ядра в яйцеклетку лишённую ядра

2) удаление ядра из соматической клетки

3) имплантация зародыша в матку суррогатной овцы

4) дробление яйцеклетки

5) выделение клетки молочный железы овцы

Последовательность этапов клонирования овцы:

5) выделение клетки молочный железы овцы → 2) удаление ядра из соматической клетки → 1) пересадка соматического ядра в яйцеклетку лишённую ядра → 4) дробление яйцеклетки → 3) имплантация зародыша в матку суррогатной овцы.


Задание 7 № 47129

1) испытание производителя по потомству

2) массовый отбор

3) отбор по экстерьеру

4) отдалённая гибридизация


Задание 7 № 47371

1) выращивание организма из колонии клеток

2) отбор по экстерьеру

3) проверка по потомству


Задания Д7 № 22927

которыми они указаны.

1. гибридизация разных штаммов

2. отбор по экстерьеру

4. искусственный мутагенез

5. генная инженерия

Методы селекции микроорганизмов: 1) искусственный мутагенез — с помощью мутагенов повышают в сотни раз мутационный процесс у микроорганизмов в целях получения нужных мутаций; 2) искусственный отбор — отбор рас микроорганизмов, наиболее активно синтезирующих необходимые человеку вещества; 3) генная инженерия — встраивания в геном микроорганизма новых генов, гибридизация разных штаммов.

(1) гибридизация разных штаммов — метод селекции микроорганизмов;

(2) отбор по экстерьеру — метод селекции животных;

(3) инбридинг — метод селекции животных;

(4) искусственный мутагенез — метод селекции микроорганизмов;

(5) генная инженерия — метод селекции микроорганизмов, селекции растений, селекции животных.

(2) и (3) "выпадают", так как не используются в селекции микроорганизмов, это методы селекции животных.


Задания Д1 № 202

Исследования, связанные с пересадкой гена бактерий, способствующего усвоению азота из атмосферного воздуха, в генотип злаков, проводятся в области

Исследованиями, связанными с пересадкой генов, занимается генная инженерия.

Клеточная инженерия - это создание клеток нового типа на основе их гибридизации, реконструкции и культивирования (перенос всего или значительной части генетического материала от одной клетки к другой).

Генная инженерия — раздел молекулярной биологии, связанный с целенаправленным конструированием новых, не существующих в природе сочетаний генов с помощью генетических и биохимических методов.

Тут ведь вполне подходит ответ 3?

Тут вполне подходит ответ - 2.

В задании идёт речь о пересадке гена из бактерии в растение, что соответствует второму варианту ответа. Клеточная же инженерия - это пересадка гена из одной клетки в другую клетку.


Задания Д1 № 16735

Проблемой пересадки участков хромосом из ядер клеток одного организма в ядра клеток другого занимается

Генная инженерия: пересадка гена в организм другого вида, например, пересадка человеческого гена в бактерию.

Гистология — изучает ткани.

Генетика — закономерности наследственности и изменчивости.

Микробиология — наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, — животными, растениями и человеком.

Клеточная инженерия:

пересадка клеточных ядер;

выращивание нового организма из яйцеклетки с замененным ядром (клонирование животных);

выращивание целого организма из одной или нескольких соматических клеток;

объединение клеток организмов разных видов (получение гибридных клеток).

Я считаю , что в ответе данного задания ошибка. Под номером 4 должна стоять клеточная инженерия, так как она занимается пересадкой клеточных ядер.


Задания Д1 № 13796

Созданием новых особей из комбинированных клеток занимается

Клеточная инженерия — совокупность методов, используемых для конструирования новых клеток. Включает культивирование и клонирование клеток на специально подобранных средах, гибридизацию клеток, пересадку клеточных ядер и др.

Генная инженерия — технология рекомбинантных ДНК, изменение с помощью биохимических и генетических методик хромосомного материала — основного наследственного вещества клеток.

Цитология — раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

Микробиология — наука, изучающая микроорганизмы — бактерии, микоплазмы, актиномицеты, дрожжи, микроскопические грибы и водоросли — их систематику, морфологию, физиологию, биохимию, наследственность и изменчивость, распространение и роль в круговороте веществ в природе, практическое значение.


Задание 7 № 48963

Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны.

Какие из приведённых примеров относят к методам генной инженерии?

1) пересадка ядра из соматической клетки в половую

2) перенос гена флуоресценции из медузы в плодовую мушку

3) увеличение количества копий гена синтеза жирных кислот в рапсе

4) получение потомства от родителей разных видов

5) кратное увеличение числа хромосом в клетке

6) создание штамма кишечной палочки, производящего инсулин человека

К методам генной инженерии относят: 2) перенос гена флуоресценции из медузы в плодовую мушку; 3) увеличение количества копий гена синтеза жирных кислот в рапсе; 6) создание штамма кишечной палочки, производящего инсулин человека.


Задания Д4 № 22070

Выберите два верных ответа из пяти. Какие методы используют для изучения строения и функций клетки?

1) генная инженерия

3) цитогенетический анализ

Цитологические методы (методы изучения строения и функций клетки):

1) микроскопия (микроскопирование) – изучение строения (морфологии) клетки с помощью светового (световая микроскопия) или электронного (электронная микроскопия) микроскопа;

2) физико-химические методы:

- хроматографии – метод разделения смеси веществ (например, растительных пигментов), основанный на разной скорости движения веществ (с разной молекулярной массой) через адсорбент (фильтравальную бумагу);

- электрофорез – метод разделения смеси веществ (например, белков) с помощью электрического тока;

- метод меченных атомов – метод изучения жизнедеятельности клетки, позволяет проследить путь вещества (с меткой в виде радиактивного изотопа какого-либо химического элемента) и его превращений в клетке;

3) центрифугирования – метод разделения клеточных структур (органоидов) и макромолекул с целью их дальнейшего изучения, основан на разно скорости оседания клеточных структур во время центрифугирования в зависимости от размеров и плотности (сначала оседают самые тяжелые структуры клетки – ядра, затем митохондрии, затем рибосомы);

4) метод культуры клеток и тканей – выращивания клеток и тканей на искусственных средах (в том числе, клеток многоклеточных вне организма) с целью изучения их роста, развития, деления, влияния на клеточные процессы различных веществ;

(1) генная инженерия – создание новых комбинаций генетического материала;

(2) микроскопирование – метод изучения строения клетки;

(3) цитогенетический анализ – метод генетики, позволяющий изучать структуру и количество хромосом и выявлять хромосомные (изменение хромосомы) и геномные (изменение количества хромосом) мутации;

(4) гибридизация – метод селекции, позволяющий получать гибридных потомков, сочетающих признаки двух родителей с разными признаками;

Современные направления биотехнологии предполагают внедрение в клетку, в процессы метаболизма, перестройку генов. За использованием подобных манипуляций стоит желание человека добиться создания необходимых продуктов питания и химических веществ. Биотехнология – наука затратная, которая требует не только финансовых вложений, но и фундаментальных знаний в области биологии.

Клеточная инженерия

Клеточная инженерия предполагает создание клеток нового типа путем их культивирования, гибридизации и реконструкции. Клетки видоизменяют, вводя в них новые хромосомы, ядра, клеточные органоиды.

Направления деятельности клеточной инженерии

Направления деятельности клеточной инженерии:

Клеточная инженерия научилась культивировать (выращивать) изолированные клетки и ткани на специально подобранной питательной среде в контролируемых условиях (влажность, температура, освещенность). Из одной клетки таким путем получают полноценное растение или клеточную массу (каллус). Такие эксперименты проводят благодаря способности растительной клетки к регенерации и чаще всего применяют для с/х растений и лекарственных трав.

Селекция и клеточная инженерия относятся к неразделимым понятиям. В селекции применяют новые, не стандартные методики:

  • соматическая гибридизация;
  • гаплоидия;
  • селекция на уровне клеток;
  • преодоление не скрещиваемости сортов или видов растительных культур.

Такие способы позволяют экспериментировать и создавать новые гибриды и сорта, которые невозможно получить традиционными путями, используя только методы селекции.

Генетическая инженерия

Генетическая инженерия

Фрагмент молекулы ДНК - носителя наследственной информации в клетке

Генная инженерия, соединив достижения химии и генетики, помогает:

  • расшифровывать структуру гена;
  • синтезировать новые гены;
  • вставлять в живые клетки синтезированные гены, с заранее продуманной программой, для изменения их наследственных свойств.

Внедрение гена из одного организма в другой требует выполнение цепочки последовательных действий:

Внедрение гена из одного организма в другой

Выращены трансгенные животные, содержащие геном с не родными генами. Уже получены трансгенные мыши, кролики, свиньи, овцы. Они содержат ДНК, в которой работают чужеродные гены разного происхождения. Животные и растения в качестве наследственного материала получают гены бактерий, дрожжей, млекопитающих, человека.

Важно! Трансгенные организмы устойчивы к факторам внешней среды, вредителям и болезням, наделены теми чертами, которые запрограммировал в них человек.

Клонирование

Клонирование

Удачные эксперименты по клонированию, проведенные на овцах

К сведению: Иногда клонирование путают с искусственным оплодотворением, когда оплодотворенную яйцеклетку вводят в матку будущей матери (родной или суррогатной). Это метод решения проблемы бесплодия, но он не относится к клонированию.

Вам может понравиться Все решебники

ГДЗ Греков 10-11 класс 10-11 класс

ГДЗ Дорофеев 6 класс

ГДЗ Мерзляк 9 класс

ГДЗ Rainbow 10 класс

ГДЗ Атанасян 9 класс

ГДЗ Рыбченкова 6 класс

Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.

Читайте также: