Занимается усовершенствованием и выведением новых сортов растений видов животных и микроорганизмов

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

7. В селекции растений самоопыление в основном применяют для

1) перевода у гибридов генов в гомозиготное состояние

2) повышения жизнеспособности у гибридов

3) перевода у гибридов генов в гетерозиготное состояние

4) появления у гибридов новых наследственных признаков

8. В селекции растений бесплодие межвидовых гибридов преодолевают при помощи

3) отдаленной гибридизации

4) межлинейной гибридизации

9. Полиплоидию активно применяют в селекции:

10. В селекции микроорганизмов для получения высокопродуктивных рас бактерий и грибов в основном применяют

1) близкородственное скрещивание

2) искусственный мутагенез и отбор

3) отбор и отдаленную гибридизацию

4) отбор и межлинейную гибридизацию

11. В селекции растений много высокопродуктивных сортов плодовых деревьев и кустарников вывел

12. В селекции животных отдаленную гибридизацию в основном применяют для

1) получения плодовитых межвидовых гибридов

2) преодоления бесплодия у межвидовых гибридов

3) повышения плодовитости у существующих пород

4) получения эффекта гетерозиса у бесплодных гибридов

13. Центр происхождения кофе:

2) Эфиопский (Африканский);

4) Южноамериканский (Андийский).

14. Родина винограда, оливкового дерева, льна находится в:

15. Европейско-Сибирское происхождение имеет:

16. Гибрид пшеницы с рожью — тритикале был получен методом:

1) близкородственного скрещивания;

2) искусственного мутагенеза;

3) отдаленной гибридизации;

4) межсортового скрещивания.

17. Однородная группа животных, обладающих наслед­ственно закрепленными, хозяйственно значимыми при­знаками, называется:

18. Биотехнология основана:

1) на изменении генетического аппарата клеток

2) воздействие на клетки мутагена

3) создание искусственных моделей клеток

4) клонирование клеток

19. Близкородственное скрещивание животных можно отнести к:

1) массовому отбору

2) индивидуальному отбору

4) искусственному мутагенезу

20. Великий селекционер И.В. Мичурин занимался выведением:

21. Явление, при котором происходит многократное увели­чение количества хромосом в геноме, называется ….

22. Искусственно созданная человеком совокупность особей животных одного вида, характеризующаяся определенными наследственными особенностями -….

23. Главная движущая сила в образовании новых пород животных и сортов растений, приспособленных к интересам человека - ….

24. Контролируемый человеком процесс возникновения мутаций, успешно применяемый в селекции растений и микроорганизмов ……

СЕЛЕКЦИЯ. !
Слово "селекция" произошло от лат. "selectio" , что в переводе обозначает "выбор, отбор" Селекция ¦ это наука, которая разрабатывает новые пути и методы получения сортов растений и их гибридов, пород животных. Это также и отрасль сельского хозяйства, занимающаяся выведением новых сортов и пород с нужными для человека свойствами: высокой продуктивностью, определенными качествами продукции, невосприимчивых к болезням, хорошо приспособленных к тем или иным условиям роста.

2. Генетика, как теоретическая основа селекции.
Теоретической основой селекции является генетика -наука о законах наследственности и изменчивости организмов и методах управления ими. Она изучает закономерности наследования признаков и свойств родительских форм, разрабатывает методы и приемы управления наследственностью. Применяя их на практике при выведении новых сортов растений и пород животных, человек получает нужные формы организмов, а также управляет их индивидуальным развитием онтогенезом.

Основы современной генетики заложил чешский ученый Г. Мендель, который в 1865 году установил принцип дискретности, или прерывности, наследовании признаков и свойств организмов.

В опытах с горохом исследователь показал, что признаки родительских растений при скрещивании не уничтожаются и не смешиваются, а передаются потомству либо в форме, характерной для одного из родителей, либо в промежуточной форме, вновь проявляясь в последующих поколениях в определенных количественных соотношениях. Его опыты доказали также, что существуют материальные носители наследственности, в последствии названные генами. Они особые для каждого организма.

В начале двадцатого века американский биолог Т. Х. Морган обосновал хромосомную теорию наследственности, согласно которой наследственные признаки определяются хромосомами органоидами ядра всех клеток организма. Ученый доказал, что гены расположены среди хромосом линейно и что гены одной хромосомы сцеплены между собой. Признак обычно определяется парой хромосом. При образовании половых клеток парные хромосомы расходятся. Полный их набор восстанавливается в оплодотворенной клетке. Таким образом новый организм получает хромосомы от обоих родителей, а с ними наследует те или иные признаки.

В двадцатых годах возникли и стали развиваться мутационная и популяционная генетики. Популяционная генетика это область генетики, которая изучает основные факторы эволюции наследственность, изменчивость и отбор - в конкретных условиях внешней среды, популяции. Основателем этого направления был советский ученый С. С. Четвериков. Мутационную генетику мы рассмотрим параллельно с мутагенезом.

В 30-е годы генетик Н. К. Кольцов предположил, что хромосомы - это гигантские молекулы, предвосхитив тем самым появление нового направления в науке молекулярной генетики.

Позднее было доказано, что хромосомы состоят из белка и молекул дезоксирибонуклеиновой кислоты (ДНК) . В молекулах ДНК и заложена наследственная информация, программа синтеза белков, являющихся основой жизни на Земле.

Современная генетика развивается всесторонне. В ней мно-го направлений. Выделяют генетику микроорганизмов, растений, животных и человека. Генетика тесно связана с другими биологическими науками - эволюционным учением, молекулярной биологией, биохимией. Она является теоритической основой селекции. На основе генетических исследований были разработаны методы получения гибридов кукурузы, подсолнечника, сахарной свеклы, огурца, а также гибридов и помесей животных, обладающих вследствие гетерозиса (гетерозис- это ускорение роста, увеличение размеров, повышение жизнеспособности и продуктивности гибридов первого поколения по сравнению с родительскими организмами) повышенной продуктивностью.

Еще на школьной скамье нам рассказывали про основы селекции на примере скрещивания генетических материалов растений. Благодаря чему появились новые сорта, более устойчивые и производительные.

Основы

Наука генетика изучает генетическую информацию видов, содержащуюся в ДНК . Способы ее сохранения, изменения и передачи в следующее поколение. Селекция занимается выведением новых генетических типов, до этого не существовавших. Симбиоз этих двух дисциплин позволят производит более совершенные растения, животных и даже людей.

Цели генетической селекции

У каждой науки есть конкретные цели для которых проводятся эксперименты и выбираются методики их реализации. Для генетической селекции можно выделить следующие:

  • Получение наиболее успешных генотипов с заданными параметрами.
  • Минимизация патологий вследствие мутаций.
  • Способность организма передавать измененную ДНК в следующее поколение с сохранением родительских качеств.
  • Усовершенствование последующих методик, на основе полученных данных.

Таким образом ученым удается масштабировать гибридизацию. Появляются возможности для совершенствования продуктов селекции.

Методики

В основе изменения генетического материала лежит получение нового генотипа с заданными параметрами или хаотическими, но превзошедшими родительский организм. И при этом способным к дальнейшему размножению. К основным методикам относятся:

  • Внутривидовое скрещивание. Соединение геномов наиболее сильных особей внутри одного вида.
  • Межвидовое скрещивание. Привитие одному виду определенных параметров другого с целью формирования конкретных качеств. Так, например, растениям прививали гены рыб, чтобы получить морозоустойчивые сорта растений.
  • Полиплоидия. Увеличение количества хромосом в кариотипе с целью увеличения рождаемости.
  • Точечные мутации. Проводятся с помощью обработки исследуемого объекта мутагеном. В результате мутагенеза ученый получает новые качества объекта.
  • Клеточная инженерия. Занимается изменением организмов на клеточном уровне для получения новых гибридов.
  • Генная инженерия. Проводит манипуляции с генами с целью их изменения, удаления или включения новых. Это позволяет производить новые генотипы.

Практическое применение

Рассмотрим примеры на основе микроорганизмов, растений, животных и человека.

Микроорганизмы

Вирусы и бактерии являются наиболее удобным и простым объектом исследований для селекционера. Ввиду высокой скорости размножения и смены поколений можно за короткий срок отследить изменения в результате мутаций.

Селекция — это наука, разрабатывающая методы получения новых и совершенствования существующих пород животных, сортов растений и штаммов микроорганизмов.

  • повышение продуктивности организмов;
  • улучшение качества продукции (вкуса, внешнего вида, химического состава);
  • улучшение хозяйственно важных физиологических свойств (устойчивости к болезням и вредителям, отзывчивости на удобрения или корм).

Сорт , порода , штамм — это искусственно созданная устойчивая группа (популяция) живых организмов, имеющая определённые наследственные особенности.

Все особи такой группы имеют сходные морфологические и физиологические признаки, однотипную реакцию на изменение факторов внешней среды, определённый уровень продуктивности.

селекция.jpg

1. Искусственный отбор используется для сохранения и размножения особей с желаемой комбинацией признаков. Различают массовый и индивидуальный отбор.

При массовом отборе одновременно отбирают большое число особей с нужным признаком, остальные выбраковывают. Это отбор по фенотипу, он не даёт генетически однородного материала. Повторяется многократно.

При индивидуальном отборе (по генотипу) выделяют одну особь с необходимыми признаками и получают от неё потомство.

2. В селекционной работе используют следующие методы гибридизации : инбридинг, аутбридинг и отдалённую гибридизацию.

При инбридинге скрещиваются потомки с родительскими формами или потомки одних и тех же родителей. Этот тип скрещивания применяют для получения чистых линий , т. е. перевода большинства генов в гомозиготное состояние и закрепления ценных признаков. Нежелательным последствием близкородственного скрещивания является инбредная депрессия — снижение продуктивности и жизнеспособности потомства из-за проявления рецессивных мутаций.

При неродственном скрещивании может наблюдаться эффект гетерозиса ( гибридной силы ) — повышение жизнеспособности и продуктивности гибридов по сравнению с родительскими формами. Гетерозис проявляется у гибридов первого поколения и обусловлен переходом большинства генов в гетерозиготное состояние. При этом нежелательные рецессивные мутации становятся скрытыми. При половом размножении в следующих поколениях степень гетерозиготности уменьшается и эффект гибридной силы исчезает. Он может сохраняться только при вегетативном размножении.

Осуществляется с трудом, а полученные гибриды бесплодны из-за затруднения конъюгации хромосом разных видов в профазе \(I\) мейоза. Разработаны методы преодоления бесплодия.

3. Искусственный ( индуцированный ) мутагенез используют для увеличения разнообразия исходного материала. Мутагенез вызывают действием мутагенных факторов, например, рентгеновского облучения. Мутации носят ненаправленный характер, поэтому селекционер отбирает организмы с новыми полезными свойствами.

Геномной мутацией является полиплоидия , т. е. кратное увеличение числа хромосомных наборов. Используется в селекции растений. Большинство современных сортов сельскохозяйственных растений полиплоидны. Их урожайность может быть в несколько раз выше, чем у исходных диплоидных форм. Кроме того, полиплоидия даёт возможность преодолеть бесплодие гибридов, полученных при межвидовой гибридизации.

Искусственно полиплоидию вызывают обработкой растений с помощью колхицина . Это вещество нарушает ход мейоза — оно препятствует формированию нитей веретена деления, из-за чего не происходит расхождения гомологичных хромосом.

Поиск исходного материала облегчает закон гомологических рядов наследственной изменчивости , открытый Н. И. Вавиловым .

Родственные роды и виды живых организмов характеризуются сходными рядами наследственной изменчивости.

Если известны формы изменчивости одного вида, то можно предположить, что подобные формы будут существовать и у других близкородственных видов.

Н. И. Вавилов установил также семь центров происхождения культурных растений и основал мировую коллекцию семян культурных растений и их диких сородичей.

Селекция (лат. selectio - выбирать) - наука и отрасль практической деятельности, направленная на создание новых сортов растений, пород животных и штаммов микроорганизмов, обладающих полезными для человека свойствами.

Этими полезными свойствами могут быть размер и форма плодов, урожайность, удойность у коров, устойчивость к факторам внешней среды (к засушливому климату, к морозу).

Селекция

Основы селекции

В основе селекции лежит способность генотипа живых организмов к изменениям, что происходит главным образом за счет комбинативной и мутационной изменчивости. В процессе селекции происходит искусственный отбор организмов с полезными для человека свойствами и их размножение.

В результате множества последовательных скрещиваний, в конце концов, селекционерам удается достичь желаемой цели: вывести гибридов с нужными признаками.

Мутационная изменчивость существует благодаря мутациям - случайным ненаправленным изменениям генотипа. Благодаря мутациям, к примеру, возник безалкалоидный сорт люпина. И.В. Мичуриным на яблоне сорта Антоновка Могилевская были обнаружены необычайно крупные плоды, ветвь с которым послужила для появления нового сорта - Антоновки шестистограммовой. Эти плоды - результат произошедшей в естественных условиях мутации соматических клеток.

Антоновка шестистограммовая

"Сколько ждать этой естественной мутации?" - спросите вы. Может один день, а может и 100, и 10000 лет - всем властвует случайность. На наш век может не выпасть удача, а мы такого допустить не можем! :)

Именно по этой причине в селекции растений часто используются искусственно вызванные мутации - авто- и аллополиплоидию.

Автополиплоидия

Автополиплоидия - кратное (4n,6n,8n) увеличение исходного набора хромосом, который характерен для особей вида.

Автополиплоидия возникает в результате обработки почек колхицином, который нарушает образование нитей веретена деления, и, соответственно, нарушает расхождение хромосом в мейозе, в результате чего набор хромосом в половых клетках (гаметах) оказывается удвоенным. Таким способом получают полиплоиды - сорта растений, обладающие повышенной урожайностью.

Существуют различные тетраплоидные сорта свеклы, мака, кукурузы и других сельскохозяйственных культур, которые отличаются большими размерами плодов.

Автополиплоидия

Аллополиплоидия

Аллополиплоидия (греч. állos — другой и polýploos — многократный) - соединение в клетках организма хромосомного набора от разных видов или родов, в результате которого образуется гибридная зигота.

Благодаря аллополиплоидии получают новые сорта растений. Наиболее известным примером является гибрид ржи и пшеницы - тритикале. Некоторые межвидовые гибриды табака обладают повышенной устойчивостью к возбудителям заболеваний мучнистой росы, табачной мозаики.

Тритикале

В рамках биотехнологии разработаны методы, с помощью которых стало возможным создание бактерий, синтезирующих полезные для человека белки, многие из которых используются как лекарства: аминокислоты, антибиотики, инсулин.

Антибиотики

Скрещивание особей в селекции

Каждое скрещивание как сдача новых карт: может повезет, а может и нет. Вполне возможно, что особь унаследует полезные признаки от родителей и сможет передать их своим потомкам, всегда есть и шанс того, что появятся новые полезные для человека признаки, равно как и шанс, что ничего полезного из проводимого скрещивания не выйдет.

    Близкородственное скрещивание (инбридинг - от англ. in — внутри + breeding — разведение)

Близкородственное скрещивание в течение нескольких поколений приводит к переходу генов в гомозиготное состояние, вследствие чего потомство ослабевает и становится более подвержено наследственным заболеваниям.

Замечу, что под инбридингом подразумевают близкородственное скрещивание животных. Для самоопыления у растений существует иной термин - инцухт.

В селекции инбридинг применяют для выведения чистых линий (гомозиготных особей - aa, AA, bb, BB), которые используются, например, для анализирующего скрещивания. Инбридинг использовался при выведении абсолютно всех пород животных, и в настоящее время активно используется в питомниках для выведения нужных пород животных (кошек, собак и т.д.)

Шотландские вислоухие

Аутбридинг заключается в скрещивании неродственных особей, которые могут принадлежать к одному сорту, породе, виду или роду. Аутбридинг ведет к явлению гетерозиса - получения гетерозисных форм, которые превосходят родительских особей по ряду признаков.

Гетерозис - явление увеличения жизнеспособности особей у гибридов, которые получены при скрещивании двух чистых линий. Такой эффект связан с переходом генов в гетерозиготное состояние, что повышает выживаемость организмов, плодовитость, и множество других полезных свойств.

Гетерозис

Применение отдаленной гибридизации заключается в скрещивании особей, принадлежащих к разным родам и видам. Такие особи обладают крайне полезными для человека свойствами, но часто бесплодны (стерильны).

Известным примером отдаленной гибридизации является мул - гибрид осла (самца) и лошади (самки). Отличаются большой выносливостью и работоспособностью, живут до 40 лет, обладают хорошим иммунитетом к заболеваниям, не требовательны в корме и уходе.

Обратный пример: гибрид ослицы (самки) и жеребца (самца) - лошак. Встречаются гораздо реже по сравнению с мулом, так как обладают меньшей выносливостью и работоспособностью. В большинстве случаев бесплодны.

Мул и лошак

Отбор в селекции

Отбор в селекции осуществляет человек с единственной целью: размножить особей с нужными и полезными признаками, свойствами. Очевидно, что такой отбор называется искусственным, в противовес естественному отбору, главный критерий которого - приспособленность.

Отбор организмов исключительно на основе внешних данных (фенотипа). Основным критерием для человека служит проявление признака: размер плодов, цвет лепестков, цвет листьев и т.д. Этот вид отбора характеризуется массовостью и быстротой.

В результате массового отбора формируется группа особей, которые обладают нужными и полезными для человека признаками. В дальнейшем они подвергаются размножению.

Массовый отбор

Выборочный отбор и сохранение особей с ценными для человека признаками. В ходе индивидуального отбора оценивается не только фенотип, но и генотип, вследствие чего данный вид отбора занимает большее время, но оказывается более эффективен.

Индивидуальный отбор требует оценки потомства от выбранной особи в ряду поколений. Иногда подобный отбор применяют у самоопыляемых растений: пшеницы, ячменя - с целью получения чистых линий. Как было сказано ранее, чистые линии характеризуются гомозиготностью и являются исходным материалом для селекции.

Индивидуальный отбор

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: