Воздействие инфракрасным излучением на разные участки тела в один день несовместимо с

Добавил пользователь Дмитрий К.
Обновлено: 18.09.2024

Компьютерная томография основана на ионизирующем рентгеновском излучении. Сканирование на томографе с возможностью построения 3D-реконструкций внутренних органов, сосудов и костей — высокоточный метод обследования, предпочтительный в ряде сложных ситуаций: после инсультов, при пневмониях, подозрении на онкологию. Однако такое обследование нельзя проходить часто.

В этой статье мы разберем, в чем заключается вред рентгеновского излучения и как уменьшить его влияние, если норма допустимого была превышена.

Чем вредно ионизирующее (рентгеновское) облучение?

По данным актуальных исследований библиотек РИНЦ и PubMed, а также в соответствии с действующими нормами радиационной безопасности населения РФ (НРБ), не рекомендуется облучается более чем на 15-20 мЗв в год. На новых КТ-аппаратах (МСКТ), в зависимости от исследуемых зон, это около 5-8 сканирований. На аппаратах старого образца из-за меньшего количества чувствительных датчиков, срезов и большего времени сканирования лучевая нагрузка выше.

После КТ радиоактивные элементы не сохраняются и не накапливаются в организме человека. X-ray лучи сканируют только зону интереса, и это длится 30-45 секунд.

Организм человека содержит необходимые ему химические элементы — водород, железо, калий и др. Распад этих элементов — тоже в своем роде является радиоактивным процессом, который происходит ежесекундно, на протяжении всей жизни человека. Некоторое количество радиации человек получает из атмосферы, воды, от природных радионуклидов. Это называется естественным радиационным фоном.

Доза радиации, полученная пациентом в рамках медицинских обследований не велика — это справедливо как для рентгена, так и для КТ. Однако организм каждого человека по-разному реагирует на воздействие x-ray излучения: если одни пациенты сравнительно легко переносят лучевую нагрузку, равную 50 мЗв, то для других аналогичной по воздействию будет нагрузка 15 мЗв.

Поскольку норма относительна, а порог, при котором негативного воздействия гарантированно не произойдет, отсутствует, принято считать, все виды исследований с применением ионизирующего излучения потенциально вредны. Организм взрослого человека более резистентен к радиации, а дети более чувствительны. Однако у некоторых пациентов имеются отягчающие факторы в анамнезе или индивидуальные особенности организма.

Например, по одним данным считается, что у годовалого ребенка, которому проводится КТ брюшной полости, пожизненный риск онкологии возрастает на 0,18%. Однако если ту же процедуру проходит взрослый или пожилой человек, то этот риск будет существенно ниже. Считается, что регулярное дозированное рентгеновское облучение даже полезно, поскольку организм адаптируется к лучевой нагрузке, и его защитные силы возрастают.

*“The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk”, 2013 (Diana L Miglioretti , Eric Johnson, Andrew Williams, Robert T Greenlee)

Избыток радиации может стать спусковым механизмом для онкологии, дегенеративных нейрозаболеваний (болезнь Альцгеймера, болезнь Паркинсона). Беременным женщинам (даже если факт беременности еще не подтвержден, но существует вероятность вынашивания плода на данный момент) противопоказано дополнительное радиационное воздействие, то есть делать КТ в этот период можно только по жизненным показаниям, из-за риска тератогенного воздействия ионизирующего излучения на формирующийся плод.

Большинство медиков сегодня склоняются к мнению, что польза целесообразной компьютерной томографии несомненно превышает вред, однако уровень лучевого воздействия на организм, даже с целью медицинской диагностики, следует сводить к минимуму. Например, для наблюдения изменений легочных лимфоузлов или камней в почках диагностические изображения могут быть получены при дозе на 50-75 % ниже, чем при использовании стандартных протоколов. То есть в некоторых случаях могут быть применены низкодозные КТ-протоколы.

Таблица приблизительных значений лучевой нагрузки при КТ (МСКТ)*


*В таблице приведены усредненные и ориентировочные значения, которые могут варьировать в большую или меньшую сторону в зависимости от:

  • Протокола исследования;
  • Числа зон сканирования;
  • КТ-сканера;
  • Веса пациента;
  • Роста пациента;
  • Соотношения мышечной и жировой ткани у пациента;
  • Целей и задач диагностики.

Томограф оснащен дозиметром, который позволяет определить уровень эффективной лучевой нагрузки в каждом конкретном исследовании. Это значение указывают в заключении и в специальном файле отчета на DVD-диске или флешке, выдаваемой пациенту по итогам исследования.

Как радиоактивное ионизирующее излучение воздействует на организм человека?

Радиоактивное излучение запускает механизм выработки свободных радикалов. Их избыток при низком антиоксидантом (защитном) статусе организма приводит к разрушению клеточных компонентов, в том числе к деструкции и сокращению теломеров — концевых участков молекул ДНК. Также процессу окисления подвержены липиды и белки мембран.

В норме организм человека легко переносит диагностические мероприятия и самостоятельно восстанавливается — дополнительно ничего предпринимать не нужно. Вслед за окислительными процессами, вызванными свободными радикалами, начинается восстановление, и ресурсов организма для этого достаточно.

В целом, среднестатистический здоровый организм взрослого человека в состоянии восстановиться после облучения, равного 50-100 мЗв в год. При большем систематическом воздействии радиации развивается лучевая болезнь.

Как уменьшить вред воздействия ионизирующего облучения?

Если пациенту показана КТ, и никакое другое обследование (МРТ, УЗИ) не может заменить этот метод, то:

Перед процедурой и во время нее:

1.Уточните, на каком КТ аппарате проводится обследование. Предпочтение следует отдать мультиспиральным томографам нового образца (32 среза и более).

2.Уточните, сколько будет длиться сканирование. Чем меньше оно длится, тем лучше. Современным КТ-аппаратам достаточно менее 1 минуты, чтобы сделать серию сканов.

3.Заранее уточните, какая лучевая нагрузка в мЗв будет получена при вашем исследовании (в среднем).

4.Не нарушайте технику проведения процедуры и внимательно слушайте рентген-лаборанта. В противном случае исследование нужно будет повторить.

После КТ

Если лучевая нагрузка была высокой, уменьшить вред можно следующими способами:

1.Усильте естественную защиту организма. Это можно сделать, добавив в рацион продукты, обогащенные антиоксидантами: свеклу, чернику, виноград, брокколи, гречку, чернослив, красный перец. Витамины А, Е, С препятствуют клеточным повреждениям.

2.Не пренебрегайте физическими нагрузками. Полезна даже ежедневная ходьба (3-5 км).

3.Не подвергайте свой организм психологическому стрессу и высыпайтесь.

Исследования пациентов в реабилитационных группах после перенесенных онкологических заболеваний показывают, что для удлинения теломеров необходимы две простые вещи (они же и препятствуют радиационному старению) — это здоровый образ жизни (в том числе регулярная физическая активность, качественный сон и питание) и социальная поддержка или доброжелательное общение.

Текст подготовил

  1. Campbell B., De Silva D., Macleod M., Coutts S., Schwamm L., Davis S., Donnan G. Ischaemic stroke, 2019.
  2. Bouchez L., Sztajzel R., Vargas M. CT imaging selection in acute stroke, 2016.
  3. Kamalian S., Lev M., Stroke Imaging, 2019.
  4. Котов М.А. Возможности компьютерной томографии в прогнозировании летального исхода инсульта / Дневник казанской медицинской школы. — 2017. — №. 2. — С. 76-80.
  5. Котов М.А. Показатели и значение интракраниального анатомического резерва, у пациентов с ‎острым нарушением мозгового кровообращения / Журнал научных статей Здоровье и образование в XXI веке.Т. 18, № 2., 2016. — С. 229-233.
  6. Котов М.А. Лучевые предикторы исходов ишемического инсульта / Дневник казанской медицинской школы. – 2018. – №. 2. – С. 86-89.
  7. Котов М.А. Предикторы раннего летального исхода острого нарушения мозгового кровообращения, выявляемые при компьютерной томографии / Материалы VIII Научно-практической конференции Поленовские чтения, Российский нейрохирургический журнал им. проф. А.Л. Поленова, специальный выпуск. — 2018, -Т.Х, С. 129.
  8. Котов М.А. Возможности компьютерной томографии в оценке риска развития острого нарушения мозгового кровообращения / Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2017. Т. 9. № 4. — С. 35-38.
  9. Kotov M.A. Brain dislocation morphometry at neurology and neurosurgery from the standpoint of evidence-based medicine / Global Science and Innovation // Materials of the V international scientific conference. - Chicago, 2015. – Р. 207-212.

Мы перезвоним, подберём удобное для записи время и ответим на вопросы.
Оператор обрабатывает входящие заявки с 8:00 до 22:00

Если вы оставили ее с 8:00 до 22:00, мы перезвоним вам для уточнения деталей в течение 15 минут.

В статье рассматривается воздействие электромагнитного поля на здоровье человека. Спектр этих частот весьма широк – от гамма-излучения до низкочастотных электрических колебаний, поэтому вызванные ими изменения могут быть весьма разнообразными. На характер последствий влияет не только частота, но и интенсивность, а также время облучения. Некоторые частоты вызывают тепловое и информационное воздействие, другие оказывают разрушительное действие на клеточном уровне. При этом продукты распада могут вызывать отравление организма В ходе работы затронуты основные отрицательные стороны влияния бытовой техники и мобильных телефонов на человека. В работе приведены разнообразные примеры воздействия электромагнитного поля и побочные эффекты этих действий. При работе лазерных установок на организм человека могут воздействовать следующие вредные факторы: инфракрасное излучение, шум, вибрация. Опасно попадание лазерного луча на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести. В заключении даны рекомендации по уменьшению вреда электромагнитного излучения.


1. Основы безопасности жизнедеятельности: Учебник для общеобразовательных учреждений. 9 кл. / Министерство общего и профессионального образования РФ и др. – 3-е изд., перераб. – М.: АСТ, 1999. – 319 с.

2. Экология и безопасность жизнедеятельности: Учебное пособие для вузов/ Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева и др.; под ред. Л.А. Муравья. – М.: ЮНИТИ-ДАНА, 2000. – 447 с.

3. Безопасность жизнедеятельности: Учебник / под ред. С.В. Белова. 2–е изд., перераб. и доп. – М.: Высшая школа, 2002. – 358 с.

Электромагнитные поля пагубно влияют на здоровье человека. Но в нынешнем этапе развития человек уже не сможет без этого прожить. Ведь сейчас даже маленьких детей не отпускают на улицу без телефонов, а телефон первый в списке пагубных влиятелей на здоровье человека. Уровень биологического воздействия электромагнитных полей не зависит от длительности его воздействия. При воздействии электромагнитного поля у человека может наблюдаться повышенная утомляемость, вялость, изменение кровяного давления и пульса, возникновение болей в сердце, боли.

Влияние физических факторов на организм человека (на примере электромагнитных волн)

Люди подвергаются различным опасностям, под которыми обычно понимают явления, которые наносят ущерб здоровью человека, т.е. вызывают различные нежелательные последствия.

В настоящее время в быту, люди пользуются различными приборами- источниками электромагнитных волн, которые излучают энергию и тем самым оказывают значимое влияние на организм человека.

Источниками естественных электромагнитных полей являются атмосферное электричество, космические лучи, излучение солнца, а искусственные источники: различные генераторы, лазерные установки, линии электропередач, измерительные приборы, и др.

Жизнь на нашей планете возникла в тесном взаимодействии с электромагнитным полем Земли. К земному полю люди приспособились в процессе своего развития эволюции. Земное поле стало необходимым и важным фактором в жизни человека. Любое действие полей, как увеличенная, так и уменьшенная может повлиять на человека.

Электромагнитная сфера нашей планеты определяется в основном электрическим и магнитным полями, атмосферным электричеством, радиоизлучением, а также полями искусственных источников.

Перед грозой и во время грозы у человека появляется плохое самочувствие из-за усиления электрического поля, а одним из причин ДТП на дорогах являются магнитные бури, которые возникают из-за солнечной активности, которые так же ухудшают здоровье больных людей в пожилом возрасте.

В быту электрические поля пользуются большим спросом для производства домашних утварей, детских игрушек, мужских и женских одежд, обуви, для конструкции общественных точек и жилых домов, так же и строй материалов являющимися синтетическими полимерами.

Все промышленные и бытовые электро- и радиоустановки являются источниками искусственных полей разной силы.

По мере убывания длины волны в диапазон включаются инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма- излучение.

Электростатические поля возникают при работе легко электризующимися материалами. В радиотехнике используются электромагниты с постоянным током и металлокерамические магниты- они и являются постоянными источниками магнитных полей.

Источниками электрических полей промышленной частоты являются: линии электропередачи, специальные устройства защиты, автоматики, измерительные приборы, высоковольтные установки промышленной частоты.

Источниками электромагнитных излучений радиочастот являются мощные радиостанции, антенны, генераторы, установки индукционного и диэлектрического устройства, высокочастотные приборы в медицине и в быту.

Источником повышенной опасности в быту являются микроволновые печи, телевизоры, мобильные телефоны. В настоящее время признаются источником риска электроплиты, электрические чайники, утюги, холодильники (при работающем компрессоре) и другие бытовые электроприборы.

Особым видом магнитного излучения является лазерное излучение, которое генерируется в лазере [1].

Воздействия электромагнитных волн на человека

Механизм воздействия электромагнитных волн на биологические объекты недостаточно изучен. В постоянном электрическом поле молекулы, из которых состоит тело человека, поляризуются.

Частоты электромагнитных излучений широки, и используются в телерадиовещании, радионавигации и др. При повышении частоты электростатические свойства живых тканей сильно изменяются. Электромагнитные поля оказывают на организм человека тепловое и биологическое воздействие. Переменное поле вызывает нагрев тканей человека. Энергия проникшего в организм многократно преломляется в многослойной структуре тела с разной толщиной слоев тканей [2].

Тепловая энергия, возникшая в тканях человека, увеличивает тепловыделение. Если механизм терморегуляции тела не сможет рассеять избыточное тепло, то неизбежно повышение температуры тела. Выделение теплоты может приводить к перенагреванию тканей и органов, которые недостаточно хорошо снабжены кровеносными сосудами. Например, хрусталик глаза, желчный пузырь.

gaiz1.tif

Такие органы как мозг, глаза, почки и ткани человека, которые обладают слабо выраженной терморегуляцией, более чувствительны к облучению. Перегревание тканей и органов ведет к их заболеваниям. Отрицательное воздействие электромагнитного поля может привести к торможению рефлексов, понижению кровяного давления, замедлению сокращений сердца, изменению состава крови, помутнению хрусталика глаза (катаракта) [3].

Воздействие сверхвысоких частот – излучения интенсивностью может привести к потере зрения. При длительном облучении умеренной интенсивности возможны нарушения со стороны эндокринной системы, так же изменение углеводного и жирового обмена, сопровождающееся похудением, повышением возбудимости.

При работе лазерных установок на организм человека могут воздействовать следующие вредные факторы: инфракрасное излучение, шум, вибрация. При воздействии лазерного излучения на организм человека возникают биологические эффекты. Всего различают первичные и вторичные эффекты. Первичные изменения происходят в тканях человека непосредственно под действием излучения (ожоги, кровоизлияния), а вторичные (побочные явления) вызываются различными нарушениями в человеческом организме, резвившимися вследствие облучения.

gaiz2.tif

Наиболее чувствителен к воздействию лазерного излучения глаз человека. Опасно попадание лазерного луча на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести. Лазерные лучи высокой интенсивности вызывают поражение различных внутренних тканей и органов человека, что выражается в виде кровоизлияний, отеков, а также свертывания крови. Все это указывает на неоднозначность реакций организма на воздействие электромагнитного поля.

Люди довольно часто подвергаются воздействию различных видов электромагнитного излучения. Для уменьшения воздействия излучения на организм человека существуют различные методы, например, рациональное размещение облучающих объектов, ослабляющее воздействие излучения на людей; ограничение времени нахождения человека в электромагнитном поле; использование поглощающих экранов или же применение средств индивидуальной защиты.

Для защиты глаз от воздействия электромагнитного излучения применяются специальные очки.

Изменения температуры тела. Гипо- и гипертермия - АландМед

Что большинство людей знают о терморегуляции собственного организма? В основном лишь то, что в норме температура тела 36,6 °С. А между тем это сложный процесс, в котором задействованы разные органы и системы нашего организма. За счет терморегуляции наш организм способен приспосабливаться к различным погодным условиям. Однако существует вероятность нарушения этого процесса, влекущая за собой переохлаждение или повышение температуры тела.

Терморегуляция организма

Терморегуляция – это сложный физиологический процесс теплообразования и теплоотдачи, позволяющий поддерживать постоянную температуру тела, несмотря на значительные перепады температуры внешней среды.

За поддержание температуры в человеческом организме отвечает вегетативная нервная система и гипоталамус. Организм воспринимает температуру окружающей среды за счет нервных окончаний в коже и мышцах – терморецепторов. Терморецепторы постоянно передают эту информацию в центральную нервную систему, а именно в гипоталамус, в котором расположен центр терморегуляции. В свою очередь центр терморегуляции определяет скорость метаболизма, который настраивает основной обмен на:

  • теплопродукцию – процесс выработки тепла человеческим телом;
  • теплоотдачу – переход тепла из организма во внешнюю среду с помощью процессов жизнедеятельности (излучение, испарение, конвекция).

При повышении температуры теплопродукция уменьшается, и организм вырабатывает меньше тепла, а интенсивность метаболизма снижается. Одновременно увеличивается теплоотдача, что защищает организм от перегрева (капилляры расширяются, кожа краснеет, выделяется пот).

При понижении температуры начинаются противоположные процессы: теплоотдача уменьшается (капилляры сужаются, температура крови повышается), а теплопродукция увеличивается. Таким образом организм сохраняет тепло.

Причины гипотермии и гипертермии

Основной причиной нарушения терморегуляции являются внешние факторы. В отличие от других теплокровных животных в ходе эволюции мы стали менее приспособлены к перепадам температуры, и длительные колебания в 1-2 °С от нормы могут привести к гипо- и гипертермии.

Гипотермия – это критическое переохлаждение организма, когда температура падает до 35 °С и ниже. Основной причиной гипотермии является потеря тепла на холоде через кожу и дыхание. Наш организм включает защитную программу, при которой спасает жизненно важные органы, жертвуя кожными покровами, конечностями – всем тем, без чего человек может выжить. Гипотермию делят на три стадии:

  1. Легкая, когда температура падает до первой критической отметки 34-35 °С. При данной температуре наблюдается бледность кожных покровов, дрожь, замедление метаболизма. Также для этой стадии характерна заторможенность, проблемы с памятью и потеря ориентации в пространстве.
  2. Средней тяжести, когда температура опускается до 30 °С. Сердце замедляет свою работу, чтобы защитить мозг и сохранить тепло, кожа приобретает мраморный оттенок, появляется сильная сонливость, нарушения речи, возможны даже галлюцинации.
  3. Тяжелая, при которой температура тела снижается до критической отметки 27 °С и ниже. Человек теряет сознание, его конечности коченеют, дыхание становится прерывистым. На этой стадии возможна остановка сердца.

Гипертермия – стойкое повышение температуры тела выше 38,5 °С, вызванное внешними факторами, затрудняющими теплоотдачу или увеличивающими поступление тепла извне. Гипертермия также делится на три стадии:

Мобильные телефоны, ноутбуки и СВЧ-печи – источники электромагнитного излучения. Какой вред они могут нанести вашему здоровью, и как защитить себя от ЭМ-излучения, рассказывает наш эксперт Александр Кукса.

Содержание

О том, какого мнения современная наука придерживается относительно влияние электромагнитного излучения на организм человека и какие приборы являются самыми значимыми источниками такого излучения, рассказывает

Алексей Кукса

Самыми значимыми источниками электромагнитного поля являются те приборы, которыми мы пользуемся чаще всего и которые располагаются к нам ближе всего. Это:

  • мобильные телефоны
  • персональные компьютеры (и ноутбуки, и планшеты, и стационарные компьютеры)
  • из бытовой техники вне конкуренции СВЧ-печи

Устройства связи дают электромагнитное поле в момент приёма/передачи информации, а из-за того, что они расположены к нам на минимальном расстоянии (например, мобильный телефон находится вообще вплотную к голове), то и значения плотности потока ЭМ поля будет максимальным.

Как правило, чем мощнее потребитель тока, чем он ближе к нам расположен, чем дольше он на нас воздействует и чем менее защищён (экранирован), тем сильнее будут проявляться негативные последствия. Потому что интенсивность излучения от каждого конкретного источника тоже будет разная.

Негативное влияние на организм человека

Чем дольше мы находимся в электромагнитном поле, тем больше шансы на появление каких-либо последствий. Опасность в том, что без специального оборудования, мы никогда и не узнаем, подвергаемся ли мы прямо сейчас воздействию ЭМ-поля или нет. Разве что совсем в критических ситуациях, когда уже и волосы от статических зарядов начинают шевелиться.

Воздействие ЭМ полей может вызывать:

  • головокружения
  • головные боли
  • бессонницу
  • усталость
  • ухудшение концентрации внимания
  • депрессивное состояние
  • повышенную возбудимость
  • раздражительность
  • резкие перепады настроения
  • сильные скачки АД
  • слабость
  • нарушения работы сердечной мышцы
  • ухудшение проводимости миокарда
  • аритмию

Опасность заключается ещё и в том, что заметив у себя любой из описанных выше признаков, человек станет подозревать всё что угодно, но не электромагнитные поля, вызванные, например, скрытой проводкой, идущей вдоль спального места.

Правила безопасности при воздействии электромагнитного излучения на организм человека

Самая качественная защита от ЭМ излучения – это расстояние.

Плотность излучения с расстоянием падает в разы. У каждого источника достаточно ограниченный радиус действия полей, поэтому правильное планирование мест для отдыха/досуга, работы и сна уже залог Вашего здоровья, однако, не стоит забывать и про то, что любой обесточенный источник ЭМ-полей перестаёт таковым являться.

Поэтому не забывайте выключать из сети неиспользуемые приборы, не располагайте рядом с головой мощные источники ЭМИ, следите за состоянием бытовой техники и читайте инструкции по правильной эксплуатации бытовых приборов.

Чем электроника дороже - тем она безопаснее?

Однако стоит учитывать то, что это касается только новой техники, не подвергавшейся физическому воздействию, ремонтам, при правильной эксплуатации, расположении и прочее. Если хоть что-то было нарушено, то интенсивность излучения может измениться в разы.

Какое мнение сейчас принято по данному вопросу в научном сообществе?

Вред электромагнитного излучения для здоровья человека никем не отрицается. Но споры и обсуждения продолжаются касательно предельно допустимых уровней, так как провести однозначно линию, разграничивающую вред и пользу для организма, очень тяжело. В конце концов, есть и лечебные источники ЭМ-полей и диагностическое оборудование.

Читайте также: