Закон растущего плодородия и урожайности

Обновлено: 08.07.2024

Закон снижения энергетической эффективности природопользования

Закон снижения энергетической эффективности природопользования. С ходом исторического времени при получении из природных систем полезной продукции на ее единицу затрачивается в среднем все больше энергии.[ . ]

Закон снижения энергетической эффективности природопользования: с ходом исторического времени при получении из природных систем полезной продукции на ее единицу в среднем затрачивается все больше энергии. Увеличиваются и энергетические расходы на одного человека: расход энергии на одного человека (в ккал/сут.) в каменном веке был порядка 4 тыс., в аграрном обществе — 12 тыс., в индустриальную эпоху — 70 тыс., а в передовых развитых странах настоящего времени — 230—250 тыс.[ . ]

Обоснованием мелиораций обычно служит закон растущего плодородия (урожайности), по которому прогрессивные приемы сельского хозяйства приводят к увеличению урожайности полей. При этом в меньшей степени учитывают правило интегрального ресурса (орошение наносит ущерб другим отраслям хозяйства, эксплуатирующим воду)и совсем не принимают во внимание закон снижения энергетической эффективности природопользования (с течением времени при получении от агроэкосистемы полезной продукции на ее единицу в среднем затрачивается все больше энергии), а также — принцип обманчивого благополучия (первые успехи в природопользовании зачастую кратковременны).[ . ]

Увеличение вложений дополнительной энергии в сельское хозяйство подчиняется закону снижения энергетической эффективности природопользования. На начальном этапе растениеводства на 1 кДж человеческой мускульной энергии, затрачиваемой на обработку почвы, земледелец получал от 5 до 15 кДж растительной пищи. В настоящее время ситуация коренным образом изменилась—для получения 1 кДж пищи человек затрачивает от 10 до 20 кДж энергии. В США с 1900 до 1970 г. количество энергии, затрачиваемой на 1 Дж производимой пищи на пашне, возросло в 10 раз, а урожайность увеличилась всего в 2 раза. Общая энергетическая эффективность сельскохозяйственного производства (соотношение вкладываемой и получаемой с готовой продукцией энергии) снижается во всех странах мира. Становится очевидным, что дальнейшее наращивание энергетических субсидий в сельском хозяйстве чревато еще более опасными последствиями: загрязнением атмосферы, гидросферы, педосферы, окружающей среды и, следовательно, ухудшением условий жизни людей, опасностью возникновения у них заболеваний.[ . ]

Доказано, что увеличение затрат дополнительной энергии в сельское хозяйство подчиняется закону снижения энергетической эффективности природопользования. Действие закона снижения энергетической эффективности природопользования в сфере сельского хозяйства имеет далеко идущие негативные последствия. Широкое использование минеральных удобрений, пестицидов, лечебно-профилактических препаратов в ветеринарии, медицине и фитопатологии приводит к загрязнению среды и возникновению ятрогенных болезней животных, растений и людей.[ . ]

Как сказано выше, выигрыш в природном веществе погашается проигрышем в энергии, что еще раз подчеркивает значимость закона снижения энергетической эффективности природопользования и накладываемого им и правилом одного процента (разд. 3.11) глобального ограничения на энергопроизводство.[ . ]

Наиболее широко эту систему применяют в США, хотя доля выращиваемой в этой стране экологически чистой продукции довольно небольшая (не более 1 % от традиционной). Естественно, урожайность при этой системе значительно ниже, чем при традиционной. Поэтому продукция, получаемая на таких полях, реализуется дороже. Следует отметить, что в США, несмотря на высокий биопотенциал земель, существуют определенные ограничения на величину выращиваемого урожая, выше которого фермерам не разрешается получать продукцию. Иначе говоря, на государственном уровне соблюдается выполнение закона снижения энергетической эффективности природопользования, чтобы потребление дополнительной антропогенной энергии не представляло реальной угрозы для природно-ресурсного потенциала, разрушения экосистем.[ . ]

Принципы структурного построения и управления однородных природных систем в их иерархическом соподчинении повторяются с некоторой периодичностью в зависимости от действия единого системообразующего фактора (заряд ядра в периодическом законе Д. И. Менделеева, генетическая структура в законе гомологических рядов Н. Н. Вавилова и др.).

Закон физико-химического единства живого вещества (В. И. Вернадский) Наверх

Все живое вещество Земли физико-химически едино.

Закон константности количества живого вещества биосферы (В. И. Вернадский) Наверх

Количество живого вещества биосферы (для данного геологического периода) есть константа. Суммарная масса всех живых компонентов биосферы Земли относительно постоянна в любой из геологических периодов развития планеты.

Закон обязательности заполнения экологических ниш Наверх

Функциональные места в экологических системах обязательно должны быть заполнены.

Закон конкурентного исключения (Г. Ф. Гаузе) Наверх

Два вида не могут существовать в одной экологической нише, если их потребности идентичны. Если экологическая ниша освобождается, ее заполняют экологически близкие формы.Подробнее..

Закон генетического разнообразия Наверх

Все живое генетически различно и имеет тенденцию к увеличению биологического разнообразия. Двух генетически абсолютных особей, а тем более видов живого в природе быть не может.

Закон хиральной чистоты (Л. Пастер) Наверх

Закон незаменимости биосферы Наверх

Биосферу нельзя заменить искусственной средой.

Закон корреляции (Ж. Кювье) Наверх

В организме, как целостной системе, все его части соответствуют друг другу как по строению, так и по функциям. Изменение одной части организма или отдельной функции неизбежно влечет за собой изменение других частей и функций.

Закон ограниченности природных ресурсов Наверх

Закон эмерджентности Наверх

Система обладает особыми свойствами, не присущими ее отдельным элементам.Подробнее.

Периодический закон географической зональности (А. А. Григорьев –Н. Н. Будыко) Наверх

Со сменой физико-географических поясов Земли аналогичные ландшафтные зоны и их некоторые общие свойства периодически повторяются (например: леса-степи-пустыни).

Закон развития (существования) природной системы за счет окружающей ее среды Наверх

Любая природная система может развиваться (и существовать), только используя материально-энергетические и информационные возможности окружающей ее среды. Изолированное саморазвитие системы невозможно. Следствия закона: а) безотходное производство принципиально недостижимо; б) высокоорганизованная система представляет потенциальную угрозу для низкоорганизованной; в) биосфера Земли развивается не только за счет внутренних ресурсов планеты, но и под воздействием космических систем (прежде всего Солнечной).

Закон соответствия условий среды генетической предопределенности организма Наверх

Вид организма может существовать до тех пор, пока окружающая его природная среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям.

Закон толерантности (В. Шелфорд) Наверх

Лимитирующим фактом жизни организма (вида) может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости, толерантности организма к данному фактору.Подробнее..

Закон минимума (Ю. Либих) Наверх

Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, то есть лимитирует жизненные возможности тот экологический фактор, количество которого близко к минимуму и дальнейшее его снижение ведет к гибели организма или деструкции экосистемы. Подробнее..

Закон обеднения разнородного живого вещества в островных сгущениях (Г. Ф. Хильми) Наверх

Система, работающая в среде с уровнем организации более низким, чем уровень самой системы, обречена: постепенно теряя свою структуру, система через некоторое время растворится в окружающей среде.

Закон пирамиды энергий (Р. Линдеман) Наверх

Переход с одного трофического уровня экологической пирамиды в среднем десяти процентов (от 7 до 17) энергии не ведет к неблагоприятным для экосистемы последствиям.

Закон биогенной миграции атомов (В. И. Вернадский) Наверх

Миграция химических элементов в биосфере осуществляется при непосредственном участии живого вещества (биогенная миграция) или в среде, геохимические особенности которой обусловлены деятельностью живого вещества.

Закон внутреннего динамического равновесия Наверх

Вещество, энергия, информация и динамические качества отдельных природных систем и их иерархии взаимосвязаны настолько, что любое изменение одного из этих показателей вызывает сопутствующие функционально-структурные количественные и качественные перемены при сохранении общей суммы вещественно-энергетических, информационных и динамических качеств системы, где эти изменения происходят.

Жизнь развивается в результате постоянного обмена веществом и информацией на базе потока энергии в совокупном единстве среды и населяющих ее организмов.

Закон максимизации энергии (Г. и Э. Одум) и информации (Н. Ф. Реймерс) Наверх

Наилучшими шансами на выживание обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации; максимальное поступление вещества не гарантирует системе успеха в конкурентной борьбе.

Закон растущего плодородия Наверх

Агротехнические и другие прогрессивные приемы ведения сельского хозяйства ведут к увеличению урожайности (само плодородие как свойство почв не увеличивается).

Закон однонаправленности потока энергии (Р. Линдеман) Наверх

С одного трофического уровня экологической пирамиды переходит на другой более высокий уровень в среднем около 10 % энергии, а обратный поток составляет не более 0,25 %.

Закон оптимальности Наверх

Никакая система не может сужаться и расширяться до бесконечности; размер любой системы должен соответствовать ее функциям.

Закон сукцессионного замедления Наверх

Процессы, идущие в зрелых равновесных экосистемах, находящихся в устойчивом состоянии, как правило, проявляют тенденцию к снижению темпов.

Закон направленности эволюции (минимума диссипации энергии) Наверх

При возможности развития процесса в нескольких направлениях, допускаемых принципами термодинамики, реализуется то, которое обеспечивает минимум диссипации энергии (минимум роста энтропии). Эволюция всегда направлена на уменьшение потерь энергии.

Закон увеличения веса и роста организмов в филогенетической ветви (Коп и Денер) Наверх

В ходе геологического времени выживающие формы увеличивают свои размеры и вес и затем вымирают.

Закон необратимости эволюции (Л. Долло) Наверх

Организм (популяция, вид) не может вернуться к прежнему состоянию, уже существовавщему в ряду его предков (это относится и к экосистемам).

Системогенетический закон Наверх

Большинство природных систем (в том числе особи, сообщества, экосистемы) в индивидуальном развитии повторяют в сокращенной форме эволюционный путь развития своей системной структуры.

Биогенетический закон (Э. Геккель и Ф. Мюллер) Наверх

Каждая особь на ранних стадиях онтогенеза повторят некоторые основные черты строения своих предков, иначе говоря, онтогенез (индивидуальное развитие) есть краткое повторение филогенеза (эволюционного развития).

Закон давления среды жизни, или ограниченного роста (Ч. Дарвин) Наверх

Имеются ограничения, препятствующие тому, чтобы потомство одной пары особей, размножаясь в геометрической прогрессии, заполнило весь земной шар.

Закон максимума биогенной энергии (В. И. Вернадский – Э. С. Бауэр) Наверх

Любая биологическая или биокосная система, находясь в состоянии динамического равновесия с окружающей средой и эволюционно развиваясь, увеличивает свое воздействие на среду, если этому не препятствуют внешние факторы.

Закон снижения природоемкости готовой продукции Наверх

Удельное содержание при родного вещества в усредненной единице общественного продукта исторически неуклонно снижается (объясняется это миниатюризацией изделий, заменой естественных материалов и продуктов синтетическими, сменой вещественных отношений информационными).

Закон неограниченности прогресса Наверх

Развитие от простого к сложному неограниченно. При этом живая материя стремится к относительной независимости от условий среды существования.

Закон неравномерности развития систем, или закон разновременности развития подсистем Наверх

Системы одного уровня иерархии обычно развиваются не строго синхронно: в то время как одни из них достигли более высокого уровня развития, другие еще остаются в менее развитом состоянии.

Закон относительной независимости адаптации Наверх

Высокая адаптивность к одному из экологических факторов не дает такой же степени приспособления к другим условиям жизни ( наоборот, она может ограничивать эти возможности в силу физиолого-морфологических особенностей организма).

Закон снижения энергетической эффективности природопользования Наверх

С ходом исторического времени при получении из природных систем полезной продукции на ее единицу в среднем затрачивается все больше энергии (расходы на одного человека в каменном веке был 4 тыс. ккал/сут, в индустриальную эпоху – 70 тыс. ккал/сут, в развитых странах настоящего времени – 250 тыс. ккал/сут).

Закон ускорения эволюции Наверх

С ростом сложности организации продолжительность существования вида в среднем сокращается, а темпы эволюции возрастают.

Закон усложнения организации организмов (К. Ф. Рулье) Наверх

Историческое развитие живых организмов (природных систем) приводит к усложнению их организации путем дифференциации функций и органов (подсистем), выполняющих эти функции.

Закон равнозначимости и незаменимости факторов жизни растений, который устанавливает, что ни один из факторов жизни растений не может быть заменен никаким другим.

Независимо от количественной потребности в том или другом факторе жизни физиологически они одинаково необходимы растению.

Например, если растению (томатам) необходим микроэлемент бор в ничтожно малом количестве во время цветения для завязывания плодов, и он не будет дан растению, то это может нарушить нормальное плодообразование томатов и т.д.

Дефицит в том или ином факторе жизни определяется не только величиной потребности, но и запасами его в почве и притоком извне. Разница между потребностью и наличием фактора составляет величину дефицита, который должен быть покрыт соответствующими приемами агротехники, мелиорации или химизации.

Закон минимума, оптимума и максимума — “Величина урожая определяется фактором, находящимся в минимуме. Наибольший урожай осуществим при оптимальном наличии фактора. При минимальном и максимальном наличии фактора урожай невозможен”.

Впервые его сформулировал Либих. “Продуктивность поля находится в прямой зависимости от необходимой составной части пищи растения, содержащейся в почве в самом минимальном количестве” Он считал, что прибавка урожая прямопропорциональна увеличению питательного вещества, находящегося в минимуме. У = АХУ — урожай А — коэффициент пропорциональности для данного вида удобрений Х — количество питательного вещества.

В последующем Либих признал понижающий эффект одинаковых доз последовательно вносимых в почву удобрений или других факторов.

По мере удовлетворения потребности растения в недостающем факторе урожай повышается до тех пор, пока не будет ограничен другим фактором, оказавшемся в минимуме.

Закон совокупного действия факторов жизни растений

Все факторы жизни растений действуют совокупно, т.е. взаимодействуют в процессе роста и развития растений. На основании многих исследований, проведенных Либшером, Митчерлихом и др. исследователями были сделаны выводы, которые позволили вскрыть закон совокупного действия факторов жизни растений, который устанавливает, что для получения высоких урожаев с/х культур необходимо одновременное наличие или приток всех факторов жизни растений в оптимальном количестве.

Совместное действие факторов жизни растений проявляется не только в лучшем использовании растениями каждого из них, но и путем воздействия друг на друга.

Например, фосфорные удобрения сами по себе не оказывают влияния на количество доступной для растений воды, но, снижая транспирационный коэффициент и, способствуя более быстрому созреванию урожая, снижают общую потребность растения в воде.

Закон совокупного действия не устраняет закон минимума. Умение определить фактор, находящийся в данном случае в минимуме и воздействовать на него позволяет повышать урожайность при наименьших затратах труда и средств.

Закон возврата

Этот закон открыт Либихом: “Вещество и энергия, отчужденные из почвы с урожаем, должны быть компенсированы (возвращены в почву) с определенной степенью превышения.

Тимирязев и Прянишников признавали этот закон одним из величайших приобретений науки.

При систематическом отчуждении урожая с поля без компенсации использованных урожаем составных частей почвы и энергии почва разрушается, она теряет плодородие.

При компенсации выноса веществ и энергии из почвы она сохраняет свое плодородие, при компенсации веществ и энергии с определенной степенью превышения происходит улучшение почвы. Закон возврата — научная основа воспроизводства почвенного плодородия.

Законы земледелия широко используются в практике земледелия России

Например: интенсивное применение минеральных удобрений в Нечерноземной Зоне обусловило повышенную отзывчивость полевых культур на микроудобрения. Одновременно по мере интенсификации земледелия большую актуальность преобладает регулирование водного режима и кислотно-щелочных свойств почвы.

Высокая культура земледелия предполагает не только научно обоснованную систему удобрения, специализацию севооборотов, почвозащитные системы обработки почвы, приемы борьбы с сорняками, вредителями и болезнями. Но и в целом обязательное использование научно обоснованных почвозащитных зональных систем земледелия. Система земледелия хозяйства — это сложный комплекс, созданный исходя из требований законов земледелия.

На основе исследований Ю. Либиха, В. Р. Вильямса, Э. А. Митчерлиха, С. П. Кравкова, А. Н. Соколовского и др. были установлены и сформулированы важнейшие законы земледелия.

Закон незаменимости и равнозначности факторов жизни растений. Для нормального роста и развития растений в равной степени необходимы вода, воздух, тепло, свет, питательные элементы и другие факторы.

Ни один из этих факторов не может быть заменен другим.

3. Законы земледелия.

Нельзя заменить азот фосфором или калием, и наоборот. Отсутствие любого из них приводит к гибели растений. Даже при недостатке какого-либо микроэлемента, например марганца или меди, следует гибель растений, при этом недостаток марганца нельзя компенсировать цинком или бором.

Р. Вильяме подчеркнул непрерывность возрастания плодородия почв под влиянием сбалансированной системы одновременного воздействия на все факторы жизни растений. Факторы жизни растений равнозначны. Одностороннее воздействие на какой-либо фактор жизни растений без изменения других приводит к постепенному уменьшению эффекта от такого воздействия, а при определенных условиях может снизить урожай.

В качестве примера можно привести результаты исследований Гельригеля. По данным его опытов, каждое последующее увеличение влажности почвы на 10 % уменьшало прибавку урожая ячменя, а при влажности более 60 % ПВ урожаи стали снижаться. Воздействие только на один фактор (воду) вызвало в определенный период снижение урожая, а увлажнение до полной влагоемкости привело к гибели растений.

Закон минимума, оптимума и максимума. В зависимости от конкретных условий каждый фактор жизни растений может характеризоваться минимальным, максимальным и оптимальным значениями показателей.

Как при минимальном, то есть наименьшем количестве фактора, так и при его максимальном количестве создаются наихудшие условия для развития растения; только при оптимальной интенсивности фактора растение имеет наилучшие условия для своего развития.

Различные растения по-разному реагируют на интенсивность действия фактора: воды, тепла, света; так, есть растения теплолюбивые, влаголюбивые, светолюбивые и теневыносливые, морозостойкие и неморозостойкие, короткого или длинного дня, что необходимо учитывать при их возделывании.

Закон лимитирующего фактора. Установлено, что уровень урожайности зависит от количества фактора, находящегося в минимуме, так называемого лимитирующего, который снижает положительное действие всех других факторов.

Чтобы создать нормальные условия для развития растений, необходимо выявить лимитирующий фактор.

Например, недостаток азота в почве ослабляет рост и развитие растений, что отрицательно сказывается на их урожайности. Для устранения недостатка азота необходимо внести азотные удобрения, так как воздействие на другие факторы в данном случае не даст нужного эффекта.

Для различных природных зон характерны свои лимитирующие факторы: в таежно-лесной зоне — это низкое содержание питательных элементов и повышенная кислотность дерново-подзолистых почв; в степной зоне — недостаток влаги в южных черноземах и каштановых почвах.

Следовательно, для повышения урожайности сельскохозяйственных культур в таежно-лесной зоне необходимо вносить органические и минеральные удобрения, а также известковать кислые почвы, а в степной зоне — применять приемы по накоплению и сохранению влаги в почве.

Закон комплексного действия и оптимального сочетания факторов. Для повышения урожаев сельскохозяйственных культур необходимо оптимальное сочетание всех экологических факторов.

При комплексном действии изменение одного фактора влечет за собой изменение других факторов и при оптимальном сочетании повышается общая эффективность. Например, в результате применения удобрений повышается концентрация питательных веществ в почвенном растворе и растениям для образования органического вещества требуется меньше воды.

Закон возврата в почву питательных веществ. Сельскохозяйственные культуры ежегодно потребляют большое количество элементов питания из почвы (азота, фосфора, калия), которые отчуждаются вместе с урожаем.

Кроме того, в процессе водной и ветровой эрозии из почвы также выносится большое количество питательных веществ. В результате происходит истощение почв. Для предотвращения снижения почвенного плодородия необходимо возвращать в почву питательные вещества с помощью внесения удобрений.

Закон соблюдения правильного чередования сельскохозяйственных культур в полях севооборота. Культурные растения потребляют различное количество питательных веществ при создании урожая.

Например, зерновые культуры (пшеница, рожь, овес и др.) выносят из почвы сравнительно больше азота и фосфора, корнеплоды (сахарная свекла и картофель) — калия, бобовые культуры — кальция. Длительное возделывание той или иной культуры на одном поле приводит к истощению почвы элементами, выносимыми в большом количестве, а также вызывает поражение растений характерными для них вредителями. Для того чтобы избежать отрицательных последствий бессменных посевов, необходимо соблюдать правильное чередование сельскохозяйственных культур в полях севооборота.

Таким образом, формирование урожая и эволюция почвенного плодородия происходят в строгом соответствии с законами земледелия.

Научное понимание и практическое использование этих законов позволяют эффективно регулировать почвенное плодородие и получать высокие урожаи сельскохозяйственных культур.

Интересное

Основные законы земледелия и их значение.

Сущность закона заключается в том, что ни один фактор жизни растений нельзя полностью исключить или заме­нить другим; в обоих случаях гибель растения неизбежна.

Закон равнозначимости и незаменимости факторов жизни расте­ний является основополагающим. Именно вследствие равнозначимости и незаменимости факторов проявляется действие других законов — ми­нимума, совокупного действия.

Особенность этого закона такова, что в производстве его проявление мало заметно. Это объясняется тем, что в естественных условиях растения находят все необходимые для их рос­та и развития факторы, хотя в количественном отношении потребность в них и наличие их может быть самое различное.

Здесь уже вступает в действие законы минимума и совокупного действия.

Идя методом исключения физиологи растений и агрохимики установили состав полной питательной смеси. В 1859 г. расте­ния в водных культурах в опытах И. Кнопа и Ю. Сакса впервые были доведены до созревания.

Закон минимума. Этот закон сформулирован Ю. Либихом в 1840 г. Он так описывает его действие: «Каждое поле содержит одно или несколько питательных веществ в минимуме и одно или несколько других в максимуме.

Это несколько сглаживает кате­горичность закона минимума, однако значительного повышения урожай­ности можно достичь лишь повышаяобеспеченность культур недостаю­щими факторами.

В условиях Северного Казахстана в первом минимуме находится влага. Предположим, нам нужно выбрать, что в первую очередь приме­нять: снегозадержание, лункование, искусственноеоструктуривание или другие приемы.

Все они прямо или косвенно улучшают водный режим почвы, но наиболее сильное воздействие оказывает снегозадержание.

При этом оказываются неизбежно затронуты другие факторы жиз­ни растений: воздушный, тепловой, микробиологический и пищевой режим почвы и агрономы неизбежно вынуждены регулировать и их в соответствии с законом совокупного взаимообусловленного, а не изо­лированного действия факторов жизни растений. Только обеспечив растения влагой, можно рассчитывать на высокий эффект от примене­ния удобрений, гербицидов, районированных сортов и т.д.

Формулировка закона дана В.Р. Вильямсом .

Закон оптимума говорит о том, что наибольший урожай достижим при оптимальном наличии каждого фактора жизни растений.

Каждое растение имеет оптимальные границы, в пределах которых обеспечение всеми факторами жизни оказывает наиболее благоприятное воздействие на урожай.

Это отчетливо наблюдается по отношению растений к температуре, свету, воде и другим факторам.

Однако оптимизация в обеспеченности растения каким-либо од­ним или несколькими факторами не приведет к успеху.Наибольший урожай возможен при одновременном наличии в оптимальном коли­честве всех факторов жизни растений.

Закон совокупного взаимообусловленного, а не изолирован­ного действия факторов жизни растений. Его можно сформулировать сле­дующим образом: комплекс факторов жизни растений представляет со­бой единое целое, все элементы которого неразрывно связаны друг с дру­гом.

Воздействие на один из них влечет за собой изменение всего комп­лекса. Постоянный прогресс возможен лишь в том случае, когда воздей­ствие направлено на весь комплекс факторов одновременно.

Каждый специалист должен быть глубоко убежден в том, что без уче­та действия этого закона нельзя рассчитывать на постоянный успех.

Закон возврата Ю.

«Элементы пиши растений, отчужденные из почвы с урожаем, должны восполняться до оптимума за счет внутрипочвенных процессов (хими­ческих, микробиологических и т.п.) и внесением удобрений.

Значение закона возврата для сохранения и дальнейшего повы­шения плодородия почвы чрезвычайно велико.

Однако в условиях недостаточно благоприятного климата, например засушли­вости, этот принцип не соблюдается. Наибольшее производство зерна с гектара севооборотной площади достигается в зернопаровых севоо­боротах, в которых кроме пшеницы, или пшеницы и ячменя других культур нет.

Законы земледелия

Изложенные в этой статье законы земледелия в разных научных источниках формируются с некоторыми различиями, но это не меняет их сути и смысла. Главное, что следует извлечь из этих постулатов современной агрономии — использовать плодородные свойства почвы следует очень осторожно и разумно, не подвергая ее истощению и, как следствие, убивая способность давать жизнь растениям.

Соблюдать эти законы обязаны все, чья деятельность так или иначе связана с использованием почвенных ресурсов, иначе наши потомки будут лишены счастья любоваться зеленью на Земле и получать натуральную пищу, возделывая ее плодородный слой.

Закон возврата питательных веществ заключается в том, что для поддержания плодородия почвы человек обязан восполнять запасы питательных веществ в ней, выносимых урожаем. Это восполнение осуществляется внесением органических и минеральных удобрений; применением специальных агротехнических приемов, способствующих разложению в почве растительных остатков и сохранению продуктов разложения; посевов специальных, удобряющих почву растений.

Простыми словами смысл этого закона можно выразить так: для поддержания плодородия почвы необходимо вернуть ей ту часть потерянных питательных веществ, которую человек забрал у нее в виде урожая. Ведь урожай (плоды, листва, коренья, стебли и т.

д.) должны были стать частью почвы, разлагаясь в ней, образуя гумус, тем самым поддерживая плодородные свойства. Поскольку человек собрал урожай, он должен возместить почве потерю в виде различных удобрений или иными агротехническими приемами.


Этот закон впервые был сформулирован немецким химиком Юстусом Либихом (1803 – 1873 г.г.), автором теории минерального питания растений, одним из создателей агрохимии. К. А. Тимирязев назвал этот закон величайшим приобретением науки.

Т. е. Ю. Либих неразрывно связывает процветание и гибель целых народов и цивилизаций с тем, как они относятся к земле (почве), на которой проживают.

На законе возврата питательных веществ основывается балансовый метод расчета норм удобрений, вносимых в почву.

Закон плодосмена утверждает, что более высокие урожаи получаются при чередовании культур на поле, чем при бессменных посевах.

Объясняется это тем, что разные культуры потребляют из почвы питательные элементы в разных количествах, при длительном их выращивании развиваются специфические вредители и возбудители болезней, определенные сорные растения.

Закон оптимума, минимума и максимума фактора жизни растения, который утверждает, что при прочих равных условиях наибольшую продуктивность растение дает, когда фактор имеется в оптимальном количестве.

Уменьшение и увеличение любого фактора жизни растения по сравнению с оптимальным снижает продуктивность, и при определенных для каждого растения минимальных или максимальных значениях фактора растение или не дает урожая, или погибает.

Так как растение развивается при одновременном действии многих факторов, отсюда следует закон незаменимости и равнозначности всех факторов жизни. В соответствии с этим законом ни один из факторов не может быть заменен другим. Например, нельзя недостаток или избыток влаги компенсировать повышенными нормами удобрения и т.

п. Равнозначность факторов заключается в том, что даже ничтожная потребность растения в каком-либо элементе питания, если она не удовлетворяется, приводит к нарушению роста и развития растения.

Основные законы земледелия и их использование в сельскохозяйственном производстве.

В земледелии очень важно оценить эффект от одновременного изменения нескольких факторов. Эта оценка вытекает из закона совокупности действия факторов жизни растения, согласно которому растение имеет небольшую продуктивность, когда все факторы находятся в оптимуме.

Закон совокупности действия факторов обосновывает необходимость и эффективность комплексных мелиораций, т. е. одновременное улучшение водного, воздушного, солевого и питательного режимов почв.

Законы земледелия (или агрономии) по своей сути кажутся простыми и даже наивными для современного человека. Но их смысловая информация вобрала в себя опыт многовековой деятельности человечества по выращиванию сельскохозяйственных культур растений.

И нельзя не согласиться с мнением великого таланта от биологии — нашего соотечественника К. А. Тимирязева об исключительной ценности этих законов и основополагающих выводов, сделанных гениями от агрономии, даже спустя десятки и сотни лет.

Информационно-аналитический портал
для крестьянских фермерских хозяйств

14 Ноябрь 2012 г. 21:25

Факторы жизни растений и законы земледелия

Вода. В жизни растений вода имеет огромное значение, так как все процессы жизнедеятельности происходят с ее участием. Все питательные вещества усваиваются только в растворах. С водой в растение из почвы поступают питательные вещества, испарение воды листьями обеспечивает нормальные температурные условия жизнедеятельности растений.

Почвообразование и формирование почвенного плодородия происходят только при обеспечении почвы водой. Без нее невозможно развитие почвенной фауны и микрофлоры.

Многие сельскохозяйственные растения нуждаются в большом количестве влаги, поэтому их надо регулярно поливать. Некоторые растения очень требовательны к влажности воздуха, например, капуста. другие больше используют почвенную влагу - тыква, арбузы, свекла и др.

По отношению к влаге кормовые растения подразделяются на следующие экологические типы: мезофиты, гигрофиты и ксерофиты. Гигрофиты (осока, ситник) растут на влажных лугах, болотах, побережьях рек; ксерофиты (полынь, ковыль) - в условиях недостатка влаги; мезофиты (тимофеевка луговая, люцерна, клевер) - в районах среднего увлажнения.

Периоды наибольшей потребности в воде называют критическими. Так, для большинства зерновых культур это фазы выхода в трубку и колошения, для кукурузы - цветения и молочно-восковой спелости, а для картофеля - цветения и клубнеобразования. Установлено, что растения резко снижают продуктивность при недостатке воды в период образования репродуктивных органов. Иногда на сельскохозяйственных угодьях оказывается избыток влаги, и это угнетает растения. Здесь приходится проводить осушение переувлажненных почв.

Для определения суммарной потребности растений в воде применяют транспирационный коэффициент. Это отношение массы израсходованной растениями воды к массе сухого вещества урожая Транспирационный коэффициент зависит от вида растений, стадии их развития, почвенных и погодных условий, насыщенности питания и т.д. В разных регионах для растений транспирационный коэффициент колеблется от 200 до 1000. Только ничтожно малая часть воды (меньше 1 %) идет на создание урожая, а остальная часть расходуется на испарение.

Воздух. Из воздуха растения получают кислород, необходимый для дыхания. Для образования органических веществ в зеленых клетках растение использует из воздуха углекислый газ.

Дыхание корней растений и жизнедеятельность почвенных микроорганизмов обеспечиваются почвенным воздухом. Он участвует в биохимических процессах превращения питательных элементов.

Избыточная влажность приводит к резкому ухудшению воздушного режима растений. Хорошо дренированные почвы с высокой общей скважностью лучше обеспечены воздухом.

Газообмен между почвой и атмосферой осуществляется при изменении барометрического давления, температуры почвы и воздуха вследствие поступления в почву воды, воздействия ветра и других факторов.

Чтобы усилить приток воздуха к корням растений, осуществляют рыхление почвы, что позволяет создавать необходимое строение пахотного слоя и тем самым обеспечивать условия нормального газообмена.

Фотосинтезом называется процесс образования зелеными растениями органического вещества из воды и углекислого газа в результате поглощения энергии солнечного света.

Зеленый цвет листьев растений зависит от особых зеленых пластид - хлоропластов, находящихся в их клетках. Почти у всех растений хлоропласты округлой или слегка вытянутой формы. В каждой клетке имеется несколько десятков, а иногда и свыше сотни хлоропластов. Они состоят из бесцветной цитоплазматической основы и зеленого пигмента хлорофилла, который поглощает световые лучи, но не все видимые лучи спектра, а лишь красные и сине-фиолетовые.

Зеленый лист - источник жизни на нашей планете. Хлоропласты листа- это единственная в мире лаборатория, в которой из простых неорганических веществ - воды и диоксида углерода - создаются органические вещества - сахар и крахмал.

При фотосинтезе усваивается всего лишь 1…2 % энергии солнечных лучей, падающих на растение. Однако и этого вполне достаточно, чтобы растения могли прокормить весь животный мир.

Свет к растениям поступает с солнечными лучами, которые распространяются неравномерно на юге их больше, а на севере меньше. Соответственно и растения, произрастающие в разных местах, привыкли или к обилию света, или к его недостатку. Поэтому их подразделяют на светолюбивые и теневыносливые.

Наиболее требовательны к свету южные растения - арбуз, тыква, баклажаны, фасоль, тропические травы и др. У этих растений при коротком световом дне быстрее образуются плоды и семена, а цветут они в конце лета или осенью.

Пшеницу, рожь, ячмень, овес относят к теневыносливым и холодостойким растениям, у которых цветение и плодоношение наступают при максимальной длине дня.

Продолжительность светового дня можно искусственно регулировать для растений, выращиваемых в теплицах и оранжереях.

Теплота. На рост растений с первых стадий их развития влияет температура почвы. Основным источником теплоты в почве являются солнечные лучи. Другим, но значительно меньшим источником служит теплота, выделяемая в результате биохимических превращений органических веществ, а также поступающая из глубинных слоев Земли.

Физиологические процессы, происходящие в растениях, жизнедеятельность микроорганизмов и почвенной фауны, биохимические процессы превращения веществ и энергии возможны только при определенных температурах.

К теплолюбивым культурам относятся кукуруза, сорго, фасоль, томат, арбуз, дыня, перец.

К пониженным температурам устойчивы чеснок, лук. Неплохо переносят пониженные температуры пшеница, рожь, ячмень, овес, горох, капуста и многие корнеклубнеплоды.

Элементы минерального питания. Из почвы растения получают все необходимые элементы минерального питания калий, кальций, железо, магний, серу, фосфор и азот. Калий необходим для роста растения, кальций - для развития их корневой системы. Магний и железо участвуют в образовании хлорофилла. Без азота, серы и фосфора не образуются белки, входящие в состав цитоплазмы и ядра.

Долгое время ученые-аграрии считали, что только эти элементы необходимы для нормального развития растения, но потом выяснилось, что нужны также очень небольшие количества многих других химических элементов, которые назвали микроэлементами. К наиболее важным в жизни растений микроэлементам относятся марганец, бор, медь, цинк, молибден, кобальт.

Урожай сельскохозяйственных культур зависит от генетических особенностей растений и условий окружающей среды. Получению максимальных урожаев с единицы площади и обеспечению повышения почвенного плодородия способствует знание основных законов земледелия - общебиологических основ формирования урожая.

Закон прогрессивного роста эффективного плодородия почвы. Он гласит, что формирование и увеличение плодородия почвы в течение времени заложены в самой природе почвообразовательного процесса, но его действие возможно лишь при соблюдении правил обработки почвы и выращивания сельскохозяйственных культур по мере интенсификации земледелия.

Почва могла возникнуть лишь после появления живых организмов на Земле. Образование почвы, или почвообразовательный процесс, происходит благодаря глубокому и сложному взаимодействию между живыми организмами и окружающими их условиями внешней среды, к которым прежде всего следует отнести материнские (горные) породы и атмосферу, а также главное условие, обеспечивающее непрерывность этого процесса, - приток солнечной энергии на поверхность земли.

При таком постоянном и непрерывном почвообразовательном процессе происходят взаимный обмен и переход одной формы материи в другую. Мертвая минеральная природа переходит в органическую и живую, а последняя, отмирая и разлагаясь, снова переходит в мертвую минеральную. Постоянное взаимодействие между мертвой и живой природой, а также их переход друг в друга в поверхностных слоях земли и составляет суть почвообразовательного процесса и развития основного и специфического свойства почвы - ее плодородия.

С развитием природного почвообразовательного процесса улучшаются многие показатели плодородия почвы - механические, водные и воздушные свойства. Это свидетельствует о том, что развитие жизни на Земле происходит по восходящей кривой; следовательно, в самой жизни заключен объективный фактор ее умножения, а развитие природного почвообразовательного процесса в целом приводит к улучшению плодородия почвы.

Закон прогрессивного роста плодородия почв имеет принципиальное значение для развития и функционирования процветающего и высокопродуктивного земледелия. Он позволяет людям иметь реальные условия и основания для понимания того, что на Земле имеется возможность удовлетворить потребность населения нашей планеты в продуктах питания.

Закон минимума, оптимума и максимума действий факторов жизни растений. Иногда его называют просто законом минимума. Им определено, что минеральные вещества и другие факторы урожайности одинаково нужны растениям и не могут заменить друг друга.

Закон возврата веществ в почву. В соответствии с этим законом при нарушении баланса усвояемых питательных веществ в почве в результате их потерь при выносе с урожаем или вследствие других причин его необходимо восстановить путем внесения удобрений и выполнения других технологических приемов.

Этот закон также был открыт Юстусом Либихом. Он доказал, что перегной нерастворим в воде и не может служить питанием для растений. Навозом удобряют поле потому, что при его разложения (минерализации) освобождаются аммиак, фосфорная и серная кислота, которые усваивают растения.

Когда земледелец убирает урожай, он отнимает у почвы нужные растениям вещества в несравненно большем количестве, чем возвращает в почву с навозом. Ведь большая часть минеральных веществ корма идет на образование мяса, молока и других продуктов животноводства. Поэтому при одном удобрении навозом поля ежегодно недополучают вещества, которые они отдают растениям. Либих писал о необходимости вносить в почву наряду с навозом минеральные вещества, а тех хозяев, которые не заботятся о соблюдении закона возврата, обвинял в хищничестве, в разграблений плодородия почвы.

Либих призывал правительства и народы европейских государств, чтобы они прислушались к предостерегающему голосу истории и науки и обратили должное внимание на оскудение полей.

Закон возврата получил высокую оценку у агрономов и ученых. В частности, русские ученые К. А. Тимирязев и Д.Н. Прянишников считали открытие этого закона одной из заслуг Ю.Либиха, а сам закон называли величайшим достижением науки.

Соблюдение закона возврата питательных веществ имеет важное значение не только для сохранения и повышения плодородия почвы, достижения высокого урожая, но и для получения продукции нужного биологического качества.

Практика показывает, что можно вырастить высокий урожай, но с низким качеством продукции, например с недостатком, биологически важных микроэлементов, белков, имеющих нужное соотношение аминокислот, с отсутствием необходимого набора витаминов и т. д. Довольно часто при посеве сильных сортов пшеницы по плохим предшественникам и недостаточном внесении азотных и фосфорных удобрений хозяйства получают зерно, не соответствующее установленным кондициям по количеству и качеству клейковины. Это объясняется не только несоблюдением элементарных правил агрономии, но и тем, что не учитывается закон возврата питательных веществ в почву, не вносится нужного количества удобрений для получения запланированного урожая.

Закон совокупного действия факторов роста и развития растений. Наивысшую эффективность в земледелии нельзя обеспечить каким-либо одним агрономическим приемом, даже весьма сильным, ее можно достичь лишь применением всего комплекса агротехнических мероприятий.

Известно, что отдельные факторы жизни растений тесно взаимодействуют, друг с другом. Растения непрерывно испытывают влияние всего комплекса факторов. Научные эксперименты, проводимые в вегетационных сосудах и полевых условиях, показали, что факторы жизни растений в наибольшей степени проявляют свою силу только при совместном действии. В полевых условиях с изменением воздействия на растения одного из факторов неизбежно нарушаются возможность и условия продуктивности использования других факторов.

Например, с повышением температуры воздуха увеличивается расход воды из почвы на испарение и жизнедеятельность растений. При этом повышается содержание воздуха в почве, усиливается деятельность аэробных бактерий, больше накапливается доступной для растений пищи. Но процесс накопления питательных веществ происходит только при оптимальной температуре и наличии необходимого количества влаги в почве.

С наступлением продолжительного засушливого периода с высокой температурой воздуха почва полностью теряет продуктивную влагу, в результате чего прекращается деятельность полезных микроорганизмов, и растения начинают испытывать дефицит влаги. Примеров взаимодействия различных факторов жизни растений весьма много.

Совокупное действие факторов жизни растений является весьма динамичным и изменчивым. Понимание взаимодействия различных факторов в жизни растений позволяет земледельцу управлять этими процессами и соответственно формировать высокие урожаи даже в сложных погодных условиях.

Закон плодосмена. Сельскохозяйственной наукой и практикой накоплен большой опытный материал, который подтверждает преимущества плодосмена, т. е. выращивания растений в севооборотах, по сравнению с монокультурой для примера приведем результаты опытов, ведущихся с 1912 г. на опытном поле Московской сельскохозяйственной академии им К.А. Тимирязева. При бессменном выращивании ржи без внесения удобрений урожай составил в среднем 8,7 ц/га, а при выращивании этой культуры в севооборотах и также без использования удобрения урожай составил 16,8 ц/га, т е почти в два раза выше

Все указанные законы составляют научную основу культурного земледелия. Эти объективные законы природы неумолимы, они существуют независимо от нашей воли, и их нарушение дорого обходится людям Чтобы добиться успеха в выращивании сельскохозяйственных культур и быть всегда в согласии с природой, надо постоянно изучать объективные законы земледелия и умело применять их на практике. В соответствии с этими законами высокие и устойчивые урожаи, возможно, получить лишь при осуществлении всего комплекса агротехнических и экономических мер, повышающих культуру земледелия. Какой-либо один даже очень эффективный прием не принесет ощутимого успеха, если не выполнять при этом всего комплекса необходимых приемов. Только при соблюдении и умелом использовании объективных законов, действующих в природе, применении правильной агротехники можно обеспечить рост культуры земледелия, повышения плодородия почв.

Читайте также: