Влияние света на рост и развитие растений

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Световой режим — совокупность процессов поглощения и превращения растениями световой энергии.

Относится к космическим факторам жизни растений.

Навигация

Роль света в жизни растений

Зеленые растения — единственные живые организмы на Земле, способные превращать световую энергию солнечного света в химическую энергию органических соединений. Этот процесс происходит благодаря хлорофиллу, содержащемуся в листьях (и других зеленых частях) растений и называется фотосинтезом.

К.А. Тимирязев установил: фотосинтез — это преимущественно процесс связывания и сохранения солнечной энергии. Согласно расчетным данным, в 1 кг сухого органического вещества должно аккумулироваться 16752 кДж энергии. Учитывая объем земной биомассы растений, количество связанной и запасенной энергии в виде органического вещества огромно.

Процесс фотосинтеза представляет из себя взаимодействие углекислого газа и воды под действием молекулы хлорофилла и квантов света с образованием молекул глюкозы и кислорода. Химическое уравнение реакции можно представить следующим образом:

Участвуя в других биохимических реакциях, глюкоза трансформируется в более сложные сахара (крахмал, целлюлозу, лигнин и др.) и органические соединения. Скорость процесса равна образованию 1 грамма органического вещества на суммарной поверхности листьев 1 м 2 за 1 ч. При этом количество воздуха, содержащего углекислый газ и пропущенного через устьица листьев, должно составить 2 м 2 . Для оценки: на 1 м 2 посевов озимой пшеницы площадь листовой поверхности составляет 17-20 м 2 , кукурузы, свеклы, картофеля — 3-8; клевера и люцерны — 24-37 м 2 .

Свет оказывает значительное влияние на качество продукции. В сене и зерне при недостатке света уменьшается количество белка, у сахарной свеклы снижается сахаристость, у картофеля — крахмалистость, у подсолнечника — содержание масла.

Недостаток света приводит к появлению бледной окраски листьев и их слабому развитию, утоньшению и вытягиванию стеблей, цветение и плодоношение задерживаются или не происходят. У зерновых культур уменьшается кустистость, листья становятся узкими, узел кущения закладывается возле самой поверхности, вытягиваются стебли, ослабевают междоузлия, зерно не вызревает или получается низкого качества, возможно полегание растений.

Фотопериодизм — свойство растений реагировать на продолжительность освещения в течение дня. Фотопериодические реакция определяют наступление фаз роста и развития. В зависимости от продолжительности освещения растения подразделяются на длинного дня с периодом освещения не менее 12ч, короткого — менее 12 ч, и нейтрального дня.

К растениям короткого дня относятся растения, происходящие из субтропиков и тропиков: кукуруза, рис, просо, соя, фасоль, хлопчатник и др. При удлинении светового дня происходит удлинение вегетационного периода.

Солнечная энергия оказывает влияние на плодородие почвы. Экспериментально установлено: на облучаемой солнечным светом почве урожайность ячменя выше, чем находившейся в темноте, что связано с большим количеством элементов питания в верхних слоях.

Под действием солнечного света изменяется активность микробиологических, биологических, ферментных, нитрифицирующих процессов, усиливается окисление гумуса. Солнечный свет является факторов плодородия почвы, однако научных данных в этом направлении недостаточно.

Вы когда-нибудь использовали лампы для выращивания ваших растений? Если это так, то вы, вероятно, были поражены влиянием света на их развитие. Эта статья расскажет Вам гораздо больше о влиянии света на развитие растений. Как мы увидим, развитие растений действительно отличается от роста растений. Мы объясним Вам принципы работы света и его взаимодействия с растениями, а также дадим несколько практических советов. Выбор правильной лампы может иметь огромное значение для качества и количества вашего урожая.

Все знают, что растение нуждается в свете, чтобы расти посредством фотосинтеза, процесса, который включает фиксацию энергии и производство сахара. Но помимо обеспечения энергией, свет также играет ключевую роль во многих других растительных процессах, таких как фотоморфогенез и фотопериодизм. На все эти процессы влияет световой спектр, то есть распределение света по электромагнитному спектру. Чтобы объяснить различные реакции растений на свет, нам сначала нужно подумать о самом явлении света.

Принцип света и его спектр


Свет - это форма излучения, которая принимает форму электромагнитных волн, проходящих через воздух или вакуум. Поэтому его можно описать в терминах трех физических свойств: интенсивности (или амплитуды), частоты (или длины волны) и направления колебаний (поляризации). Все возможные формы электромагнитного излучения можно описать, поместив их в электромагнитный спектр (рис.1)

Свет в форме электромагнитных волн описывается электромагнитным спектром. Наиболее важным качеством света для растений является его длина волны или содержание энергии; чем короче длина волны, тем выше содержание энергии.

Когда мы описываем электромагнитный или световой спектр, лучше говорить о длине волны, чем о цвете. Это связано с тем, что видимый свет для человека составляет лишь небольшую часть светового спектра в целом, а именно диапазон длин волн от 400 до 700 нанометров (Нм, что составляет 10-9 м).

Как видно из рисунка 1, это очень маленький диапазон. На самом деле, это составляет менее 1 процента от общего спектра. Фотосинтетически активное излучение, или плотность потока фотосинтетических фотонов (ППФФ), - это диапазон света, который может быть использован растениями для фотосинтеза. Однако, поскольку ППФФ является суммированием всех фотонов в диапазоне 400-700 Нм, два очень разных спектральных распределения могут иметь один и тот же ППФФ. Это означает, что между ППФФ и спектральным распределением нет однозначной связи. Это также означает, что при сравнении источников света мы должны учитывать данные спектрального распределения, а также ППФФ.

ППФФ свет выражается в мкмоль /м2 / С и говорит нам, сколько световых фотонов достигнет заданной площади поверхности (m 2 ) в заданный промежуток времени (секунда). Для иллюстрации: большинству растений требуется минимум 30-50 мкмоль /м2 / с ППФФ, чтобы оставаться в живых.

Как растение чувствует свет

Свет не только обеспечивает фотосинтез энергией, но и служит источником информации для растений. Различные световые спектры дают растению представление об окружающей среде и, следовательно, о том, как оно должно выживать и, надеюсь, процветать и размножаться. В этом смысле состав света так же важен, как и общее количество света, используемого для фотосинтеза. Световой спектр в диапазоне от 300 до 800 Нм вызывает реакцию развития растения. Кроме того, известно, что ультрафиолетовый и инфракрасный (ИК) свет играет определенную роль в морфогенезе растений.

Растение получает информацию от света, который достигает его с помощью специальных пигментов, называемых фоторецепторами. Эти фоторецепторы чувствительны к различным длинам волн светового спектра.



Рисунок 2: растение получает информацию от света через три специальных фоторецептора: фототропины (фототроп), криптохромы и фитохромы. Первые два активны в ультрафиолетовом и синем свете, в то время как фитохромы реагируют на красный и Дальний красный свет.

Существует три группы фоторецепторов, см. Рисунок 2:

  • Фототропины
  • Криптохромы
  • Фитохромы

Первые два фоторецептора – фототропины и криптохромы-активны в нижнем диапазоне длин волн (УФ (А) и синий). Очевидно, что эти два рецептора выполняют разные функции. Фототропины отвечают за фототропизм или движение растений, а также за движение хлоропластов внутри клетки в ответ на количество света. Фототропины-это то, что заставляет стебли изгибаться к свету и раскрываться устьице.

Криптохромы - это пигменты, которые чувствуют направление света. Ингибирование удлинения стебля регулируется криптохромами, а также функционированием устьиц, синтезом пигментов и отслеживанием солнца листьями растений. Другие фоторецепторы-фитохромы-чувствительны к красному и Дальнему красному свету. Существуют две формы фитохрома, Pfr и Pr, которые взаимодействуют между собой. Наибольшее влияние на фотоморфогенез оказывают фитохромы. Удлинение стебля, избегание тени, синтез хлорофилла и реакция цветения-все эти функции обычно контролируются фитохромом.

Теперь, когда мы рассмотрели спектр света и фоторецепторы, ответственные за развитие растений, мы приходим к следующему вопросу: как мы можем применить эти знания в садоводстве? Что делает хороший спектр света для выращивания? Чтобы ответить на этот вопрос, нам нужно подумать о реакции растения на различные спектры света. Поскольку они попадают в основном под видимый свет, мы можем говорить о "цветах", начиная с самых важных для развития растений.

Синий свет (400-500 Нм)

Большая доля синего света оказывает тормозящее действие на удлинение клеток, что приводит к укорочению стеблей и утолщению листьев. И наоборот, уменьшение количества синего света приведет к увеличению площади поверхности листьев и удлинению стеблей. Слишком мало синего света негативно скажется на развитии растений. Многие растения нуждаются в минимальном количестве синего света, которое колеблется от 5 до 30 мкмоль/м2 /С для салата и перца до 30 мкмоль/м2 /С для сои.

Взаимодействие красного (600-700 Нм) и дальнего красного (700 – 800 Нм) света

Поскольку красный и Дальний красный свет имеют более высокую длину волны, они менее энергичны, чем синий свет. В сочетании с глубоким влиянием индуцированных красным цветом фитохромов на морфогенез растений для развития растений требуется относительно больше красного и дальнего красного света.

Две формы фитохрома, Pfr и Pr, играют важную роль в этом процессе. Поскольку красный и Дальний красный свет присутствуют в солнечном свете, растения в природе почти всегда будут содержать как ПФР, так и фитохромы. Растение воспринимает окружающую среду по соотношению между этими двумя формами; это называется фотостационарным состоянием фитохрома.

Фитохром Pr имеет пик поглощения света на длине волны 670 Нм. Когда Pr поглощает красный свет, он преобразуется в форму Pfr. Форма Pfr действует наоборот – когда она поглощает далекий красный свет на пике 730 Нм, она преобразуется в форму Pr. Однако, поскольку молекулы Pfr также могут поглощать красный свет, некоторые из молекул Pfr преобразуются обратно в Pr. Из-за этого явления нет линейной зависимости между фотостационарным состоянием фитохрома и отношением красного к дальнему красному. Например, когда отношение красного к дальнему красному свету превышает два, в фотостационарным состоянием фитохрома практически нет реакции, и поэтому развитие растений не влияет. Поэтому лучше говорить о фотостационарным состоянием фитохрома, чем о соотношении красного и дальнего красного света.

Количество Pr и Pfr говорит растению, какой свет оно получает. Когда присутствует много Pr, это означает, что растение получает больше далекого красного света, чем красный свет. Когда красный свет меньше, противоположное преобразование (от Pr к Pfr) затруднено, что означает, что есть относительно больше Pr.



Рисунок 3: поскольку дальний красный свет в основном отражается от поверхности листьев, растение получает (относительно) больше этого света, когда оно заполнено соседними растениями. Чтобы избежать тени, растение отрастает более длинные стебли, так что он может поймать больше света.

В средах, в которых многие растения растут близко друг к другу, весь красный свет от солнца используется для процесса фотосинтеза (между 400 и 700 Нм), и большая часть дальнего красного света отражается растениями (>700 Нм). Большинство растений, особенно те, что находятся в тени, получат в этой ситуации гораздо больше красного, чем красный свет. Как следствие, Pr увеличивается, и когда это происходит, растение чувствует, что ему нужно больше света для фотосинтеза и удлинения стебля запускается (см. Рисунок 3). В результате получаются более высокие растения с большим расстоянием между междоузлиями и более тонким стеблем. Это явный пример реакции избегания тени, когда растения стремятся захватить больше света, чтобы выжить.

Более высокие растения могут поглощать больше красного света, что увеличивает количество форм ПФР. Это вызовет большее ветвление, меньшее расстояние между междоузлиями и меньший вертикальный рост, чтобы максимизировать поглощение света для фотосинтеза. В результате растения тратят меньше энергии на выращивание как можно более высоких растений и выделяют больше ресурсов на производство семян и расширение их корневой системы.

Влияние светового спектра на цветение

На цветение также влияют формы Pr и Pfr. Продолжительность времени, в течение которого ПФР является преобладающим фитохромом, - это то, что заставляет растение цвести. В основном, уровни ПФР говорят растению, как долго длится ночь (фотопериодизм). Когда солнце садится, количество далекого красного света превышает количество красного света. В темноте ночи формы ПФР медленно превращаются обратно в Pr. Долгая ночь означает, что есть больше времени для этого обращения. Следовательно, в конце ночного периода концентрация ПФР будет низкой, и это приведет к тому, что короткодневные растения зацветут.

Ограниченное влияние зеленого света (500-600 Нм) на развитие растений

Часто предполагается, что только синий и красный свет помогают растениям расти и развиваться, но это не совсем верно. Хотя большая часть зеленого света отражается от поверхности растения (именно поэтому мы, люди, видим растения зелеными), сам зеленый свет также может быть полезен для растения. Сочетание различных световых оттенков может привести к более высокому фотосинтезу, чем сумма его частей. Исследования, проведенные на листьях салата, также показали, что рост растений и биомасса увеличивались при добавлении 24% зеленого света к красно-синему светодиоду при сохранении равного уровня PAR (150 мкмоль/м2/ s) между двумя объектами. Это указывает на то, что даже зеленый свет может оказывать положительное влияние на рост растений.

Ультрафиолетовый свет (300-400 Нм)

Ультрафиолетовое излучение также оказывает влияние на растения, вызывая компактный рост с короткими междоузлиями и маленькими толстыми листьями. Однако слишком большое количество ультрафиолетового излучения вредно для растений, так как оно отрицательно влияет на ДНК и мембраны растения. Фотосинтез может быть затруднен слишком большим количеством ультрафиолетового излучения. Исследования показывают, что это происходит при значениях УФ-излучения выше 4 кДж/м2 /сут.

Вывод

Это возвращает нас к общему вопросу " что создает хороший спектр света для роста?"Довольно трудно дать общий ответ на этот вопрос, так как он в значительной степени зависит от типа растения и требований выращивания. Для "нормального" развития растений эти спецификации рекомендуются:

· Большинство растений нуждается в минимальном количестве 30-50 мкмоль/м2 /с фотосинтетического света, чтобы остаться в живых

· Требуется минимальное количество синего света, которое варьируется от 5 до 30 мкмоль / м2 /с

· Требуется несколько большая доля красного и дальнего красного света, по сравнению с синим светом

· Ограниченное количество ультрафиолетового излучения, менее 4 кДж/м2 /сут.

Также помните, что:

· Более синий свет приведет к более коротким стеблям и более толстым листьям

· Слишком большое количество дальнего красного света или неравный баланс с красным светом приведут к удлинению растений

· Низкое отношение красного к дальнему красному и, следовательно, ограниченное количество красного света в начале ночи важно для цветения растений короткого дня

· Далекий красный свет в одиночку не регулирует цветение

· Зеленый свет благоприятен для фотосинтеза, хотя и не влияет на цветение или развитие растений

правильный свет для растений теория

Большую часть года, света для растений очень мало. И те, кто выращивают их круглогодично в закрытых помещениях, а не по сезонно на улице, сталкиваются из-за этого с большими проблемами.

Единственный выход их решить — это использовать искусственные источники света. Какие из них лучше выбрать и на что ориентироваться?

как освещать растения светильником

В первую очередь, рядовой обыватель обращает внимание на уровень потребления электроэнергии. Чем больше у вас будет растений, тем больше потребуется светильников и лампочек для них.

Неохота платить за электричество больше стоимости урожая. Поэтому при покупке светильников, большое внимание уделяют такому параметру как КПД лампочки.

лампочка накаливание преобразование света в тепло

Всем известные лампочки-груши с нитью накаливания, в процессе работы очень сильно нагреваются. Связано это с тем, что в них большая часть эл.энергии преобразуется не в свет, а в бесполезное тепло.

таблица мощностей и люмен для различных ламп

Поэтому постепенно от них начали отказываться и стали переходить на энергосберегающие лампы. Их КПД примерно в 4 раза выше, чем у обычных.

Однако по факту, мы получили те же самые люминесцентные лампы, хоть и меньшего размера, но содержащие ртуть. Если такая лампочка разобьется, вам придется срочно принять меры безопасности и провести так называемую демеркуризацию всего помещения.

что делать если разбилась энергосберегающая лампочка дома

Не только сама ртуть, но и ее пары ядовиты для человека. И даже в сверхмалых концентрациях могут вызвать тяжелые последствия.

фитолампы для растений вся правда использования

Поэтому впоследствии им на замену пришли более безопасные светодиодные источники света. А специально для растений были разработаны фитолампы.

У светодиодов также высокий КПД и минимальный нагрев. А самое главное, они по-прежнему совершенствуются и улучшают свои характеристики год от года.

Однако как оказалось, КПД лампочки это не главное в правильном выращивании растений. Самое важное — это их спектр и насколько он отличается от естественного солнечного излучения. Ведь именно к нему привыкли все цветы, овощи, фрукты, ягоды.

свет это электромагнитная волна

Что же прячется за таким научным названием как спектр излучения? Чтобы понять это, придется вспомнить что такое свет? А свет — это не что иное, как электромагнитная волна.

Причем каждый цвет имеет определенную длину волны, отсюда и получается радуга. Однако разная длина означает не только разный цвет, но самое главное — разное количество энергии.

цвета rgb и сила освещения

Если все цвета условно представить не в виде привычной прямой линии, а в виде шариков, то синий шарик будет самым большим по размеру. Зеленый поменьше, а красный окажется самым маленьким.

Все цвета всегда упрощают именно до этих трех видов R-G-B:

сколько энергии содержится в каждом цвете и какая у них длина волны

Почему синий шарик окажется самым объемным? Потому что длина его волны самая маленькая. Она меньше чем у зеленого цвета. А у зеленого в свою очередь, меньше чем у красного.

как мы различаем цвета

В итоге и получается, что красный цвет несет в себе меньше энергии, а синий больше всего.

И тут у многих может возникнуть логичный вопрос: "А есть ли разница в том, каким именно спектром освещать растения?" И если есть, можно ли эти знания как-то применить с пользой для дела?

Однако все оказывается не так просто. Здесь нужно учитывать еще одну характеристику света - его качественный или спектральный состав.

Чтобы понять как отдельные цвета влияют на эффективность фотосинтеза, проводились научные эксперименты. Из целого листа выделялись отдельные чистые хлорофиллы. После чего, в течение длительного времени, их засвечивали светом различного спектра и проверяли результаты.

график поглощения хлорофилла растениями при разной засветке

При этом в первую очередь, смотрели на эффективность поглощения СО2, то есть интенсивность фотосинтеза. Ниже представлен итоговый график такого эксперимента.

Из него видно, что хлорофилл в основном поглощается в синей и красной областях. В зеленой области эффективность минимальна.

Однако на этом не остановились и провели еще один эксперимент. В растениях также содержатся каротиноиды. Они хоть и играют незначительную роль, но и про них забывать не стоит.

эксперимент с каротиноидами при засветке растений

Так вот, аналогичный опыт с каротиноидами показал, что ранее выделенные пигменты листа, поглощают в этом случае свет преимущественно в синей области спектра.

Посмотрев на это, все дружно решили что зеленый цвет абсолютно бесполезен и им можно пренебречь. Основной упор все специалисты предлагали делать только на синий и красный свет.

спектры излучения разных источников освещения

И соответственно более правильным считалось выбирать лампочки, которые излучают именно эти спектры больше всего.

Но как оказалось, изначальная ошибка экспериментаторов закралась в том, что они использовали не весь лист целиком, а выделяли из него пигменты и смотрели результаты только по ним.

поглощение света разных цветов растениями какие фитолампы лучше

На самом деле, в цельном листе свет очень сильно рассеивается. Провели еще опыты, но уже смотрели на весь лист и использовали разные растения. В итоге получили данные, которые более точно показывали насколько эффективно свет поглощается всем листком, а не его отдельными "кусочками".

выбрось батарейку и ничего не будет

С одной стороны, здесь опять доминируют синий и красный свет. Отдельные пики потребления фотонов доходят до 90 процентов.

Однако к удивлению многих, и зеленые лучи оказались не столь бесполезны как думали раньше. Дело в том, что благодаря своей проникающей способности, зеленый снабжает энергией более глубокие участки листвы, куда не долетают ни красный, ни синий.

освещение растений зеленым цветом

Таким образом, если полностью отказаться от зеленого, вы можете ненароком погубить растение, и даже не будете понимать в чем причина.

Получается, что все цвета R-G-B нормально усваиваются листьями и нельзя выбрасывать какой-то один из них. Вот только необходимость энергии на разных цветах у разных растений не равноценна.

как цвета усваиваются растениями

Для того чтобы объяснить это более наглядно и понятнее, проведем аналогию с чем-то съедобным. Допустим у вас на столе лежит спелый персик, ягода малины и груша.

Для вашего желудка все равно что вы съедите. Он одинаково хорошо переварит все ягоды и фрукты. Но это не означает, что для вас в последствии не будет никакой разницы. Разные продукты все равно по-разному влияют на ваш организм.

как выбрать светодиодную лампу

Съесть 10 ягод клубники это не то же самое, что 10 груш или персиков. Вы должны найти определенный баланс.

То же самое происходит и со светом для растений. Ваша задача грамотно подобрать, насколько каждого света должно быть в общем спектре. Только таким образом можно рассчитывать на быстрый рост.

солнечный свет

Самый главный вопрос - какой свет будет считаться лучшим? Казалось бы, что тут гадать. Лучший вариант это солнечный свет и его близкие аналоги.

интенсивность солнечного света

Ведь миллионы лет растения именно под ним и развивались. Однако посмотрите на картинку ниже. Вот как реально выглядит интенсивность солнечного света.

Видите, насколько здесь много зеленого. А как мы выяснили ранее, он хоть и полезен, но не в такой степени как другие лучи. Когда говорят, что солнечный свет самый эффективный и нечего отступать от матушки природы, не учитывают один простой факт.

В реальной жизни, а не в экспериментах, растения адаптируются не только к солнечному свету, но также и к условиям окружающей их среды, в которой они произрастают.

когда зеленый цвет полезен в свете солнечном

Допустим на глубине водоема, где растет какая-то зелень, доминирует синий цвет. А вот в лесу под кроной деревьев, уже победителем выходит зеленый.

Поэтому мнение, что солнечный свет самый лучший, в корне не верно. Здесь нужно больше говорить о том, что он самый универсальный и подходит абсолютно для разных условий.

Всего на этих двух элементарных примерах между огурцом и томатом хорошо видно, насколько у них разная потребность. И если одной и той же лампочкой засвечивать оба овоща сразу, то результаты будут совершенно непредсказуемыми.

инаглядное изменение цветовой температуры солнечного света

Кроме правильно подобранного спектра, важную роль играет еще два параметра - время и ритм освещения.

Все растения изначально произрастали на улице при естественном солнце. А солнце как известно не висит в зените 24 часа в сутки. Утром всходит, а вечером заходит. То есть естественная интенсивность освещения сначала постепенно растет, а во второй половине дня, достигнув своего пика, начинает падать.

111_DNaT

Это и есть так называемый ритм. И растения его хорошо чувствуют. Измените ритм, не меняя ничего другого, и ваши овощи могут начать болеть, почувствовав себя "не в своей тарелке".

Поэтому опытные садоводы выделили три группы растений - короткого, длинного и нейтрального дня.

заход солнца и интенсивность света на рост растений

Длинный день - это когда интенсивность света наблюдается более 13 часов. Короткий - до 12 часов. Растениям для нейтрального дня все равно когда созревать, хоть при коротком, хоть при длинном.

Не будете соблюдать заданный природой цикл и у вас упадет урожайность. Сами растения будут какими-то карликовыми.

Поэтому мало просто купить супер разрекламированные сорта, правильно их высадить, удобрять и поливать.

как освещать растения разным цветом

Как оказывается, еще нужно их правильно освещать. Причем и здесь нет универсального светильника для больших групп растений, везде требуется индивидуальный подход.

Только в этом случае результат вас порадует и вкусом и размером.

Основной задачей земледелия во все периоды его существования является повышение использования растениями энергии солнечной радиации.

Продуктивность растений неразрывно связана с приходом солнечной радиации. Световая энергия является одним из важнейших факторов в жизни растений. Поступает она в виде прямой и рассеянной радиации. Прямая радиация попадает на растения при безоблачном небе в виде параллельных лучей в основном на наружные листья. Рассеянная радиация образуется в результате преломления солнечных лучей взвешенными в атмосфере парами воды, льда, частицами пыли, а также внешними листьями растений. Важно отметить, что долевое участие рассеянных лучей в фотосинтезе растений в целом значительно большее, нежели прямой солнечной радиации.

Приходящая на землю энергия солнца состоит в основном из видимых лучей (360-750 нм), на долю которых приходится около 50% энергии и невидимых лучей: ультрафиолетовых (УФ) = 200-360 нм — 3-4% и инфракрасных (ИК) 750-1200 нм — 46%. С точки зрения участия солнечного излучения в процессах фотосинтеза ключевая роль принадлежит видимому спектру излучения 400-740 нм, получившему название физиологически (фотосинтетически) активной радиации (ФАР).

Основная энергия для фотосинтеза поставляется красными (620-740 нм) и оранжевыми (595-620 нм) лучами. Желтые (565-595 нм) и зеленые (490-565 нм) лучи физиологически малоактивны и практически не влияют на интенсивность фотосинтеза. Синие (420-490 нм) и фиолетовые (360-420 нм) лучи оказывают влияние на развитие побегов и листьев, ультрафиолетовые лучи (220-360 нм) способствуют образованию биологически активных веществ задерживающих рост верхушечной почки и вытягивание стебля. Однако, несмотря на разную физиологическую роль отдельных лучей, растения нормально развиваются только при наличии всего спектра видимых лучей.

Приход на посевы ФАР определяется широтой местности, продолжительностью периода вегетации возделываемых культур, экспозицией поля, метеоусловиями года. В зависимости периода вегетации растений приход ФАР на посевах условиях Московской области составляет 6-12 ГДж/га (1,5-3,0 млрд. ккал) в год. В северной части Нечерноземной зоны приход ФАР на 1 гектар за вегетационный период составляет 4-6 ГДж, в средней полосе — 6-10 ГДж и южной части — 10-14 ГДж. В лесостепной и степной зонах приход ФАР за вегетационный период составляет 15-18 ГДж/га.

Максимальная интенсивность фотосинтеза и использование растениями ФАР достигается лишь при высоком уровне сбалансированного питания растений макро — и микроэлементами, благоприятном диапазоне температур и влажности почвы. Недостаточное или избыточное обеспечение растений элементами питания негативно сказывается на фотосинтезе, продукционном процессе и эффективности удобрений.

Следует отметить, что агроклиматические ресурсы РФ значительно ниже, чем США и стран Западной Европы, поэтому сопоставлять урожайность сельскохозяйственных культур в России и тем более в Нечерноземной зоне, с урожайностью многих зарубежных стран, биоклиматический потенциал которых в 1,5-2,5 раза выше не совсем корректно. Однако в нашей стране даже этот биоклиматический потенциал не используется, о чем можно судить по урожайности зерновых культур в хозяйствах и сортоучастках.

Сравнительная оценка использования зерновыми культурами биоклиматического потенциала (А.Н. Каштанов, 1990)

Область Агроклиматические показатели Урожайность, т/га
Биоклиматический потен­циал, балл Сумма температур > 10 °C Коэффици­ент увлаж­нения, КУ хозяйства на госсортоучастках
Брянская 124 2250 0,55 1,18 2,07
Владимирская 113 1975 0,54 1,62 3,77
Ивановская 107 1950 0,56 1,36 3,64
Тверская 102 1850 0,60 1,09 3,24
Костромская 100 1750 0,50 1,10 3,03
Калужская 116 2100 0,57 1,16 2,67
Московская 113 2050 0,56 2,23 3,79
Смоленская 111 2025 0,60 1,28 3,57
Нижегородская 110 2000 0,48 1,34 3,24
Ярославская 103 1875 0,59 1,29 3,11
Вологодская 92 1675 0,60 1,38 3,47
Кировская 98 1875 0,60 1,16 3,23

Исходя из современного уровня урожайности сельскохозяйственные культуры в европейской части России, растения усваивают примерно 1% ФАР, вместо 2-3% на госсортоучастках и передовых хозяйствах. Благодаря соблюдению агротехники урожайность зерновых культур на сортоучастках примерно в 1,5-2 раза выше средней урожайности по хозяйствам региона. Практика передовых хозяйств убедительно свидетельствует, что при удовлетворении потребности сельскохозяйственных культур в элементах питания путем применения удобрений, соответствующей агротехнике возделывания, в т. ч. защите растений от вредителей и болезней, урожайность в каждом регионе может быть повышена в 2-4 раза по сравнению с существующей.

Для оценки степени реализации биоклиматического потенциала, урожайность в хозяйстве сопоставляют с действительно возможным урожаем (ДВУ) — максимальный урожай культуры возможный в данных почвенно-климатических условиях. Наиболее полное соответствие продуктивности культур агротехническим условиям их возделывания характеризует близость производственных урожаев (ПУ) к ДВУ. В настоящее время урожай в производственных условиях в РФ составляет не более 20-25% ДВУ, что обусловлено многими факторами, в т. ч. дефицитом элементов питания, нарушением агротехники, неблагоприятными для роста водным и тепловым режимами.

В мировом земледелия имеется много примеров получения довольно высоких урожаев. Так, например, рекордная урожайность зерна пшеницы в полевых опытах достигла 170 ц/га, риса — 270, кукурузы — 260, , картофеля — 1250, капусты белокочанной (сорт Слава) — 4340, кормовой свеклы — 2750 ц/га и т. д. Благодаря применению минеральных удобрений и средств химической защиты растений во многих странах Западной Европы к настоящему времени средняя урожайность зерновых культур достигла 60-80 ц/га, семян рапса — 40-50 ц/га, картофеля — 500-600, сахарной свеклы 550-650 ц/га.

Многочисленные примеры высоких урожаев озимой пшеницы (100-125 ц/га), ячменя (90-110 ц/га), картофеля (600-850 ц/га), зеленой массы кукурузы (900-1200 ц/га), кормовой свеклы (до 1600 ц/га) и других сельскохозяйственных культур имеются и в России, что свидетельствует о возможности значительно повысить усвоение ФАР растениями.

Многочисленные данные научно-исследовательских учреждений свидетельствуют о большой потенциальной продуктивности новых сортов и гибридов сельскохозяйственных культур, однако в производственных условиях она значительно (2-4 раза) ниже.

Применение удобрений существенно повышает фотосинтетическую деятельность растений, КПД ФАР и урожайность. В Нечерноземной зоне европейской части России, при урожайности сельскохозяйственных культур 100-120 ц/га т. е. усваивается около 3-4% ФАР.

По данным И. С. Шатилова и А. Г. Замараева (1986) на удобренных вариантах КПД ФАР посевов был в 2-3 раза выше, чем без удобрений. В то же время даже в годы с благоприятными погодными условиями КПД ФАР редко превышал 3 %. Для повышения использования ФАР сельскохозяйственных культур в Центральном районе Нечерноземья до 2,5-3% необходимо использовать продуктивные сорта, способные давать урожаи 70-80 ц/га, полное удовлетворение растений в течение вегетации в элементах питания, в воде, оптимальная реакция почвы и сортовая агротехника.

Влияние удобрений на урожай сухой надземной массы и основной продукции полевых культур (ц/га) и КПД ФАР в среднем за 6 лет (Пономарев и др. 1989)

Культура При внесении удобрений Без внесения удобрений
надземная биомасса в т.ч. основная продукция КПД ФАР надземная биомасса в т.ч. основная продукция КПД ФАР
Озимая пшеница 86,9 34,8 1,66 29,2 11,7 0,56
Ячмень 72,5 34,5 1,47 25,6 12,2 0,52
Овес 72,4 31,5 1,34 23,3 10,1 0,42
Картофель 70,7 35,4 1,21 38,5 19,5 0,64
Свекла кормовая 101,4 67,6 1,34 51,2 34,2 0,68
Кукуруза 47,8 47,8 1,12 26,6 26,6 0,63
Вико-овес 48,8 48,8 1,30 26,6 26,6 0,72
Клевер 38,3 38,3 1,10 18,6 18,6 0,53

Получение высоких устойчивых урожаев возможно лишь при строгом соблюдении технологии возделывания культур. В то же время из-за отсутствия в большинстве хозяйств России необходимых удобрений и сельскохозяйственных машин сортовая технология возделывания многих культур в значительной мере не выполняется ни по набору операций, ни по срокам их проведения.

Для реализации потенциальных возможностей возделываемых культур необходима оперативная диагностика и корректировка минерального питания намечаемых технологических приемов с учетом меняющихся погодных и хозяйственных условий, так как заранее предусмотреть состояние посевов практически невозможно (Ю. И. Ермохин, 2005).

Существенное снижение потребление ФАР растениями и урожайности в производственных условиях нередко наблюдается из-за нарушения операций по внесению удобрений. По данным ВИУА (1998), из-за неравномерности внесения удобрений центробежными машинами (РУМ-5, МВУ-8 и др.), достигающей в производственных условиях нередко 40%, эффективность применения азотных удобрений снижается на 20-25%, фосфорных удобрений на 30-40% и калийных — на 15-20%.

В хозяйствах Нечерноземной зоны из-за неблагоприятного фитосанитарного состояния посевов общие потери потенциального урожая от сорняков, вредителей и болезней составляют более 25-35% (Л. М. Державин, 2005).

Большое влияние на фотосинтетическую деятельность растений и урожайность сельскохозяйственных культур оказывает площадь ассимиляционной поверхности (в основном листьев) и фотосинтетический потенциал (ФП), определяемый произведением площади листьев (м 2 ) на продолжительность (количество дней) их работы. Как недостаточная, так и чрезмерно большая ассимиляционная поверхность приводит к снижению использования ФАР и урожайности растений. При малой площади листьев снижение урожайности связано с недостаточным фотосинтетическим потенциалом для формирования высокого урожая, при большой поверхности листьев — из-за повышенного расхода органических вещества на дыхание и снижения интенсивности фотосинтеза вследствие затенения нижних листьев верхними. На площадь листовой поверхности наиболее существенное влияние оказывают влагообеспеченность и уровень азотного питания растений. Для большинства сельскохозяйственных культур оптимальная площадь листьев в 4-6 раз превышает площадь посева.

По данным И. С. Шатилова и А. Г. Замараева (1988) в благоприятные по метеорологическим условиям годы площадь листьев и фотосинтетический потенциал зерновых культур в 1,5-3,0 раза превосходили средние многолетние, в засушливые годы в 2 раза ниже. При этом на удобренных вариантах опыта ассимиляционная поверхность листьев зерновых культур, картофеля и многолетних трав в зависимости от фазы развития была в 2-4 раза больше, чем в вариантах без удобрений. В среднем каждая тысяча единиц ФП в условиях Нечерноземной зоны создает примерно 3 кг зерна. Отсюда следует, что поздние сорта сельскохозяйственных культур с высоким ФП более урожайны, нежели ранние.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Читайте также: