Заход на посадку в условиях обледенения

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

10.1. Особенности полета самолета в условиях обледенения

Обледенение является одним из опасных для самолета атмосферных явлений, непосредственно влияющих на аэродинамические и летные характеристики, а также на характеристики устойчивости и управляемости самолета.

Обледенение – это отложение льда на различных частях воздушного судна (слабое – при отложении льда на передней кромке крыла до 0,5 мм/мин, умеренное – от 0,5 до 1 мм/мин, сильное – более 1 мм/мин).

Ледяные отложения могут значительно изменить форму профиля крыла и горизонтального оперения, создать повышенную турбулентность и преждевременный срыв потока, который особенно опасен при полете на малых скоростях во время захода на посадку в посадочной конфигурации.

Отложение льда в полете происходит одновременно на всех поверхностях: крыле, вертикальном и горизонтальном оперении, что существенно уменьшает кр крыла и горизонтального оперения. Сопротивление самолета при обледенении растет за счет увеличения шероховатости поверхности, увеличения сечения профилей, турбулизации потока и вынужденного увеличения угла атаки при потере скорости и подъемной силы (рис. 10.1).


Рис. 10.1. Изменение аэродинамических характеристик при обледенении самолета

Подъемная сила уменьшается за счет уменьшения скоростей обтекания верхней поверхности крыла при вихреобразовании и уменьшения перепада давления под крылом и над ним.


Аэродинамическое качество уменьшается во всем диапазоне летных углов атаки. Вследствие значительного уменьшения и кр скорость сваливания увеличивается; при грубых ошибках пилотирования или сильном обледенении скорость, на которой выполняется полет, и скорость сваливания могут стать равными. Изменяются усилия на органах управления, может появиться тряска самолета или органов управления. Особенно опасно обледенение силовой установки.

Взлет на обледеневшем самолете запрещен. При взлете на обледеневшем самолете скорость на разбеге увеличивается медленно, следовательно, значительно увеличивается длина разбега. Но главная опасность заключается в том, что после отрыва самолет может стать неуправляемым и неустойчивым. Небольшие порывы ветра или движения ручки управления самолетом могут вывести его на околокритические углы атаки и вызвать срыв потока на крыле. Большой опасностью также является снижение эффективности органов управления у обледеневшего самолета.

Обледенение самолета на земле намного опаснее, чем в полете, так как большая поверхность самолета подвержена ледяным отложениям. Поэтому необходимо перед выполнением полета производить удаление инея, льда и снега. Снег или лед, не удаленные с верхних поверхностей самолета, могут привести к сваливанию самолета после отрыва или уборки механизации.


Рис. 10.2. Изменение момента тангажа при обледенении самолета

Своевременные и правильные действия пилота гарантируют небольшую потерю высоты.

– отклонение закрылков в положение LDG при обледеневшем стабилизаторе,

– большая масса самолета,

– совмещение выпуска закрылков в положение LDG с переводом самолета на снижение;

В случае попадания в зону обледенения необходимо:

– включить обогрев ППД;

– покинуть зону обледенения (изменив высоту полета или развернув самолет для возврата в зону с более высокой температурой);

– увеличить мощность во избежание обледенения воздушного винта, периодически изменять мощность;

– известить диспетчера УВД, если ожидается возникновение аварийной ситуации;

– при обледенении выдерживать скорости в диапазоне примерно 110–130 узлов;

– не уменьшать скорость для сохранения управляемости ниже 88 узлов.

На самолете типа DА 40NG особенно подвержен обледенению кок воздушного винта вместе с корневыми частями лопастей. Поэтому самолет при обледенении перестает выдерживать горизонтальный полет и идет с постоянным снижением, при обледенении резко падает подъемная сила, увеличивается лобовое сопротивление, увеличивается скорость сваливания.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Обледенение самолета обычно происходит при полете в облаках, мокром снеге, переохлажденном дожде, тумане и мороси, а также в условиях повышенной влажности воздуха как при отрицательных, так и при небольших положительных температурах наружного воздуха. Обледенению подвергается крыло, оперение, воздухозаборники двигателей, стекла фонаря и другие выступающие детали на поверхности самолета

Интенсивность обледенения обычно характеризуется толщиной образующегося льда за одну минуту и колеблется от нескольких сотых миллиметра до 5. 7 мм/мин. Наблюдались случаи обледенения с интенсивностью до 25 мм/мин.

Форма ледяных наростов и интенсивность их образования в основном определяются метеорологическими условиями, но в значительной степени также зависят от формы деталей самолета и скорости полета. Причем, с увеличением скорости до какой-то определенной величины интенсивность обледенения возрастает, так как за единицу времени к единице поверхности самолета подходит большее количество переохлажденных капель воды, находящихся в воздушном потоке.

При малых скоростях полета отложение льда обычно происходит на передних кромках деталей самолета. Особую опасность для полета вызывает обледенение передних кромок крыла, стабилизатора киля и воздухозаборников двигателей.

При больших скоростях вследствие адиабатического сжатия и трения воздуха в пограничном слое потока повышается температура поверхности самолета. Вследствие этого интенсивность обледенения и температура воздуха, в котором оно возможно, уменьшается. Кроме того, изменяется форма ледяных наростов и их расположение на поверхности самолета. Наибольшему нагреву подвергается передняя кромка крыла, стабилизатора и киля, точнее их критическая линия (линия, на которой происходит полное затормаживание потока).

Прирост температуры в критической точке профиля крыла при различных скоростях полета вне облаков:

V, км/ч 300 400 500 600 700 800 900 1000

Dt°,С 3,5 6,2 9,6 13,9 19 24,6 31,2 38,7

При полете в облаках (в условиях обледенения) нагрев несколько меньше, так как происходит некоторая потеря тепла вследствие испарения капельной влаги. По мере удаления от критической линии к задней кромке профиля температура постепенно понижается, а это значит, что на передней кромке крыла температура может быть положительной, в то время как на задней части она отрицательная. При таком характере изменения температуры по крылу переохлажденные капли воды на передней кромке нагреваются и лед не образуется. Перемещаясь по направлению течения пограничного слоя, вода постепенно охлаждается и в определенном месте на поверхности крыла замерзает.

Учитывая нагрев воздуха в точках торможения потока и в пограничном слое, можно сделать вывод, что обледенение скоростных самолетов происходит при более низких температурах. Причем, на больших скоростях температура вероятного обледенения ниже (рис. 2а).

При температурах, соответствующих кривой и более низких, обледенение возможно.

При обледенении значительно нарушается плавность обтекания крыла, горизонтального и вертикального оперения. Наиболее значительно ухудшается обтекание профилей в случае обледенения первого вида (см. рис. 2б, 2), при котором уже на передней кромке, у рогообразных ледяных выступов, происходит интенсивное вихреобразование. Такой вид ледяных наростов может иметь место при полете на малых скоростях в зоне с очень интенсивным обледенением или при неработающей противообледенительной системе.

Рис.2


Нарушение плавности обтекания вызывает значительное перераспределение давления по профилю и изменяет величину сил трения. Вследствие этого на каждом угле атаки коэффициент Сууменьшается, Сх возрастает, а аэродинамическое качество самолета резко уменьшается. Критический угол атаки крыла и оперения, а также Суmах и Сyдоп уменьшаются (см. рис. 2в). Такое изменение аэродинамических характеристик самолета вызывает ухудшение и летных характеристик на всех этапах полета.

Скорость и тяга, потребные для горизонтального полета, возрастают вследствие уменьшения Су, увеличения Сx и падения аэродинамического качества самолета. В случае обледенения воздухозаборников двигателей возможно падение тяги силовой установки, а также повреждение двигателей. Увеличение потребной тяги и некоторое уменьшение располагаемой вызывает уменьшение запаса тяги. Минимальная и минимально допустимая скорость горизонтального полета увеличиваются, а максимальная и число М уменьшаются. Диапазон скоростей, практический потолок, скороподъемность и угол подъема самолета уменьшаются.

Нарушение плавности обтекания крыла и оперения значительно уменьшает диапазон центровок, при которых возможно обеспечить устойчивое продольное равновесие, а также вызывает ухудшение и боковой устойчивости самолета. Значительно ухудшается эффективность рулей.

Для обеспечения безопасности полета следует перед вылетом тщательно изучить метеообстановку на трассе, особенно в районе аэродромов взлета и посадки, учитывая, что большинство случаев обледенения самолетов наблюдается на меньших высотах (менее 5000 м). Обледенение самолета на больших высотах полета встречается редко, но возможно в любое время года.

При интенсивном обледенении полет производить запрещается в связи с возможным повреждением двигателей, а также значительным ухудшением летных характеристик самолета.

Взлет на обледеневшем самолете производить запрещается, так как вследствие ухудшения обтекания значительно увеличивается скорость отрыва и длина разбега, а нарушение устойчивости и управляемости не гарантирует безопасности взлета. При взлете в условиях возможного обледенения: противообледенители двигателей, воздухозаборников и стекол фонаря кабины пилотов включатся после запуска двигателей; противообледенитель крыла и оперения после взлета в наборе высоты.

Набор высоты, горизонтальный полег и снижение в условиях обледенения при нормально действующих противообледенительных устройствах не имеют существенных отличий от нормального полета. Набор высоты при прохождении зон обледенения необходимо производить на номинальном режиме работы двигателей с максимальной вертикальной скоростью, которая будет при наивыгоднейшей скорости набора высоты. Противообледенительную систему (ПОС) крыла и оперения при полете на эшелоне необходимо включать за 3. 5 мин до входа в зону возможного обледенения.

После выхода самолета из зоны обледенения противообледенители выключаются только после удаления льда с поверхности самолета.

При обнаружении льда на стабилизаторе или при неуверенности в его отсутствии пилотирование должно быть плавным, координированным, с изменением перегрузки не более ±0,3.

Учитывая ухудшение устойчивости и управляемости обледеневшего самолета в полете, особенно при снижении и посадке, следует создавать центровку, близкую к средней 30% ba. При такой центровке самолет балансируется почти при нейтральном положении руля высоты, а это значит, что запас по рулю высоты для обеспечения равновесия и управляемости наибольший.

При посадке на обледеневшем самолете посадочная скорость и длина пробега самолета будут большими.

Глава 12. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СИЛОВОЙ УСТАНОВКИ

12.1. Тяга двигателя и удельный расход топлива

Величина тяги зависит от расхода воздуха и топлива через двигатель в единицу времени. Расход топлива за единицу времени составляет в среднем 1. 1,5% от расхода воздуха. Следовательно, можно считать, что масса газов, выходящих из двигателя, практически равна массе воздуха, входящего в него.


Рис. 1. Схема двигателя и графики изменения абсолютной температуры К, давления р* и скорости течения газов с по его газовому тракту:

1 – компрессор низкого давления, 2 – компрессор высокого давления; 3 – камера сгорания; 4 – турбина высокого давления; 5 – турбина низкого давления, 6 – камера смешения, 7 – реактивное сопло.

Допустим, что давление воздуха перед входом в двигатель равно давлению на выходе из него. Тогда масса газовой струи, проходящая через двигатель, может получить ускорение только вследствие силового воздействия на эту массу. На основании третьего закона механики масса газов, приобретая ускорение, с такой же силой действует на двигатель. Сила действия этой массы на двигатель и является его реактивной тягой РR.

Если обозначить скорость воздуха на входе в двигатель (скорость полета) через V, а скорость выхода газов из него через C5, то изменение количества движения массы воздуха m = G/g, прошедшей через двигатель за время t, будет равно импульсу силы PR, действовавшей на эту массу m(С5 – V) = РRt , где РRt –импульс силы PR , а m(С5 – V) = mC5 – mV – изменение количества движения массы воздуха т. Из этого выражения тяга турбореактивного двигателя будет:

где m/t=тсек – секундная масса воздуха, проходящего через двигатель.

Из этой формулы видно, что чем больше секундный расход воздуха (mсек) и больший прирост его скорости (С5–V) в двигателе, тем реактивная тяга больше.

Для оценки экономичности двигателя вводится понятие удельной тяги руд и удельного расхода воздуха Суд. Учитывая, что секундная масса воздуха, проходящего через двигатель mсек = Gсек/g (где Gсек – секундный вес воздуха, проходящего через двигатель), то тягу двигателя можно выразить РR = Gсек(C5–V)/g.

Выражение (C5–V)/g и является удельной тягой руд. Как видно из формулы, удельная тяга руд=(C5–V)/g численно равна тяге, получаемой при прохождении через двигатель 1 кг воздуха.

Удельный расход топлива Суд = Счас/РR – часовой расход топлива в килограммах, необходимый для получения одного килограмма тяги двигателя. Если удельный расход топлива Суд меньший, а удельная тяга руд больше, то двигатель более экономичен.


Зачем вообще нужно обливать самолёт?

Есть два вида обливки: для очистки и для защиты. Называются они соответственно деайсинг и антиайсинг.

На самолёт за время нахождения на земле налипают снег и лёд. Например, за ночь между рейсами может выпасть несколько сантиметров снега. Возможны следующие последствия:

  • Это увеличит массу воздушного судна.
  • Изменит форму и гладкость поверхностей судна, что может сказаться на его аэродинамических качествах.
  • Может заблокировать или ограничить подвижные элементы (механизацию).
  • И, наконец, если во время взлёта с крыла при вибрации будут слетать твёрдые осколки, то они могут повредить хвостовое оперение или попасть в двигатели (если они скомпонованы за крыльями).

Поэтому было бы хорошо очистить самолёт от всего того, что налипло. Иногда достаточно очистить имеющийся слой и не покрывать поверхность судна больше ничем.

Если самолёт не очищать, то взлетать ему нельзя. Поэтому альтернатива — не летать в сложные погодные условия. То есть в случае России — по сути, вообще не летать зимой.

Творения сумрачного русского гения

Помните тот период, когда в стране был принят максимально рационализаторский подход? Так вот, одной из проблем были авиационные двигатели, которые после исчерпания ресурса снимали с самолётов. Но двигатели вполне себе могли работать, просто их бесперебойная работа гарантировалась уже меньшим количеством девяток. Чаще всего двумя, иногда — одной. Так вот, эти двигатели надо было как-то использовать. Представьте себе радость советского инженера, которого попросили как-нибудь применить эти штуки. Причём желательно мирно.

Примерно так на ТВЗ поставили рекорд по скорости железнодорожного состава (стесав заодно участок пути и разбросав гравий за вагоном-лабораторией), примерно так появились пожарные машины для тушения огня струёй, машины для очистки карьеров и шахт от загазованности.

В серию пошли движки М-701 (с учебно-тренировочных самолётов), они оказались компактнее и стабильнее. Поскольку мы очень много и часто менялись опытом с Копенгагеном, то показали изобретение и им. Но у них не прошло по требованиям безопасности, к тому же вспомогательная силовая установка (маленький реактивный двигатель) слишком сильно и противно свистела. А про то, что вместо наушников можно вставлять в уши лампочки от фонарика, датчане не знали.

Чем чистят сейчас

Вот так работает форсунка:

Обратите внимание, что прожектор установлен прямо рядом, то есть оператор может видеть конкретные участки и подсвечивать под углом элементы обшивки ВС.



Внешний вид машины.



Кабина оператора и оператор.



Дизельный двигатель воздушного охлаждения Deutz. На более новых машинах используется маршевый двигатель автомобиля, поскольку их мощности теперь достаточны для поддержания работы всех систем. Под стальными кожухами справа — бортовая электроника для управления системами.



Бойлер на 4 кубометра воды и два бака (сзади) по 2 кубометра жидкостей. По стандартам они подписаны типом жидкости, так же подписаны все рукава.



Кабина оператора в транспортном положении.



Рабочее место водителя, блок в центре управляет автоматикой (в частности, обогревом отсеков).



Табличка ТО.



Кнопки аварийного останова — везде. В центре — красный ввод питания 380 В для работы систем машины (прогрева жидкостей) на стоянке.



Вводы баков имеют разный диаметр.



Сложенная стрела.



Жидкость скользкая, поэтому многие элементы имеют дополнительные фрикционные покрытия.



Поднятая стрела.



Поднятая и выдвинутая в рабочее положение стрела (максимум 10 метров, есть модификации на 13 метров).



Кабина имеет дворники со всех сторон.



Рабочее место оператора. Джойстики управляют стрелой и форсункой.



Виден расход жидкости.

На практике для пассажирских рейсов SVO используются два типа жидкости: тип-1 — для деайсинга, и тип-4 в разных концентрациях — для антиайсинга. Тип-3 нужен для определённого типа тихоходных судов, у которых скорость отрыва передней стойки от ВПП низкая.


Тип-4 — 50 % гликоля и 50 % воды, те же присадки, загуститель и ещё присадка, которая уменьшает поверхностное натяжение для равномерности покрытия. Тип-4 можно использовать в разных концентрациях. Условно можно использовать 50 % раствор Типа-4 для деайсинга, а затем 75 % — для антиайсинга. Тип-3 — тоже загущенная жидкость, похожая на Тип-4, но с меньшим моментом сдвига. Это неньютоновская жидкость, освобождающая крыло при определённой скорости. Тип-4 делает это на скорости около 180 километров в час, тип-3 может и около 100.


Кстати, про зелёный. Самолёты S7 имеют другой оттенок, и пересечение по цвету с жидкостью Юрий Владимирович видел только один раз — когда они тащили из сугроба танком Т-55 без башни выкатившийся за полосу Боинг-747 Иракских авиалиний. С тех пор ничего подобного не попадалось.

Идеально располагать пункты обработки непосредственно рядом с выездом на исполнительный старт рядом с торцом полосы. Это даёт наименьшее время от обработки до взлёта, и делает экологично, так как в одном месте проще собирать остатки разлитой жидкости при помощи уклонов покрытия и дренажа, не давая жидкости разливаться по перронам. Но в большинстве аэропортов инфраструктура пока что не позволяет располагать пункты облива таким образом. Облив делается на местах стоянок судов и на пунктах обработки между стоянкой и стартом, чтобы сократить время между обработкой и вылетом.

Во Франкфурте и Токио стоят портальные машины. Работает это так: самолёт подруливает под портальный кран с форсунками, оператор набирает на компьютере тип судна, ЧПУ прокатывает программу обработки. Оказалось, что без человеческого глаза — огромные расходы жидкостей, низкая эффективность, иногда остаётся лёд. Пробовали использовать видеокамеры, но тогда задача распознавания решалась плохо. С современными системами уже должно хватать возможностей, но готовых проектов пока нет. Оператор умеет смотреть на косвенные признаки вроде стыков листов, блеска заклёпок и так далее.

Теперь — FAQ

Почему теперь этиленгликоль вместо пропиленгликоля в жидкости?
Потому что два года назад новые тесты в Квебеке показали, что для ряда условий вроде ледяного дождя время защиты очень сильно снижается. По стандартам FAA (Federal Aviation Administration) и канадских авиавластей (это законодатели в мире защиты от обледенения) холдовер снизился почти в два раза. Это потребовало новых составов.

А он не вредный?
Ещё как! При обработке из расчёта 1 литр на квадратный метр обшивки 20 % стекает на землю. Из оставшихся 80 % треть стекает на дистанции от исполнительного старта до 400 метров разбега. Ещё треть — от 400 до 1 200 метров. Последняя треть срывается таким характерным аэрозолем, что получается визуальный эффект как при пробитии звукового барьера истребителем. Этот аэрозоль летит далеко за пределы канализации аэропорта. С полосы часть жидкости собирается машиной, но это как вылить на бетон бутылку водки: трагедия невозможности собрать всё знакома многим русским людям. Поскольку жидкость является выбором авиакомпании (КВС заказывает тип и метод обработки), а дренаж — частью аэропорта, то есть некоторая несостыковка в ответственности. Правильный вариант был бы в построении более сложных систем канализации, но тут-то и встаёт вопрос: кто за это будет платить? Сейчас 500 вылетов в день, 200 литров на борт.

Вот пример количества жидкости (литр на квадратный метр обшивки после удаления снега и льда):


Какие бывают ошибки при обливке?

И напоследок — несколько фотографий из его архива. Это одновременная обработка двумя машинами:

В связи со значительным расширением условий эксплуатации пассажирских и транспортных самолетов существенно возрастает вероятность попадания их в условия интенсивного обледенения, появление которого наиболее вероятно при температурах наружного воздуха от +2°С и ниже, при наличии облачности, тумана, снегопада, дождя или мороси, т. е. в условиях, когда в воздухе содержатся переохлажденные мелкие капли воды. В результате соприкосновения поверхностей самолета с этими переохлажденными каплями и происходит отложение льда. Наиболее интенсивное обледенение наблюдается при температуре наружного воздуха от-2°С до-10 С. При полете в слоистых или слоисто — кучевых облаках на поверхности самолета может образоваться иней, а при полете в кучевых облаках, где переохлажденная вода находится в более крупных каплях, происходит обледенение поверхностей самолета; непосредственно на передней кромке крыла образуется плотный неровный ледяной нарост по форме пологого корытца с краями, направленными под некоторым углом вперед к набегающему потоку. На участках, удаленных от передней кромки, возникает более тонкий слой шероховатого бугристого льда.

Опасность обледенения самолета, кроме формы льда, характеризуется также интенсивностью обледенения. Для определения интенсивности обледенения применяются специальные приборы. На современных пассажирских и транспортных самолетах уста­навливаются указатели обледенения, представляющие собой небо­льшой профиль с измерительным штырем, с помощью которого мо­жно измерить интенсивность обледенения.

Обледенение по своей интенсивности условно разделяют:

а) слабая интенсивность со скоростью нарастания льда до 2мм/ мин; ■

б) средняя интенсивность—от 2мм/мин до Змм/мин;

в) большая интенсивность—более Змм/мин.

При этом толщина льда за время полета самолета в условиях обледенения(на режиме захода на посадку) на передних кромках поверхностей может быть:

—до 15мм при слабой интенсивности;

—от 15 до 30мм при средней интенсивности;

—более 30мм при большой интенсивности.

Влияние обледенения на аэродинамические характеристики обычно исследуются на моделях самолета достаточно крупных размеров в натурной аэродинамической трубе Т-101 ЦАГИ при установке имитаторов льда различных форм, а затем проводят летные испытания самолета как в условиях естественного обледенения, так и при использовании имитаторов.

Следует заметить, что проводить исследование влияния обледенения на моделях малых размеров в аэродинамических трубах не следует, так как получаются ненадежные результаты.

Обледенение передних кромок несущих поверхностей(крыло, горизонтальное и вертикальное оперение)оказывает сильное влияние на аэродинамические характеристики на самолетах с нестреловидными поверхностями. С увеличением стреловидности передних кромок несущих поверхностей самолета влияние обледенения на аэродинами­ческие характеристики уменьшается.

В качестве примера на рис.6.55 приведены зависимости Су, тг= =/(а)для самолета с прямым крылом большого удлинения с неотклоненной и отклоненной механизацией в посадочное положение, без льда и с двурогим льдом на передних кромках крыла и горизонтального оперения. Из рассмотрения этих зависимостей следует, что отложение льда на передних кромках несущих поверхностей приводит к значительному уменьшению критического угла атаки и падению максимального коэффициента подъемной силы. Так, например, при неотклоненной механизации прямого крыла критический угол уменьшается с а = 19° до 10°,а с отклоненными закрылками с 14° до 8°. Вследствие этого произойдет значительное уменьшение запасов до скорости сваливания. При уменьшении скорости полета самолета, ниже рекомендуемой в РЛЭ для
эксплуатационных режимов или при попадании самолета в небольшое возмущение произойдет сваливание самолета, что на малых высотах полета может привести к катастрофе.

‘ Отложение рогообразного льда на передней кромке горизонтального оперения приводит к резкому’ возрастанию моментов тангажа на пикирование на углах атаки близких к нулю. И в случае выхода самолета на эти углы атаки произойдет так называемый "клевок” самолета (резкое опускание носа самолета), что на малых высотах также может привести к катастрофе самолета. Таким образом, отложение льда на передних кромках нестреловидного крыла и горизонтального оперения значительно сужает области углов атаки, на которых обеспечивается безопасность полета.

Поэтому на самолетах с прямыми крыльями или с крыльями небольшой стреловидности (zn. K 30° и оборудованных надежными ограничителями, препятствующими выходу самолета на углы атаки выше заданных, нет настоятельной необходимости в установке противообледенительных систем. Для повышения безопасности полета таких самолетов обычно вносятся в РЛЭ некоторые дополнительные рекомендации по технике пилотирования в условиях обледенения.

Читайте также: