Влияние солнца на растения

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

Природа, естественная среда, окружающая человека в его повседневной жизни - самый интересный объект изучения. Я живу в Иркутской области где лето короткое и большее время длится зима и межсезонье, зелень в моих краях радует глаза человека около пяти месяцев. Поэтому мне нравится выращивать цветы и растения у себя дома.

В дворянских семьях в основном выращивали пальмы, фикусы, кротоны.

В бедных семьях были цветы: герань, бальзамин, колеус.

Жизнь человека связана с природой, а значит, и с жизнью растений. Издавна люди украшали цветами и растениями себя и свои жилища.

Обычай украшать жилище растениями, возможно, возник в стране с резко выраженной сменой времён года, чтобы задержать дома зелёный островок живой природы. Ведь это и красиво, и полезно для здоровья!

Учеными уже давно доказано положительное влияние растений на микроклимат помещений. Комнатные растения поглощают углекислый газ, тяжелые металлы из воздуха, запахи строительных материалов и клея, источаемые нашими жилищами, болезнетворные бактерий, являются естественными увлажнителями, зеленый цвет листвы улучшает настроение.

Поэтому растения, которые живут с нами в доме, являются моими друзьями. Зимой растениям приходится тяжело, сокращается световой день, батареи центрального отопления сильно иссушают воздух, многие растения переходят в состояние покоя, у них бледнеют и желтеют листья. Растения плохо растут. В зимнее время чувствуется нехватка витаминов, а так хочется покушать свежей зелени. Мне стало интересно, можно ли зимой вырастить у себя дома огород на подоконнике, чтобы и в зимнее время года подавать к столу свежие овощи?

Актуальность темы: При выращивании растений в домашних условиях растения часто болеют и погибают, особенно в зимний период. Я надеюсь, что результаты моей исследовательской работы помогут мне создать благоприятные условия для моих комнатных растений, и я смогу поделиться своими знаниями с одноклассниками.

Моя гипотеза: если не будет достаточного количества света, то растения будут плохо расти.

Цель работы: Изучить влияние света на рост растений.

Задачи работы:

  • Изучить литературу по данной теме;
  • Провести опыты с растениями по изучению влияния света на рост растений;
  • Подобрать оптимальные условия для роста растений

Этапы работы:

  1. Первый этап (ноябрь 2016г.) предполагал изучение и анализ научно- популярной, учебной литературы и периодической печати по теме проекта. На основе этого анализа были выявлены направления исследования, определены его объект, предмет, цель, задачи и сформулирована рабочая гипотеза.
  2. На втором этапе (декабрь - 2016г.) был произведен первый посев растений и наблюдение за влиянием развития растений в зависимости от освещенности.
  3. На третьем этапе (январь 2017г.) анализировались и обрабатывались результаты эксперимента, разрабатывались рекомендации для улучшения содержания и выращивания растений в домашних условиях, второй посев растений.
  4. На четвертом этапе (февраль 2017г.) разработка автоматизированной системы управления микроклиматом растений.

Практическая значимость проекта заключается в том, что разработанные нами рекомендации могут найти широкое применение у людей увлекающихся комнатным цветоводством и растениеводством.

2. Обзор литературы

Из энциклопедии я узнал, что растениям, как и человеку для жизни и нормального роста необходимо питание. Для хорошего роста растениям нужны соответствующие условия: тепло, вода, почва, воздух и свет. Почва необходима потому, что в ней есть питательные вещества. Вода помогает эти питательные вещества получить из почвы. Это возможно, если в комнате тепло. Воздух нужен растениям, как и всем другим живым существам, для дыхания. Для каждого растения нужны определенные условия для лучшего роста и развития. Солнечный свет имеет большое значение в жизни растений. Солнечный свет и углекислый газ, входящий в состав воздуха, соединяясь друг с другом и с водой в листьях растений, образуют особое вещество хлорофилл. Благодаря хлорофиллу растения имеют зелёный цвет. Хлорофилл вырабатывает особый вид сахара, называемый глюкозой. В процессе своего питания растение выделяет из листьев кислород. Такой процесс носит название фотосинтеза.

Фотосинтез растений - это очень сложный химический процесс, в которым вода и двуокись углерода (углекислый газ) при участии света преобразовываются в кислород и сахарозу.

Проще говоря, энергия света преобразовывается в химическую энергию! Далее все живые существа живут за счет этой химической энергии, аккумулированной растениями. Свет солнечный или свет от специальных ламп, применяемых для выращивания овощей, не является однородным, а представляет собой соединение электромагнитных волн с различной длиной, плавно переходящих друг в друга. Соединение это носит название спектра света. Каждая часть солнечного спектра имеет свою длину волны, которая измеряется в миллимикронах, или нанометрах (нм). Ультрафиолетовая часть лежит ниже 380 нм, фиолетовая – в зоне 380-430 нм, синяя – 430-490 нм, зеленая – 490-570 нм, желтая – 570-600 нм, красная – 600-780 нм, инфракрасная – выше 780 нм. Кроме видимой части (380-780 нм) на рост и развитие растений оказывают существенное влияние ультрафиолет до 295 нм и инфракрасные лучи до 2500 нм.


С увеличением высоты Солнца происходят изменения в процентном отношении отдельных составляющих спектра. Так, увеличивается количество лучей ультрафиолетовых и снижается количество инфракрасных.

Овощные растения в любом месте возделывания испытывают на себе постоянно меняющийся спектральный количественный и качественный состав света. Более полный свет получают культуры в открытом грунте. В теплицах света по количеству может быть до 30% меньше, из-за ограждающих материалов и степени их чистоты. Через стекло не проходят лучи с длиной волны менее 340 нм, а пленка пропускает длинноволновые инфракрасные
лучи.

Каждому участку спектра света предназначена своя роль в жизнедеятельности растений.

Ультрафиолетовое излучение менее 280 нм является гибельным для растений. От 10-15 мин такого воздействия теряют структуру растительные белки и прекращают деятельность клетки. Внешне это проявляется в пожелтении и побурении листьев, скручивании стеблей и отмирании точек роста.

Длинные ультрафиолетовые лучи (315-380 нм) необходимы для обмена веществ и роста растений. Они задерживают вытягивание стеблей, повышают содержание витамина C и других. Средние лучи (280-315 нм) действуют наподобие пониженных температур, способствуя процессу закаливания растений и повышая их холодостойкость. На хлорофилл ультрафиолетовые лучи практически не действуют, но у растений, перемещенных из темноты на свет (этиолированных), он интенсивно образуется.

Лучи фиолетовые и синие тормозят рост стеблей, листовых черешков и пластинок, формируют компактные растения и более толстые листья, позволяющие лучше поглощать и использовать свет в целом. Эти лучи стимулируют образование белков, органосинтез растений, переход к цветению короткодневных растений, замедляют развитие растений длиннодневных. Сине-фиолетовая часть спектра света почти полностью поглощается хлорофиллом, что создает условия для максимальной интенсивности фотосинтеза.

Зеленые лучи практически проходят через листовые пластинки, не поглощаясь ими. Последние под их действием становятся очень тонкими, а осевые органы растений вытягиваются. Уровень фотосинтеза – самый низкий. Красные лучи в сочетании с оранжевыми представляют собой основной вид энергии для фотосинтеза. Наиболее важной является область 625-680 нм, способствующая интенсивному росту листьев и осевых органов растений. Этот свет очень полно поглощается хлорофиллом и увеличивает образование углеводов при фотосинтезе. Зона красно-оранжевого света имеет решающее значение для всех физиологических процессов в растениях

Какой спектр нужен растениям?

Очень часто в интернете можно увидеть вот этот график.


Из которого следует, что пики фотосинтеза и синтеза хлорофилла приходятся на длины волн 445 нм и 660 нм.

Но кроме хлорофилла (зеленого красителя), лист содержит еще и другие пигменты, каротиноиды, которые помогают растениям усваивать и другие длины волн!

А это означает, что лист растения имеет возможность усваивать свет с широким спектром, и фотосинтез протекает при постоянно меняющемся спектре света (а в природе так и происходит, в течении дня световой спектр постоянно меняется).

Это и объясняет, почему скорость фотосинтеза практически не зависит от спектра от голубого до красного.

Смотрим интегральную (не только по хлорофиллу) относительную чувствительность листьев растений от длины волны.


Кстати на этом же графике можно увидеть восприимчивость зрения человека от длины волны. Здесь можно четко увидеть пик восприимчивости на границе зелено-желтой области.

Т.е. человек и растение видят спектр излучения очень по разному. Растения чуть больше отражают (не усваивают) зеленую составляющую

спектра, а так как человек особенно чувствителен именно к этой длине волны, то ему растения кажутся выраженно зеленого цвета.

Глядя на график можно увидеть, что растения могут усваивать свет в широком диапазоне волн! И каждая волна нужна растению!

Поэтому лучше осуществлять досветку, т.е. в дополнение к естественному свету. Если же растения растут только под искусственным светом, то нужно обеспечивать наличие разных частей спектра, в т.ч. и зелено-желтой его части.

3. Методика и результаты исследования

Выводы

Результаты моего исследования помогли мне ответить на интересующие меня вопросы. Эксперимент доказал, что растения не могут расти и развиваться без света, потому что при отсутствии солнечного света не происходит процесс питания растений, а значит растение не получает энергию, необходимую для жизни. При недостатке света растения сильно вытягиваются, болеют что может привести их к гибели.

Мои предположения, что без света растения не будут расти подтвердились. Солнечный свет благоприятно влияет на развитие растений, а значит солнечный свет является источником жизни на Земле.

При использовании досвечивания в период короткого светового дня растения развиваются и хорошо растут, цветут. Искусственное освещение помогает выращивать здоровую рассаду, получать урожай в течение всего года и дольше любоваться цветением любимых растений.

Использование автоматических систем облегчают уход за растениями и улучшают условия содержания растений. Я считаю в будущем при развитии доступной электроники такие системы будут в каждом доме. В данной работе применялась электроника и датчики производства Китай в виду их низкой стоимости по сравнению с аналогами.

Список используемой литературы

1. Багрова Л.А. Я познаю мир (растения). Детская энциклопедия. М.: АСТ: Люкс, 2005 г.

2. Ликум А. Все обо всем: популярная энциклопедия для детей, том IV М.: Компания Ключ – С, филологическое общество Слово, ТНО АСТ 1994г.

3. Сергеев Б.Ф. Я познаю мир: Биология. Детская энциклопедия. М.: ООО Издательство АСТ, 2004г.


Многие растения, особенно газонные травы, цветы, розы, овощи, фруктовые и хвойные деревья (вечнозеленые игольчатые), процветают на ярком солнце, которое обеспечивает обильную энергию для роста, цветения и плодоношения. Но некоторые растения, особенно те, которые произрастают в лесах и садах, нуждаются в более темных условиях.

Чем полезен и вреден солнечный свет для растений

Оценка условий освещения

Перед посадкой важно тщательно оценить тип освещения, который имеется в каждой части двора. Вот несколько советов, которые помогут определить условия освещения:


Интенсивность солнца

Необходимо учитывать разницу в интенсивности солнца при посадке на восточной и западной стороне деревьев или зданий, отбрасывающих тень. Даже если участки, обращенные на восток и запад, получают одинаковое количество солнечных часов, они не дадут одинаковых результатов.

  • Сады с восточной экспозицией освещаются прохладным утренним солнцем, а затемняются днем. Они являются идеальным местом

для минимизации теплового стресса в южном климате или для растений, таких как рододендроны, которые могут гореть под жарким солнцем.

  • Сады с западной экспозицией затенены утром и залитые жарким солнцем днем. Это может привести к солнечному ожогу, обесцвечиванию, а иногда и к гибели нежных листьев, особенно в теплых климатических условиях и при выращивании чувствительных молодых или любящих тень растений. Послеобеденное солнце также может привести к выцветанию ярких цветов.

Тем не менее, западная сторона здания является идеальным местом для любящих солнце и засухоустойчивых растений.

Видео

Заключение

При выращивании горшечных растений в помещении лучше добавить естественный свет с флуоресцентными или растущими огнями. Иногда зимой погода может быть облачной в течение нескольких дней, даже недель. Это создает проблемы для тропических растений, горшечных цветов и даже листвы, которым нужен свет, чтобы оставаться здоровым. Решение состоит в том, чтобы подвесить флуоресцентный светильник из магазина прямо над комнатными растениями. Специальные люминесцентные лампы или лампы полного спектра (разработанные для получения длин волн света, которые больше всего нужны растениям) могут использоваться вместо люминесцентных ламп для получения впечатляющих результатов с цветущими растениями. Для упрощения технического обслуживания можно подключить источники света к автоматическому таймеру, а затем включать их на 14-16 часов в день и снова выключать ночью. Независимо от того, насколько интенсивным или тусклым является источник освещения или в каком направлении он идет, все еще можно выращивать красивые растения.


Вопрос о связи урожаев сельскохозяйственных культур с солнечной активностью имеет длинную историю. Известно, что еще в III в. до н. э. Катон Старший, римский писатель, заметил, что цены на рожь зависели от солнечной активности (от "помрачения Солнца") . При высокой солнечной активности урожаи ржи были лучше и поэтому цены на рожь снижались. Во времена Галилея эту проблему обсуждал Батиста Балиани. Он высказал предположение о влиянии солнечных пятен на Землю. Казалось естественным, что потемневшие участки поверхности Солнца (пятна) излучают меньше солнечной энергии. Поэтому чем больше пятен, тем заметнее охлаждение Земли, которое оказывает влияние на растительный мир. Откуда было знать в то время, что пятна являются источником солнечной энергии, которая переносится к Земле невидимыми потоками заряженных частиц.

Английский астроном Вильям Гершель также интересовался, как количество пятен на Солнце может влиять на развитие растений. Что такое влияние имеется, он не сомневался. Это было в XVIII в., когда существование 11-летнего цикла солнечной активности еще не было установлено. Но было достоверно известно, что количество пятен на Солнце меняется от года к году. Чтобы внести ясность в данный вопрос, Гершель сопоставил собранные им данные о солнечных пятнах почти за двести лет с рыночными ценами на пшеницу. Связь оказалась в принципе очень простой и четкой — цены были тем меньше, чем выше была солнечная активность. При высокой солнечной активности климат становится более влажным, поэтому урожаи пшеницы лучше, а рыночные цены на нее ниже.

Впоследствии этим вопросом занимались многие исследователи. Было установлено, что развитие растений (а значит, и урожаи) тесно связано с уровнем солнечной активности. Конечно, это справедливо не только для ржи и пшеницы. Так, качество вина и урожаи винограда связаны определенным образом с уровнем солнечной активности. Более детальные исследования показали, что связь между солнечной активностью и ростом растений зависит и от местных особенностей климата, как это мы уже видели в случае деревьев и кустарника. Причем солнечная активность влияет на рост растений не только через изменение количества осадков и температуры, но и другим, более окольным путем, — через болезни сельскохозяйственных культур. Если солнечная активность усиливает вредоносность болезней растений, то их рост и урожайность будут от этого страдать. В разных регионах это влияние солнечной активности на вредоносность болезней растений (например, бурой ржавчины пшеницы) различно. Поэтому будет отличаться и конечный результат, то есть урожайность сельскохозяйственных культур в разных регионах. Но всегда неизменно она выявляет связь с солнечной активностью. Но в одних случаях эта связь положительная, а в других отрицательная. Это и затрудняло решение данного вопроса. Один из первых русских исследователей солнечно-земных связей М. А. Боголепов писал: "Явление периодичности— есть реальный факт, от которого нельзя отвернуться, но оно неуловимо по какой-то непонятной причине".

Нетрудно себе представить, что солнечная активность не может вызывать точно одинаковые изменения в атмосфере вокруг всей Земли. Например, атмосферное давление не может одновременно повыситься на всей Земле, поскольку нет такого поршня, который бы одновременно сжал атмосферу со всех сторон. За счет приходящей от Солнца энергии в одних местах атмосферы давление увеличивается. Но поскольку общая масса атмосферы остается неизменной, то в других местах атмосферное давление уменьшается. То есть на одно и то же солнечное явление отклик атмосферы в разных регионах различен. В районах пониженного атмосферного давления возникают циклоны, а там, где давление повышено, — антициклоны. Изменится температура воздуха и количество осадков. Циклоны несут с собой обильные осадки. Развитие растений зависит прежде всего от количества осадков и температуры. Конечно, оно зависит и от других внешних условий, например, от того, имеются ли в почве необходимые для развития растения питательные вещества. Если они имеются в достаточном ассортименте и количестве, то важна эффективность, с которой растение усваивает эти вещества. Здесь мы встречаемся с прямым (или почти с прямым) влиянием солнечной активности на растения. Дело в том, что под действием потоков заряженных частиц, выбрасываемых из Солнца во время солнечных бурь, магнитное поле Земли меняется, происходит магнитная буря. Изменение магнитного поля Земли, в котором находятся растения (и вся биосфера), влияет непосредственно на их клетки, а точнее на проницаемость клеточных мембран. Когда под действием колебания магнитного поля проницаемость клеточных мембран увеличивается, эффективность обменных процессов с внешней средой растет. Значит, растение в это время получает возможность более интенсивно впитывать нужные им питательные вещества. Процесс идет в обе стороны, то есть одновременно усиливаются корневые выделения. Действие магнитных бурь должно носить глобальный характер, поскольку буря охватывает всю Землю. Значит, под действием колебаний магнитного поля должны увеличиваться корневые выделения растений везде, независимо от того, где они растут. То, что это действительно так, было подтверждено измерениями корневых выделений проростков ячменя в разных местах (в Москве, Иркутске, Свердловске, Минске, Таллинне и Флоренции).

Измерения проводились синхронно в продолжение двух дней в октябре 1968 г. Изменение интенсивности корневых выделений оказалось очень похожим во всех указанных городах. Мы позднее будем более подробно рассматривать, как могут космические факторы оказывать прямое, непосредственное влияние на растения и животных. Здесь мы хотели только указать, что на развитие растений солнечная активность оказывает влияние не только через изменение климата, но и прямым путем.

Конечно, урожайность сельскохозяйственных растений зависит от многих факторов, и не только космических. Она определяется также социальными условиями. Все это надо иметь в виду и учитывать при анализе влияния солнечной активности. Необходимо соответствующим образом отбирать материал для анализа. В этом плане представляют интерес данные об урожайности сельскохозяйственных культур на опытной станции сельскохозяйственной академии им. Тимирязева. На рис. 41 показано изменение урожайности ржи и картофеля с 1912 по 1958 г. Годы с 1941 по 1945 не представлены, так как урожай не был учтен. Здесь же показано изменение солнечной активности. Даже внешний вид этих кривых говорит о том, что несомненно имеется отчетливая связь между урожайностью и солнечной активностью. Но это не значит, что наиболее высокие урожаи в точности соответствуют минимальной солнечной активности. По данным за длительные периоды (более столетия) было показано, что неурожайные годы группируются около минимумов солнечной активности (или опережают их или же запаздывают относительно них, но ненамного). Но и перед максимумами солнечной активности возможны неурожаи. Например, по данным о засухах в Германии показано, что за 12 4 года там имелось 23 засухи, половина из которых приходилась на узкие интервалы времени перед максимумами и минимумами чисел Вольфа. По данным об урожайности зерновых хлебов в России с 1801 по 1915 г. следует, что неурожайные годы чаще совпадают с минимумами солнечной активности. Наибольшие неурожаи приходились на 1810, 1823, 1833 и 1853 гг., которые в точности соответствовали минимумам солнечной активности.

Связь между урожайностью и солнечной активностью осуществляется прежде всего через атмосферную циркуляцию, от которой зависит число осадков и температура. Но, как мы уже видели, связь между солнечной активностью и атмосферной циркуляцией меняет свой характер (знак) примерно каждые 40 лет. В один сорокалетний период увеличение солнечной активности приводит к увеличению температуры воздуха, а в другие, соседние с этими, к уменьшению. Изменяется от периода к периоду и характер осадков. Поэтому естественно, что в разные 40-летние периоды и связь между урожайностью и солнечной активностью будет различной. Это необходимо учитывать как при анализе данных, так и при составлении прогнозов. Здесь очень важно учитывать региональные особенности, поскольку в разных регионах влияние атмосферной циркуляции по-разному влияет на количество осадков, температуру, гидрологический режим и т. д. Так, было показано, что на Европейской территории России большие неурожаи (связанные с сильными засухами) имели место в те годы, когда магнитная активность росла (восходящая ветвь кривой магнитной активности) или же при максимальной магнитной активности.

Анализ данных о засухах за это же время в Казахстане показал, что там сильные засухи имели место только в те периоды, когда солнечная (магнитная) активность уменьшалась, то есть на ветви спада магнитной (и солнечной) активности, а также при спокойном магнитном поле Земли, во время минимальной солнечной активности. Практически все 100% засух в Казахстане за период 1888—1955 гг. приходятся на указанные выше периоды. При максимальной солнечной активности засух в Казахстане в указанный период не было, тогда как на минимумы солнечной активности их приходилось почти половина (43%) .

Эти результаты говорят о том, что появление засух, а значит и урожайность, зависит от особенностей данного региона. То же самое мы говорили относительно водоносности рек, которая также связана с количеством осадков и выявляет четкие региональные особенности.

По данным об урожаях в Оренбургской области за 10 0 лет (1864—1960 гг.) четко прослеживается циклическое изменение урожайности пшеницы. Но эти колебания не следуют в точности изменениям солнечной активности. В начале указанного периода максимальная урожайность приходилась на время минимальной солнечной активности. После этого произошел сдвиг по фазе: наибольшие урожаи пшеницы имели место при максимальной солнечной активности. Такая зависимость наблюдалась в продолжение 30 лет, после чего фазовые отношения изменились. Но цикличность урожаев пшеницы осталась четко выраженной.

Эти результаты очень поучительны. Они свидетельствуют о том, что зависимость урожайности от солнечной активности не следует понимать упрощенно и ждать, что раз увеличилась солнечная активность, то увеличится и урожайность. Чтобы действительно понять, а тем более предсказать связь урожайности с солнечной активностью, надо обязательно учесть все факторы, которые оказывают влияние на рост растений и в свою очередь зависят от солнечной активности. Надо учитывать влияние различных циклов солнечной активности, их сочетания. И само собой разумеется, надо проводить весь этот анализ с учетом местных, региональных особенностей. Эти особенности проявляются как в атмосферной циркуляции, так и в атмосферных процессах вообще.

Здесь следует еще указать на один фактор, оказывающий влияние на рост растений. Это деятельность микроорганизмов в почве. Их роль в жизни растений огромна, так как они задерживают азот в почве. Азот вносится в почву вместе с удобрениями. Здесь он превращается в молекулярную форму, после чего денитрифицирующие бактерии выводят его быстро из игры и в дальнейшем в развитии растений он не участвует. Было показано, что жизнь (в частности численность) микроорганизмов (аммонифицирующих бактерий) зависит от солнечной активности. Раньше считалось, что микроорганизмы прекращают свою работу с окончанием вегетационного периода. Но оказалось, что это не так. Микроорганизмы в почве способны успешно функционировать даже в сильно промерзшей почве. Причем эффективность их деятельности (размножения) зависит от солнечной активности. Образно говоря, солнечная активность сама удобряет почву. В зависимости от солнечной активности (не от температуры и влажности почвы!) изменяется численность различных микроорганизмов, таких как аммонифицирующие и нитрифицирующие бактерии, аэробные целлюлозоразла-гающие бактерии и водоросли, которые используют в своей деятельности нитраты (а не только аммиак почвы).

Так, с ростом солнечной активности с начала 1966 г. численность нитрифицирующих бактерий увеличилась примерно в 10 раз и в последующие годы оставалась очень высокой. Одновременно (одномоментно!) изменилась численность и других указанных выше бактерий. Роль этих процессов в жизни растений можно понять на основании таких данных. Азот вносится в почву с удобрениями, но из почвы сельскохозяйственных культур. Причем его выносится больше, чем вносится, — получается большой дефицит азота в почве. Ликвидировать его и помогают микроорганизмы, которые фиксируют азот. Поэтому их называют азотфиксирующими организмами. Без учета деятельности этих микроорганизмов невозможно понять процессы, протекающие в почве. Численность микроорганизмов в окультуренной почве огромна. Примерно 5—6 тонн микробных клеток содержится на площади всего в 1 га. Речь идет о пахотном слое.

Влияние солнечной активности на численность микроорганизмов в почве является в определенной мере прямым, непосредственным. Это надо понимать следующим образом. Когда солнечная энергия, переносимая к Земле, вызывает изменения в погодном слое атмосферы, которые в свою очередь окажут влияние на рост растений, то говорят о косвенном, опосредствованном влиянии солнечной активности на жизнь растений. Надо иметь в виду, что сама солнечная энергия по пути от Солнца к погодному слою атмосферы Земли много раз меняет свою форму. Когда солнечное излучение непосредственно влияет на растения, то такое влияние является несомненно прямым. Возможен и такой вариант, когда на растения действуют изменения магнитного поля Земли, которые вызваны потоками солнечных заряженных частиц. Это влияние быстрое, безынерционное. Можно его также назвать прямым или почти прямым. Чтобы такое влияние могло осуществляться, надо, чтобы растения чувствовали магнитное поле. Оказывается, что они не только его чувствуют, но и строят свою деятельность в зависимости от окружающего их магнитного поля. Мы приведем только несколько фактов, свидетельствующих о таком влиянии.

Исследовательская работа:

Представьте на несколько минут, что света просто нет, одна темнота кругом… Ну как? Как ощущения? – непривычно и страшно. Мы даже не сможем пройти несколько метров , не говоря уже о дальнейшей жизни.

Итак, свет необходим, безусловно, всем живым организмам!

Все мы знаем, какую огромную роль играют растения в жизни человека. Растения дают людям пищу, лекарства, сырье для промышленности, обогащают атмосферу кислородом.

А как свет влияет на растения?

В процессе исследования мы хотели проверить утверждение о влиянии света на рост и развитие растений.

Цель нашего исследования : изучить влияние света на рост и развитие растений

Задачи исследования:

1) проверить научную гипотезу о воздействии света на развитие и рост растений;

2) научиться работать с научно-популярной литературой, интернетом;

3) научиться выполнять простейшие исследования;

4) научиться сравнивать полученные результаты, фиксировать свои наблюдения и делать выводы.

Объект исследования : растения.

Предмет исследования: свет как условие развития растений.

Гипотезы : 1) если растение получает много света, то оно хорошо растёт; 2) если растение получает мало света, то оно плохо растёт; 3) если растение получает необходимое количество света, то оно хорошо развивается.

Методика проведения исследовательской работы .

1) изучение ранее опубликованных материалов;

2) поиск информации в интернете;

3) самостоятельное обдумывание;

Факторы, влияющие на рост растений.

Мы изучили литературу, поискали информацию по растениям в интернете и узнали, что для жизни и полноценного роста и развития растений необходимы:


Солнечный свет является одним из наиболее важных для растений внешних факторов. С самого раннего утра и до самого позднего вечера в растениях происходит удивительный процесс - образования органических веществ необходимых для питания растений.

В какой части растений и как происходит этот процесс? Какие вещества при этом образуются? Что влияет на процесс? Человек пытался понять, почему листья растений тянутся к солнцу; их обрывали, и растение погибало. Но значение листа так и не удавалось выявить.


http://westud.ru/wp-content/uploads/2015/03/usloviya-dlya-fotosinteza.jpg

http://vladam-seeds.com.ua/media/wysiwyg/pages/blog/odin_3.jpg

Первым смог обобщить все данные, известные в науке к началу 20 века и сформулировать научное понятие этого процесса, был русский ученый К.А.Тимирязев. Он более 30 лет отдал изучению фотосинтеза.

Свет жизненно необходим для растений. Только растения обладают уникальной способностью расти за счёт солнечного света.

Из научно - популярной литературы мы узнали, что, зеленый цвет придает растению находящееся в его клетках химическое вещество – хлорофилл, который преобразует солнечный свет в питательные вещества. Фотосинтез происходит с поглощением углекислого газа и одновременным выделением кислорода. Растения ощущают свет и реагируют на него. Например, если поместить растение на солнечный подоконник, то через несколько дней большинство его листьев повернется к свету. Эта реакция известна под названием фототропизма. Большинство растений растут весной и летом, когда света больше всего. Чем теплее, тем быстрее и легче происходит химическая реакция превращения углекислого газа в органическое вещество.

Все комнатные растения подразделяются на светолюбивые и теневыносливые. При недостатке света многие растения перестают цвести, они начинают чахнуть и могут погибнуть. При избытке света хлорофилл частично разрушается, и цвет листьев становится желто-зеленым. На листьях растений появляется ожог. В первую очередь страдают от прямых солнечных лучей молодые растения, проростки, свежеукоренённые черенки. Им нужен только рассеянный свет. В зависимости от потребляемого света все растения делятся на группы: нейтральные, растения длинного дня, растения короткого дня.

Цель: проверить утверждение о влиянии солнечного света на рост и развитие растений.

Материалы: головки лука, баночки, темный шкаф.

Мы поместили две головки лука в баночки, наполненные водой.


Одну поставили в темное место, другую разместили на окне.


Через 1,5 недели из обеих головок прорезались перья, но они были разной длины и отличались цветом. Цвет перьев лука, который стоял на подоконнике был ярко-зеленым (созданы условия для фотосинтеза), перья – ровными, а у лука, который стоял в темном месте, они были длиннее, светло-желтым, перья изогнуты. Корневая система у лука, который стоял в темном месте, была развита сильнее .



Данные наблюдений позволили нам сделать следующие выводы:

1.Солнечный свет оказывает непосредственное влияние на прорастание, рост и развитие перьев лука.

2. При выращивании лука в условиях достаточной освещенности наблюдается его полноценный рост и развитие: перья естественной длины, насыщенного зеленого цвета. Процесс фотосинтеза идет нормально.

3. При выращивании лука в условиях недостаточной освещенности перья лука тонкие и неестественно бледные, что говорит о недостатке питательных веществ для его нормального развития.

Читайте также: