Влияние загрязнения атмосферы на растения

Добавил пользователь Алексей Ф.
Обновлено: 19.09.2024

Презентация на тему: " Влияние загрязнений атмосферы на человека, растительный и животный мир." — Транскрипт:

1 Влияние загрязнений атмосферы на человека, растительный и животный мир.

2 Влияние на человека. Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека.

3 Эти вещества попадают в организм человека преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку около 50% частиц примеси, проникающей в легкие, осаждается в них.

4 Это приводит к заболеваниям: -поражение верхних дыхательных путей -сердечная недостаточность -бронхиты, астма, пневмония - эмфизема легких - болезни глаз.

5 Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечно- сосудистых заболеваний.

6 Оксид углерода Концентрация СО, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека, а концентрация более 750 млн к смерти. Объясняется это тем, что СО - исключительно агрессивный газ,, легко соединяющийся с гемоглобином ( красными кровяными тельцами). При соединении образуется карбоксигемоглобин, повышение (сверх нормы, равной 0.4%) содержание которого в крови сопровождается: а) ухудшением остроты зрения и способности оценивать длительность интервалов времени, б) нарушением некоторых психомоторных функций головного мозга ( при содержании 2-5%), в) изменениями деятельности сердца и легких ( при содержании более 5%), г) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью ( при содержании 10-80%).

7 Диоксид серы и серный ангидрид В комбинации со взвешенными частицами и влагой оказывают наиболее вредной воздействие на человека, живые организмы и материальные ценности. Приводит к увеличению симптомов затрудненного дыхания и болезней лёгких,также наблюдается резкое увеличение числа больных и смертельных исходов. При концентрации SO2 0,3-0,5 млн в течение нескольких дней наступает хроническое поражение листьев растений (особенно шпината, салата, хлопка и люцерны), а также иголок сосны.

8 Оксиды азота Все окислители сильно раздражают и взывают воспаление глаз, а в комбинации с озоном раздражают носоглотку, приводят к спазмам грудной клетки, а при высокой концентрации (свыше 3-4 мг/м3) вызывают сильный кашель и ослабляют возможность на чем либо сосредоточиться.

9 Влияние на растения и животных. Загрязненность атмосферы отрицательно сказывается на растительности городов и их окрестностей. Особенно большой вред растениям приносит присутствие в воздухе диоксида серы, фтора, хлора, их соединений, других окислителей, угарного газа и др.

10 Промышленные газы воздействуют на ассимилирующий аппарат зеленых растений. Они разрушают корневую систему растений, цитоплазму и хлоропласты в клетках листьев, угнетают деятельность устьиц, в 1,5 - 2 раза снижая интенсивность транспирации, фотосинтеза. Особенно подвержены вредному воздействию загрязнителей атмосферы хвойные деревья: сосна, ель, пихта, кедр, которые первыми погибают от загрязнения атмосферы в крупных промышленных районах.

11 Отрицательное влияние на растения оказывают выбросы предприятий цветной металлургии и кислотных заводов. В окрестностях заводов, производящих серную кислоту и алюминий, гибнут сады и виноградники, вблизи цементных заводов гибнут плодовые деревья и кустарники, около свинцово-цинковых комбинатов - посевы и т.д.

12 Фотохимический туман может возникать при более низких концентрациях загрязнителей и для него более характерна желто-зеленая или сизая сухая дымка, а не сплошной туман. При смоге появляется неприятный запах, резко ухудшается видимость. Погибают домашние животные, главным образом собаки и птицы.

13 Летальность дозы аэрозолей серной кислоты определяется видом и возрастом животного; наиболее чувствительны морские свинки, особенно молодые особи.

14 Раздражающее действие аэрозолей серной кислоты выше, чем сульфатов. При кратковременном действии нарушается частота дыхания. Наиболее показательны случаи длительного воздействия загрязнений. При концентрации серной кислоты у кроликов и обезьян наблюдается повышенная реакция на ацетилхолин в последующие 8 месяцев их состояние сильно ухудшается.

Л.И. Егоренков, Б.И. Кочуров
Геоэкология
Учебное пособие. – М.: Финансы и статистика, 2005. — 320 с.

2.5. Механизм воздействия загрязняющих веществ на растительные и животные организмы

2.5.1. Влияние загрязнений на растительность

Возможны как отрицательные, так и положительные воздействия загрязняющих веществ на растения. Наиболее систематические исследования по влиянию загрязнения на растительность были проведены в США, Канаде, Германии и других странах Европы. Они были связаны, прежде всего, с гибелью лесов. Первые сведения о повреждении лесов, связанных главным образом с антропогенными источниками, относятся еще к 1880 г., когда в районе металлургических заводов в Онтарио (США) произошла массовая гибель вековых лесов. Начиная с 1900 г., случаи гибели и повреждения лесов отмечались в США; в 1920, 1940, 1960 гг. А с 1970 г. наблюдается массовая гибель сосны обыкновенной в Германии, России, а также приморской сосны во Франции (1980 г.).

У нас в стране более 600 тыс. га лесных массивов, расположенных в зоне выброса вредных веществ промышленными предприятиями, находится в состоянии полного или частичного усыхания. Так, например, выбросы Норильского медно-никелевого комбината, Братского алюминиевого завода, Байкальского медеплавильного завода (Южный Урал) угнетают лесную растительность в радиусе до 150 км.

Выбросы Люберецкой ТЭЦ-22 (Московская область) способствуют массовой гибели сосновых посадок и пригородного леса.

Гибель лесных массивов связана главным образом с такими вредными соединениями, как диоксиды серы и азота, озоном, пероксидом водорода. Механизм действия этих веществ неодинаков, что связано с расположением леса в разных климатических зонах, породным составом древостоев и местными лесо-растительными условиями.

Обычно леса произрастают в районах с достаточно высоким количеством осадков (не менее 50 см в год). В США при поддержке Института энергетики (1984 г.) были проведены эксперименты по изучению действия кислотных дождей на саженцы тюльпанового дерева, белого дуба и виргинской сосны, ели. Саженцы произрастали на бедных песчаных почвах с невысокой буферной способностью и чувствительных к закислению. В результате воздействия искусственных кислотных дождей (рН 3,5-5,6) в течение 30 месяцев были обнаружены изменения в катионном составе листьев. В первые сутки отмечалась особенно быстрая аккумуляция кальция. При рН 2-2,5 качество листвы и хвои внешне не изменялось, но сильно сокращалась скорость роста молодых побегов. Установлена была и высокая чувствительность к кислотным дождям саженцев ели. При рН 2 наблюдалось общее увядание, хвоя усыхала и приобретала рыже-коричневый цвет.

У большинства хвойных и лиственных пород при рН 2,6 наблюдается повреждение клеток (лист, хвоя). В отдельных случаях отмечен положительный эффект действия кислотных Дождей — уровень микоризных корневых инфекций снижен на 10-15%.

Аналогичные изменения обнаружены и в случае кислотных туманов (облаков). Меняется ионный обмен, вымывание белка составляет 4—5% при рН 2,3, замедляется скорость роста всех хвойных пород.

Действие газообразных загрязнений. В районах тепловых станций и металлургических заводов даже при кратковременных (1-2 ч) выбросах дымовых газов концентрация диоксида серы становится высокой (более 1300 мкг/м 3 ). Хлороз и потеря Резистентности к влаге отмечаются при концентрации выше 468 мкг/м 3 в течение 8 ч или при 1820 мкг/м 3 в течение 1 ч. В лесных массивах концентрация диоксида серы не превышает 20 биологических доз (б. д.),[10] но вблизи промышленных зон она может возрастать на порядок. Предел сопротивляемости деревьев большинства пород к диоксиду серы в период интенсивного роста составляет 100 б. д. или в среднем в весенне-летний период 50 б. д. Хлорозу наиболее подвержены старые иглы хвойных деревьев. Наименее чувствительны бальзамическая сосна, горная сосна Веймутова, сосна обыкновенная, сосна Фрезера, американский шерлаховый дуб, красный и сахарный клен.

При совместном действии диоксида серы и озона наблюдается аддитивность отрицательных эффектов, что справедливо и для действия азота. Однако в присутствии диоксида азота уменьшается повреждающее действие озона.

Подавление фотосинтеза озоном. Отрицательное действие озона связано с его проникновением внутрь хвои или листьев в процессе дыхания растений. Весной и летом повышение концентрации озона совпадает с увеличением интенсивности газообмена в дневные часы, что приводит к нежелательным последствиям для деревьев. Зоны наиболее сильной поврежденности деревьев, как правило, совпадают с зонами повышенной концентрации озона, которая возрастает в ночное время при высокой влажности, что способствует раскрытию устьиц и более интенсивному проникновению озона внутрь листьев и игл. Поэтому высокогорные леса и леса на побережье легко повреждаются. Фотосинтез наиболее интенсивен в молодой хвое (1 год), к 2-3 годам скорость его сильно падает.

Механизм действия озона следующий. Сначала он повреждает мезофильные клетки, вследствие чего нарушаются функции клеточных оболочек. В результате окисления белков, ненасыщенных жирных кислот и аминокислот повышается проницаемость клеточных мембран. Проникая в клетку, озон повреждает хлоропласты и ингибирует фотосинтез. Одновременно нарушается регуляция устьиц и меняется активность ферментов. В результате эволюции растения приспосабливаются к функционированию при концентрации озона 10 — 40 б. д. К действию озона наименее чувствительны сосна, дуб, наиболее — тополь.

Повреждение деревьев возможно и под действием тяжелых металлов (свинца, кадмия, цинка), этилена, анилина, продуктов фотохимического окисления, фторидов, соединений аммония и т. д. Однако в региональных масштабах повреждение лесов под действием этих соединений очень незначительно (по сравнению с повреждением лесов под действием основных атмосферных загрязнений).

Механизм действия газообразных загрязнений на сельскохозяйственные растения. В зависимости от доз, получаемых растениями, диоксид серы может оказывать как положительное, так и отрицательное действие. При малых концентрациях он является дополнительным источником питания, при высоких — резко ухудшается обмен веществ и возможна быстрая гибель растений. Это обусловлено преимущественно изменением количества углеводов — при малых дозах диоксида серы оно увеличивается, а при повышенной концентрации диоксида — уменьшается. Устойчивость растений к диоксиду серы определяется двумя факторами — активностью устьиц листа и скоростью адсорбции диоксида серы на поверхности, а также способностью переводить токсичный сульфит в неактивный сульфат (как это наблюдается у бобовых).

Диоксид серы препятствует развитию у растений грибковых заболеваний, однако механизм действия опосредованный.

Степень воздействия диоксида серы определяется стрессами ~ при резких колебаниях температуры повышается чувствительность растений, при водном стрессе возрастает сопротивляемость растений к высоким одноразовым концентрациям и снижается устойчивость к продолжительным невысоким концентрациям диоксида серы. Для выяснения действия диоксида серы на растения необходимо учитывать, что длительные воздействия невысоких концентраций (менее 260 мкг/м 3 ) они переносят хуже, чем те же количества, но при меньшей продолжительности воздействия. Важна и периодичность изменения концентрации диоксида, выделяемого антропогенными источниками.

Оксиды азота более токсичны, чем оксиды серы. Особенно сильно они влияют на вегетацию растений, произрастающих вблизи заводов по производству азотной кислоты и удобрений. В результате действия диоксида азота нарушаются фотосинтез и интенсивность клеточного обмена, что приводит к отмиранию части листвы.

Так, например, в сельскохозяйственных регионах США среднесуточная концентрация диоксида азота в летний период составляет не более 10 б. д. В этих условиях повреждение листвы у большинства культур не превышает 5%. Наблюдаемые концентрации диоксида азота не оказывают сильного отрицательного действия на посевы, однако в комбинациях с другими загрязнениями (диоксидом серы, озоном и другими веществами) эффект может быть сильным [12].

Уменьшение концентрации озона на 25 б. д. приводит к повышению урожайности большинства сельскохозяйственных культур на 7-10%. К озону наиболее чувствительна соя, наименее — сорго. Установлены различия и в чувствительности отдельных гибридов, например пшеницы. Потеря урожайности большинства культур является линейной функцией от концентрации озона в интервале 20 — 200 б. д.

Токсичность озона обусловлена подавлением фотосинтеза и нарушением процессов метаболизма.

Интенсивность действия озона на растения зависит от многих факторов, но наиболее важные из них — влажность воздуха и почвы. При недостатке влаги растения малочувствительный к озону, а при обильном поливе и дожде снижается масса ростков корневой системы и ухудшается прорастаемость семян. Водный стресс приводит к замедлению дыхательного обмена (сужению устьиц), при этом в лист проникает меньше озона. Важность выбора правильного режима полива в соответствии с содержанием озона в воздухе в течение дня показана в эксперименте на примере табака, бобовых и некоторых трав. Низкая интенсивность солнечного света также повышает чувствительность растений (табака, бобовых) к озону.

По данным ученых Пенсильванского университета, при совместном действии кислотного дождя и озона возрастает интенсивность выделения этилена, что свидетельствует о водном стрессе у растений. Как показали исследования, проведенные в Калифорнии в 1981 г., при совместном действии кислотного тумана (рН 2,6 — 7) и озона несколько увеличивалась урожайность земляники, перца, люцерны и сельдерея, при рН 1,6 урожайность всех культур (за исключением сельдерея) снизилась. В результате действия озона на посадки сои наблюдалось интенсивное поедание листьев божьей коровкой. Интенсивнее размножаются бобовая и свекловичная тля на листьях, подвергающихся совместному действию озона и диоксидов серы и азота. Диоксид серы способствует более быстрому размножению божьей коровки, она более продуктивна при яйцекладке. Вредители активнее поедают листву деревьев и посевов, на которые действуют дым котельных и заводов. Существует мнение, что растения теряют иммунитет к вредителям, в результате выщелачивания некоторых компонентов изменяется состав листьев, и они становятся более съедобными для вредителей.

Развитие растений тесно связано с условиями окружающей среды. Температуры, характерные для данного района, количество осадков, характер почв, биотические параметры и даже состояние атмосферы – все эти условия, взаимодействуя между собой, определяют характер ландшафта и виды растений являющихся его частью. Если окружающие условия изменяются, то изменяется и растительный мир. Изменения способна вызвать даже разница в количестве осадков, выпадающих в разные годы. Если изменение условий очень значительны, то растения, обладающие большой чувствительностью к таким изменениям, испытывают стресс и, в конечном счете, могут погибнуть. Значительные изменения даже какого–либо одного параметра могут приводить к гибели растений.

Файлы: 1 файл

БЖД.docx

Министерство образования и науки Р.Ф.

Федеральное агентство по образованию.

Государственное образовательное учреждение высшего профессионального образования.

Алтайский государственный университет им. И.И. Ползунова.

Реферат: по Безопасности жизнедеятельности.

Тема: Влияние загрязненности на растения.

Выполнил: Забурятин Олег

Проверил: Айгобулова Ю.Г.

Введение. Существующая ситуация.

Развитие растений тесно связано с условиями окружающей среды. Температуры, характерные для данного района, количество осадков, характер почв, биотические параметры и даже состояние атмосферы – все эти условия, взаимодействуя между собой, определяют характер ландшафта и виды растений являющихся его частью. Если окружающие условия изменяются, то изменяется и растительный мир. Изменения способна вызвать даже разница в количестве осадков, выпадающих в разные годы. Если изменение условий очень значительны, то растения, обладающие большой чувствительностью к таким изменениям, испытывают стресс и, в конечном счете, могут погибнуть. Значительные изменения даже какого–либо одного параметра могут приводить к гибели растений.

Растительность - не только продукт органической материи на земле, но также с ее значительным участием формируются почва, климат и погода, круговорот материи и энергии, создаются экологические условия, необходимые для существования всех других живых организмов, включая человека. Поэтому охрану природы на современном этапе следует рассматривать не столько как сохранение отдельных организмов и сообществ, а преимущественно как сохранение естественных процессов поддержания и регуляции круговорота веществ и энергии в биосфере, обеспечивающих продолжение жизни на земле. Так как растительность (продуценты) стоит у истоков всех биогеохимических, экологических и энергетических процессов в биосфере, то она является одним из наиболее важных компонентов, определяющих благополучие биосферы и жизни на земле.

Вредное влияние загрязненного воздуха на растения происходит, как путем прямого действия газов на ассимиляционный аппарат, так и путем косвенного воздействия через почву. Причем прямое действие кислых газов приводит к отмиранию отдельных органов растений, ухудшению роста и урожайности, а также качества сельскохозяйственной продукции. Накопление же вредных веществ в почве способствует уменьшению почвенного плодородия, своеобразному засолению почв, гибели полезной микрофлоры, нарушению роста, отравлению корневых систем и нарушению минерального питания. Аккумуляция газа в экосистеме идет с участием трех компонент: растительности, почвы и влаги. В зависимости от погодно-климатических условий, солнечной радиации и влажности почв может изменяться поглотительная способность и удельный вес этих компонентов.

Загрязнение атмосферы приводит к значительному повреждению растительности. Во многих городах и вблизи них исчезают сосна и другие породы деревьев. Например, в Центральной Европе повреждено почти 1 млн. га хвойных лесов, или 10% общей площади леса. Общая площадь пораженных лесов, значительная часть которой связана с воздействием загрязнения атмосферы, в Европе (без СНГ) и Северной Америке составляет более 6 млн. га, в том числе в Германии - 39 млн. га, Польше - 0.38 млн. га, Чехии и Словак ии 0.3 млн. га, в Канаде 1 - 1.5 млн. га, США – 0,5 млн. га.

Физические исследования позволили высказать гипотезу о причинах роста концентрации углекислого газа в атмосфере Земли. С одной стороны, это вызвано ростом потребления, сжигания и переработки топлива и углеродосодержащих материалов, а с другой - уменьшением годичной продуктивности автотрофных организмов в наземных и водных экосистемах. Последнее вызвано: 1) заменой более продуктивных естественных лесных фитоценозов на искусственные и менее продуктивные (сельхоз. угодья занимают уже более 10% суши); 2) подавлением фотосинтеза у растений под влиянием повышения фона загрязнения воздуха, воды и почвы. Известно, что агроценозы, даже самые высокоурожайные, уступают естественным лесным фитоценозам по суммарной за год (на единицу площади) биологической продуктивности, а, следовательно, фотосинтезирующей деятельности, которая обеспечивает утилизацию CO2 и регенерации кислорода.

Известны чувствительные растения - индикаторы, не выносящие даже очень слабого загрязнения воздуха. Под влиянием очень слабых концентраций сернистого газа мхи и лишайники первыми исчезают из состава фитоценозов. К действию фтора очень чувствительны гладиолусы.

Кислые газы, нарушая рост и развитие растений (неоднократная смена листьев, вторичный рост побегов, а иногда и вторичное цветение), могут снижать устойчивость их к другим неблагоприятным факторам; засухе, заморозкам, засолению почв.

Повреждения (ожоги) делят по характеру их проявления и изменению физиолого- биохимических процессов у растений на: острые (катастрофические), хронические и невидимые.

Различают пять степеней повреждения растений сернистым газом в зависимости от концентрации его и продолжительности поглощения листьями: отсутствие повреждений, скрытые, хронические, острые и катастрофические.

Активации повреждаемости растений газами способствует повышенная температура, влажность воздуха и солнечная радиация, т.е. факторы повышающих газообмен и поглощение токсичных газов. При пониженной освещенности и ночью повреждаемость растений уменьшается. Прекращение газообмена зимой у хвойных пород также предохраняет их от повреждений.

Исследования показали, что зеленые растения более чувствительны к различным газам, чем животные и человек. Допустимая максимально- разовая концентрация SO2 для растений оказалось равной 0.02 мг/м 3 (для животных и человека 0.05 мг/м 3 ). Большая чувствительность растений связана с большей скоростью проникновения газа и автотрофным характером их метаболизма.

В табл.1, составленной с учетом данных Фогля,Вейнстейна и Маккюна. Существующие типы и масштабы последствий атмосферных загрязнителей на различных уровнях организации экосистемы предложены в качестве основы для дальнейших исследований. При таком сопоставлении устанавливается взаимосвязь между влиянием на клеточном уровне и реакциями всего растения или даже растительного сообщества в целом. Процесс воздействия начинается с поступления загрязнителя в клетку, далее на растительный организм и, в конечном счёте на растительные сообщества в целом.

Классификация действия атмосферных загрязнителей на растения

Снижение продуктивности, урожая и качества

Вредность для потребителей как результат накопления (флюроз)

Изменение видового состава, также связанные со сдвигами в межвидовой борьбе

Каждое из загрязнений воздействует своим особым образом, однако все загрязнения оказывают влияние на некоторые основные процессы, в частности нарушают водный баланс. В первую очередь воздействию подвергаются системы, регулирующие поступление загрязняющих веществ, а также химические реакции, ответственные за процессы фотосинтеза, дыхания и производство энергии.

Рассмотрим наиболее вредные загрязняющие вещества: диоксид серы, фториды, озон.

Диоксид серы.

Загрязняющее вещество первоначально поступает в растение через устьица – отверстия, имеющееся на листьях и в нормальных условиях использующихся для газообмена. Диоксид серы, прежде всего, воздействует на клетки, которые регулируют открывание этих отверстий. Степень их открывания и факторы, влияющие на нее, в начальный период являются основными параметрами, определяющими интенсивность воздействия загрязнителей. Даже при очень малых концентрациях диоксид серы способен оказывать стимулирующее действие, в результате которого при достаточно высокой относительной влажности устьица остаются постоянно открытыми. В тоже время при высоких концентрациях диоксида углерода устьица закрываются. Кроме того, в случае высокой влажности устьица открываются, в случае низкой – закрываются.

Попав в межклеточные пространства листа, загрязняющее вещество вступает в контакт с мембраной окружающей клетку. При нарушении целостности этой полупроницаемой мембраны нарушается баланс питательных веществ и процесс поступления ионов.

Пройдя в клетку, диоксид серы взаимодействует с органеллами – метохондриями и хлоропластами, в том числе и с их мембранами, что может привести к весьма серьезным последствиям.

Однако сера необходима для нормального роста растений, и присутствие SO2 может оказывать влияние и на усвояемость серы. Растения потребляют серу в восстановленном состоянии. В присутствии SO2 основным продуктом становится сульфат; присутствует также цистеин, глютатион, и, по меньшей мере, одно не идентифицированное вещество. Основными промежуточными соединениями при восстановлении сульфатов являются сульфиты.

Возможна также дезактивация ферментов. Диоксид серы ингибирует различные биохимические реакции. Сульфиты, обладающие слабокислотными свойствами, дезактивируют некоторые ферменты, блокируя активные центры, препятствуя протеканию основной химической реакции; это явление известно как конкурентное ингибирование. Диоксид серы является конкурентным ингибитором дифосфаткарбоксилазы, препятствующим фиксации СО 2 в процессе фотосинтеза.

Хотя точный механизм действия SO2 на молекулярном уровне неизвестен, можно предположить, что основную роль играют присутствие избыточного количества окисленных форм серы, нарушение баланса с восстановленными формами и воздействие на жизненно важные ферменты.

Последствия воздействия фторидов на процессы обмена в клетке в общих чертах схожи с воздействием диоксида серы, хотя их механизмы, естественно различаются. Фториды содержатся во всех растительных тканях, однако их избыток может оказывать токсическое действие. Большинство растений способно накапливать в листьях концентрации фторидов до 100 – 200 млн. -1 и более, без каких – либо отрицательных последствий. Некоторые виды, например, чай и камелия, могут накапливать фториды в листьях в очень высоких концентрациях – нормальное содержание их составляет несколько сот миллионных долей.

Для большинства растений порог токсичности равен 50 – 100 млн. -1 фторидов и при более высоких концентрациях могут происходить изменения в процессах обмена и в структуре клетки. Гранулирование, плазмолиз и сплющивание хлоропластов являются первыми симптомами, которые можно наблюдать под микроскопом. В сосновых иглах наблюдается гипертрофия питающих клеток флоэмы и передающей ткани; аналогичные симптомы наблюдаются и в других стрессовых ситуациях, например при увядании и при засыхании.

Фториды воздействуют на целый ряд ферментов и обменных процессов. В растениях, окуренных парами HF, могут наблюдаться изменения в содержании органических кислот, аминокислот, свободных сахаров, крахмала и других полисахаридов; эти изменения происходят до проявления видимых симптомов. Фториды изменяют механизм распада глюкозы, что может вызвать отклонения от нормального развития листьев.

Воздействие на ферменты приводит к ингибированию реакции, которая осуществляется с участием этого фермента. Хотя непосредственное влияние может оказываться только на одну из стадий многостадийного процесса, тем не менее, это приводит к нарушениям всего процесса в целом. Это относится, в частности, к процессу фотосинтеза, который, ингибируется фторидами. Один из механизмов воздействия на фотосинтез состоит в ингибировании хлорофилла. Добавки больших количеств магния позволяют конпенсировать ингибирующее действие в экспериментах . Фториды способны также влиять на фотосинтез через энергетические процессы, в которых участвуют аденозинфосфаты и нуклеотиды.

Влияние загрязненного воздуха на растительный и животный мир

В настоящее время во всем мире большое внимание уделяется проблемам влияния промышленной пыли и вредных газовых выбросов на лесное хозяйство, садоводство и сельскохозяйственные посевы. При этом учитывается, что очищение атмосферного воздуха от загрязнений в значительной степени происходит при помощи растительного покрова земли. Так, например, один гектар леса №ш сада за один год очищает от углекислого газа 18 млн. м3 воздуха.[ . ]

Воздействие загрязнений вызывает ухудшение качества растений, особенно злаков, используемых в питании, падение урожайности большинства сельскохозяйственных культур, ухудшение качества почвы, повышение содержания серы и других различных вредных для растений примесей и элементов и т.д.[ . ]

В лесном хозяйстве снижается прирост древесины, отмирают менее устойчивые древесные породы, а в отдельных случаях наблюдается гибель леса на целых участках. Вредные газы, проникая через устьица листа, нарушают процессы фотосинтеза и дыхания. Так, концентрация сернистого ангидрида в воздухе в соотношении 1:1000 000 при повторных действиях в течение двух месяцев вызывает повреждение растений. Более высокие концентрации могут приводить к полной потере листьев растениями.[ . ]

Загрязнения оказывают вредное влияние на растительный покров земли: механическим воздействием пыли и сажи на растения; отравлением растительного покрова земли различным загрязнением почвы и изменением ее химического состава; изменениями биологической среды обитания растений (изменения в составе почвенной флоры и фауны; болезнетворных организмов; различных насекомых; млекопитающих, птиц и различных членистоногих).[ . ]

Наиболее вредными для растений веществами, загрязняющими атмосферный воздух, считаются: сернистый ангидрид, фторсодержащие соединения, хлор, серная и сернистые кислоты, пар-оксиацетилнитрат, бисульфат, альдегиды и др.[ . ]

В табл. 12-15 приведены примеры снижения урожайности сельскохозяйственных культур в зависимости от различных загрязнений.[ . ]

Примечание. Уровень загрязнения воздуха превышает ПДК, выпадение пыли выше фонового показателя на 43— 105%.[ . ]

Как те, так и другие загрязняющие вещества могут воздействовать на растения через почву и воду. Часть промышленных выбросов, попадая в почву, изменяет качественно ее химический состав (кислотность, щелочность), другая часть попадает в водный бассейн, подземные воды и качественно изменяет состав воды. Все это приводит к замедлению роста растений, гибели корневой системы и другим отрицательным последствиям.[ . ]

Наряду с непосредственным влиянием загрязненного воздуха на растительность необходимо учитывать, что загрязняющие вещества, попадая в поверхностный слой почвы, могут смываться поверхностными стоками в водоемы и попадать в подпочвенные воды и растения, которые используются человеком для питания. Анализ проб почвы в районе источника загрязнения свидетельствуют о колебании состава почвы от кислой до очень кислой, что неблагоприятно сказывается на растениях.[ . ]

Проникновение в почву сернистого ангидрида с атмосферными осадками приводит к повышению ее кислотности. В сильно загрязненных районах величина такого поступления может достигать 133 кг серы на 1 га в год, кроме 10-20 кг серы, которая попадает в почву за этот же промежуток времени через ассимиляционные органы. Выпадение щелочной пыли приводит к повышению pH почвы.[ . ]

Читайте также: