Влияние предпосевной обработки семян

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

Улучшить посевные качества семян подсолнечника, получить опережающие в развитии растения, заранее запланировать высокие и качественные урожаи можно, если перед заделкой в почву выполнить предварительную обработку посевного материала. Одним из вариантов такой подготовки является воздействие на семена электромагнитного поля переменного тока высокого напряжения и последующая за этим обработка этих же семян регулятором роста Зеребра Агро.

Используя стандартные методики, применяемые для исследования посевных качеств семян, в лабораторных и полевых условиях изучены варианты предпосевной обработки семян подсолнечника отдельно препаратом Зеребра Агро, отдельно в электромагнитном поле переменного тока высокого напряжения, а также воздействуя на семена одновременно электрофизическим фактором и регулятором роста.

Комплексная обработка, непосредственно проведенная перед заделкой семян в почву, произвела существенный стимулирующий эффект.

Ключевые слова: предпосевная обработка семян, электромагнитное поле, регулятор роста Зеребра Агро.

Aksenov M.P.

FSBEI HPE “Volgograd State Agricultural University”

INFLUENCE OF PRESOWING TREATMENT OF SEEDS OF SUNFLOWER ELECTROPHYSICAL IMPACTS AND GROWTH REGULATOR ON THEIR SOWING QUALITIES

Abstract

There is possible to improve the quality of the sunflower seeds crop, get the forward-looking plants, pre-plan high quality crop if before incorporation into the soil to conduct a preliminary seed treatment. One option of such treatment is to affect the seeds by the AC high voltage electromagnetic field and the consequent processing of the seed with Zerebra Agro growth regulator.

Applying standard techniques used to survey the seeds sown characteristics in the laboratory and field there were explored such options of sunflower seeds preplant treatment as separately by Zerebra Agro drug, separately in the high-voltage alternating current electromagnetic field, as well as affecting the seeds simultaneously by electrophysical factor and growth regulator.

Integrated treatment conducted immediately before seed placement in the soil produced a significant stimulating effect.

Keywords: presowing seed treatment, electromagnetic field, Zerebra Agro growth regulator.

Сельское хозяйство Волгоградской области, ведется в зоне рискованного земледелия, для которой характерны периодично чередующиеся дождливые и засушливые годы. Неблагоприятные природно-климатические условия региона зачастую снижают качество семян и соответственно количество получаемого из них валового сбора подсолнечника. Поэтому возникает естественная необходимость внедрения высокоэффективных методов предпосевной подготовки и обработки семян, как залога будущего полновесного урожая.

В последнее время в практику ведения эффективного хозяйствования на земле стали все чаще внедрять электрофизические методы воздействия на растения и семена зерновых, бобовых, бахчевых и овощных культур с целью их стимуляции – ускорения роста, повышения урожайности и улучшения качества получаемой продукции [3, 4, 7].

Среди разнообразия применяемых в растениеводстве электрофизических методов, обработке в электромагнитном поле переменного тока высокого напряжения можно отвести особое место, так как ее реализация менее затратна, чем например, обработка в электростатическом поле или в поле коронного разряда.

Еще в 1959 году опыты, проведенные в ВИЭСХ, позволили говорить, что электромагнитное поле переменного тока – сильный действующий фактор, оказывающий стимулирующее действие на семена в зависимости от напряженности и времени обработки, а также от физического состояния семян и биологических особенностей культуры и сорта. Стимулирующее действие предпосевной обработки семян в электромагнитном поле проявляется в существенном повышении энергии прорастания и улучшении всхожести семян, в опережающем развитии растений и увеличении количества собираемого урожая. Установлено, что для получения положительного эффекта от электростимуляции для семян различных культур и сортов требуются различные параметры обработки, а также разные временные интервалы выдержки семян и срок их отлежки от обработки до посева [3, 4, 7].

Высокую эффективность подготовки семян перед посевом также имеет технологическая операция по обработке их регуляторами роста, применение которых улучшает посевные качества семян и позволяет планировать высокие урожаи [1].

В исследованиях Д.Н. Прянишникова, Ф.В. Турчина, И.С. Шатилова, А.С. Устименко, А.Т. Гвоздиковской, B.C. Шевелухи, Г.А. Медведева и других ученых было изучено и подтверждено положительное действие таких препаратов как ФлорГумат, Мивал, Крезацин, Бишофит, Мастер-С, Силк, Гибберсит, Агат-25К, Никфан на рост, развитие и урожайность различных сельскохозяйственных культур. Особого же внимания заслуживает новый регулятор роста Зеребра Агро, обладающий ростостимулирующими, фунгицидными и бактерицидными свойствами.

Препарат Зеребра Агро положительно зарекомендовал себя на полях России, показав хорошие результаты в практическом применении. В 2013-2014 гг. он был протестирован и исследован в научных учреждениях и передовых хозяйствах [5, 6]:

– в Республике Башкортостан на подсолнечнике сорта Енисей;

– в Краснодарском крае на гибриде подсолнечника Кубанский 930, а также на рисе, подсолнечнике, сое;

– в хозяйствах Ставропольского края на озимых колосовых;

– в Саратовской и Липецкой областях на озимой пшенице;

– в Волгоградской области на яровой пшенице сорта Добрыня.

Результаты проведенных испытаний показали повышение полевой всхожести семян, усиление ростовых и формообразовательных процессов у выращиваемых культур, повышение их устойчивости к неблагоприятным факторам среды, увеличение урожайности, улучшение качества собираемой продукции.

Проанализировав достигаемые положительные эффекты от воздействия электромагнитным полем или препаратом Зеребра Агро на семена можно предположить, что одновременное использование обоих перечисленных факторов может дать еще более существенный эффект предпосевной стимуляции.

Целью работы является исследование влияния комплексного воздействия электромагнитного поля и регулятора роста Зеребра Агро на посевные, ростовые и продуктивные свойства подсолнечника НК Неома в зоне черноземных почв Волгоградской области.

При проведении исследований семена подсолнечника подвергались воздействию в два этапа – сначала электромагнитным полем переменного тока высокого напряжения, а затем, после отлежки в течение 30 минут, обрабатывались регулятором роста Зеребра Агро.

Предварительно осуществлялся поиск наиболее приемлемых режимов воздействия на семена. Было лабораторно исследовано 14 вариантов предпосевной обработки, по следующим экспериментальным схемам:

  1. Контроль – без обработки;
  2. Обработка Зеребра Агро;

3-8. Электростимуляция семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжения значением 1; 5; 10; 15; 20 и 25 кВ и временем обработки – 30, 60 и 90 секунд;

9-14. Электростимуляция семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжения значением 1; 5; 10; 15; 20 и 25 кВ и временем обработки – 30, 60 и 90 секунд с последующей обработкой препаратом Зеребра Агро.

Анализ результатов лабораторных исследований позволил констатировать тот факт, что наибольший эффект воздействия на энергию прорастания и лабораторную всхожесть семян гибрида подсолнечника НК Неома наблюдался при совместном применении электростимуляции семян в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ, экспозицией 60 секунд и обработкой препаратом Зеребра Агро. При этом опытное значение энергии прорастания превосходило контроль на 6%, а лабораторная всхожесть – на 7%.

Таким образом, в полевых условиях было решено закладывать опыты по следующей схеме:

  1. Контроль – без обработки;
  2. Обработка Зеребра Агро;
  3. Электростимуляция семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ и временем обработки 60 секунд;
  4. Электростимуляция семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ и временем обработки 60 секунд с последующей обработкой препаратом Зеребра Агро.

В проведенных опытах использовали регулятор роста Зеребра Агро – водный раствор, содержащий 500 мг/л коллойдного серебра + 100 мг/л полигексаметилен бигуанид гидрохлорида. Расход препарата составлял 100 мл/т, расход рабочего раствора – 10 л/т.

Механизм действия препарата основан на возможности действующего вещества – гуанидина формировать у растения неспецифическую, системную, продолжительную (до 1-2 месяцев) устойчивость к грибам, бактериям, вирусам, а также активировать ростовые и биологические процессы, что в купе с электрофизической обработкой позволит планировать получение существенных прибавок в урожае подсолнечника.

Обработку семян электромагнитным полем переменного тока высокого напряжения производили с помощью установки, состоящей из промышленно выпускаемого аппарата СКАТ-70, двух пластинчатых электродов размещенных в экспериментальной ячейке.

Семена подсолнечника размещались равномерным слоем в экспериментальной ячейке на нижнем электроде, в то время как верхний электрод во всех опытах был на одном и том же расстоянии 15 см от обрабатываемого слоя семян подсолнечника.

Полевые опыты проводились в Новоаннинском районе Волгоградской области.

К посеву гибридов подсолнечника НК Неома приступали с наступлением среднесуточной температуры почвы на глубине 0,08…0,10 м 10…12 ° С. Сев гибридов подсолнечника НК Неома производили 30.05.2015 и 31.05.2015, с нормой высева 60 тыс. всх. семян/га., способ посева – пунктирный с междурядьями – 0,60 м, повторность – трехкратная, размещение систематическое, площадь делянок – 432 м 2 , предшественник – кукуруза.

По своим природным условиям район относится к зоне сухих степей. Почвы опытного участка представлены южным черноземом. Содержание гумуса 5,63-5,69%. Обеспеченность подвижным фосфором (P2O5) – 22,3 мг/кг, обменным калием (K2O) – 340-390 мг/кг, гидролизуемым азотом (N) 75,6-80,0 мг/кг.

Климат континентальный, с жарким летом, умеренно-холодной зимой, недостаточным количеством осадков. Среднегодовая температура составляет +4,5 С ° . Абсолютный максимум в июле +45 С ° , абсолютный минимум в январе –44 С ° . Среднегодовое количество осадков в 2015 году составило 475 мм, в том числе за период вегетации подсолнечника (май-сентябрь) – 209 мм. Влажность воздуха в зимние месяцы превышает 80%, в летние месяцы составляет 41…47%.

Как показали наши исследования, предпосевная обработка семян подсолнечника НК Неома способствовала повышению их посевных качеств (табл. 1).

Таблица 1. Влияние способа предпосевной обработки на посевные качества семян подсолнечника НК Неома

24-02-2016 17-14-10

Данные таблицы 1 показывают, что как энергия прорастания семян подсолнечника НК Неома, так и лабораторная и полевая всхожесть в среднем за год наблюдения были достаточно высокими и полностью отвечали требованиям, предъявляемым к оригинальным семенам.

Семена, обработанные регулятором роста Зеребра Агро, также как и под воздействием электромагнитного поля переменного тока высокого напряжения значением 20 кВ и временем обработки 60 секунд прорастали быстрее, чем в контроле в среднем на 5%. Следует отметить, что в данных вариантах увеличилась и энергия прорастания по сравнению с контролем на 3-4 %.

В тоже время наибольший эффект воздействия на энергию прорастания и всхожесть семян гибрида подсолнечника НК Неома наблюдался при совместном применении электростимуляции семян в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ и обработкой препаратом Зеребра Агро. При этом опытное значение энергии прорастания превосходило контроль на 6%, а лабораторная и полевая всхожесть – на 7% (рис. 1).

24-02-2016 17-14-22

Рис. 1. Зависимость посевных качеств семян подсолнечника НК Неома от способа предпосевной обработки

Изучаемые варианты обработки, начиная с фазы бутонизации и вплоть до наступления полной спелости, оказывали заметное влияние на продолжительность межфазных периодов у растений, а также способствовали лучшему накоплению пигментов в листьях подсолнечника. При этом отмечено повышение содержания всех выделяемых фракций пигментов.

Таким образом, можно считать установленным положительное действие всех изучаемых вариантов предпосевной обработки на содержание пигментов в листьях, увеличивая фотосинтетический потенциал посевов, что в конечном итоге положительно сказалось на урожайности подсолнечника НК Неома.

В опытных вариантах формируется большее число листьев, что приводит к увеличению ассимиляционной поверхности (табл. 2). Увеличение высоты растений и площади листовой поверхности в опытных вариантах приводит к повышению подземной массы растений подсолнечника.

Таблица 2. Влияние способа предпосевной обработки на листовой аппарат подсолнечника НК Неома

24-02-2016 17-14-39

Усиление ростовых и формообразовательных процессов при применении Зеребра Агро, а также под воздействием электромагнитного поля положительно сказывается на формировании элементов структуры урожая подсолнечника (табл. 3).

Таблица 3. Влияние способа предпосевной обработки на элементы структуры урожая подсолнечника НК Неома

24-02-2016 17-14-57

Из данных таблицы 3 видно, что в опытных вариантах формировались более крупные по диаметру корзинки, с большим числом семян и массой семян с корзинки. Наиболее высокие значения рассматриваемых показателей отмечены в варианте 4 по схеме опыта. Формирование более крупных корзинок с большим числом и массой семян с корзинки приводит к существенному повышению урожайности подсолнечника и увеличению содержания масла в семенах (табл. 4).

Таблица 4. Влияние способа предпосевной обработки на продуктивные свойства гибрида подсолнечника НК Неома

24-02-2016 17-15-13

Результаты проведенных исследований показали, что наибольший урожай семян гибрида подсолнечника НК Неома был получен при совместном применении электростимуляции семян в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ, экспозицией 60 секунд и обработкой препаратом Зеребра Агро – 3,10 т/га, что на 14,8 % больше, чем на контрольном варианте.

Совместное применение электростимуляции семян и регулятора роста Зеребра Агро способствовало повышению урожая и его качества, положительно повлияло на элементы структуры урожая: если масса 1000 семян подсолнечника НК Неома на контрольном варианте составляет – 56 г, то после комплексной обработки семян – 61 г.

В результате проведенных опытов в полевых условиях наиболее благоприятным можно считать комбинированный способ обработки семян подсолнечника – совместное применение электростимуляции семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ, экспозицией 60 секунд и обработки препаратом Зеребра Агро.

Результаты исследований свидетельствуют о целесообразности использования комбинированного способа предпосевной обработки семян подсолнечника в сельскохозяйственном производстве.

Рис. 1. Установка предпосевной обработки семян импульсным электрическим полем


Рис. 1. Установка предпосевной обработки семян
импульсным электрическим полем:
1 – генератор высоковольтного импульсного
напряжения;
2 – плоский волновод с высокоомной нагрузкой

Выбор того или иного способа предпосевной подготовки семян определяется причинами, препятствующими их прорастанию: низкой водопроницаемостью и твердостью внешнего покрова семян (плодовых косточковых, липы, скумпии и др.), недоразвитостью зародыша (у семян сосны кедровых, бересклета, некоторых видов клена, ясеня), присутствием в околоплоднике ингибиторов роста (гордовина, калина) и др. Глубина покоя семян варьирует не только у разных видов, но и в пределах одного вида и зависит от условий, в которых происходило формирование семян, степени их зрелости, длительности и условий хранения.

Применяют следующие способы предпосевной подготовки семян: стратификацию, снегование, механическое, термическое и химическое воздействие на внешние покровы, обработку микроэлементами и стимуляторами роста, звуковое, ультразвуковое и магнитное облучение, дезинфекцию и дезинсекцию.

Наиболее распространенным методом подготовки к посеву является стратификация, или выдерживание набухших семян во влажной и хорошо аэрируемой среде при определенных температурных условиях. Снегование - стратификация семян в снегу при устойчивом сохранении низкой температуры, близкой к 0°С. Обработка холодом (воздействие низкой температуры) повышает энергию прорастания и грунтовую всхожесть семян, повышает жизнеспособность молодых растений, их морозо- и засухоустойчивость.

Снегование применяют для семян мелких хвойных (ели, лиственницы, сосны и пихты сибирской) и лиственных пород (березы, жимолости татарской, ирги круглолистной и др.) с непродолжительным (1-4 мес.) периодом покоя.

Замачивание семян в горячей воде перед посевом используют для семян с плотной, трудно проницаемой для воды и воздуха оболочкой. Температура воды не должны превышать 90°С (для семян гледичии, робинии и др.).

Семена, помещенные в емкость на 1/3-1/4 объема, заливают горячей водой (70-90°С) и оставляют на 12 ч, тщательно перемешивая их в течение первых 10-15 мин. По истечении 12 ч на решетах отделяют набухшие семена, а обработку ненабухших продолжают.

Вместо гидротермического воздействия для разрушения твердых внешних покровов семян можно применять механическое воздействие: скарификацию, импакцию, а также химическое воздействие - обработку семян концентрированными кислотами.

Небольшие партии твердых семян скарифицируют вручную: покровы крупных семян надрезают или надпиливают, а мелкие семена перетирают с наждаком или песком. Большие партии семян обрабатывают на специальных машинах с помощью клеверотерки, крупорушки. Однако машинный способ часто дает большой процент повреждений, которые ведут к гибели части семян.

Импакция - устранение твердой семенной оболочки путем удара семян друг о друга или о стенки сосуда (емкости), в который заключены семена. Этот способ приводит к повреждению кожуры в определенной части семени (около рубчика) и не травмирует само семя.

Для устранения твердой семенной оболочки также используют химическую обработку - чаще всего концентрированной серной кислотой. Длительность замачивания семян в кислоте - от 15 мин. до 24 ч с обязательным последующим 5-6-кратным промыванием семян в воде (боярышник, гледичия, кизильник, скумпия и др.).

Для ускорения растрескивания косточек вишни, сливы и других косточковых, а также орехоплодных пород их замачивают в воде на сутки, затем подсушивают под навесом, прогреваемым солнцем (40-60°С), и увлажняют два раза в день в течение одной-двух недель.

Предпосевная обработка семян стимуляторами повышает энергию прорастания и грунтовую всхожесть, положительно влияет на рост сеянцев и их устойчивость к грибным заболеваниям. С этой целью чаще всего применяют гибберелловую кислоту или другие гиббереллины (ГК 3, ГК 4). Для стимуляции прорастания покоящихся семян используют также кинетин, бензил­-аминопурин, фенилмочевину, тиомочевину, калийную селитру и др.

Предпосевную обработку семян проводят водными растворами микроудобрений: борной кислоты, сернокислого цинка, сернокислой меди, азотнокислого кобальта, молибденовокислого аммония, сернокислого марганца в концентрации 0,01-0,03%. Объем раствора должен превышать объем семян в 3-4 раза. Перед посевом семена замачивают на 12-24 ч в растворах, содержащих микроэлементы. Набухшие семена опускаются на дно емкости, а неутонувшие семена дополнительно выдерживают в этом же растворе. Обработанные микроэлементами семена слегка подсушивают на воздухе в тени до состояния сыпучести и сразу высевают.

Для обработки семян ели европейской применяют растворы сернокислой меди (0,005-0,02%), сернокислого кобальта (0,01-0,05%), сернокислого цинка (0,04%), сернокислого марганца (0,03%); для сосны обыкновенной - растворы сернокислой меди (0,01%), молибденовокислого аммония (0,01-0,05%), борной кислоты (3%), сернокислого марганца (3%).

Звуковые, ультразвуковые, магнитные или другие виды облучения семян перед посевом проводят в строгом соответствии с утвержденными в установленном порядке (для применения в производстве) рекомендациями научно-исследовательских учреждений.

Экспериментальные данные отечественных и зарубежных исследователей свидетельствуют о том, что воздействие различными физическими факторами (электрическим и магнитным полем, СВЧ, радиоволнами, лазером и т. д.) для активации семян дает почти одинаковый прирост урожая. Поэтому в выборе метода обработки главную роль играют доступность и экологическая чистота.

Инфракрасное, ультрафиолетовое, лазерное облучение и тому подобное относят к фотоэнергетическим методам обработки семян, позволяющим увеличивать урожайность до 11-12%. Отсутствие повторяемости результатов облучения семян является основным недостатком этого метода.

Предпосевная обработка семян воздействием электромагнитных волн выполняется с целью улучшения их посевных и урожайных качеств. Обработка в электромагнитном поле дает возможность довольно быстро и просто осуществлять контроль режимов обработки, автоматизировать процесс.

Воздействие на семена электрическим полем можно разделить на физические и биологические методы.

Физическое воздействие применяется для изменения пространственного положения семени при сепарации, которое достигается созданием сильных электрических полей, в результате чего начинают проявляться в том числе и коронные процессы. Биологическое воздействие предназначено для улучшения посевных качеств семян, а также для подавления патогенной микрофлоры.

В Ставропольском государственном аграрном университете проводились исследования воздействия электрического поля на семена сельскохозяйственных культур. Результаты этих исследований открывают перспективное направление по изучению влияния различных физических факторов на семена древесных и кустарниковых пород.

В результате проведения поисковых экспериментов, методика которых заключалась в обработке семян сосны и ели импульсами различной частоты, было установлено, что энергия прорастания семян ели увеличивается в среднем на 20%, а семян сосны - на 8%. Наибольшее воздействие установка оказывает на семена пониженного качества, а также на семена, собранные в 2011 году.

Ольга ГРИГОРЬЕВА, канд. с.-х. наук, доц. каф. лесоводства СПбГЛТУ

Исследовательская работа «Влияние различных способов предпосевной обработки на п

№ слайда 1

Цель нашей работы изучить влияние различных способов предпосевной обработки на п

№ слайда 2

Цель нашей работы изучить влияние различных способов предпосевной обработки на прорастание семян фасоли Объектом нашего исследования являются семена фасоли красной Предмет исследования: всхожесть семян в зависимости от способа предпосевной обработки В соответствии с выше сказанным мы определились с задачами исследования: 1.Изучить литературу по данной проблеме; 2.Провести предпосевную обработку семян фасоли различными способами; 3.Посеять семена и вести наблюдения; 4.Проанализировать данные наблюдения и сделать вывод по данной работе.

Объект исследования – фасоль огненно-красная,или турецкая. Подцарство: Высшие ра

№ слайда 3

Объект исследования – фасоль огненно-красная,или турецкая. Подцарство: Высшие растения – Embryophyta. Отдел: Покрытосеменные – Angiospermae. Класс: Двудольные – Dicotyledoneae. Семейство: Мотыльковые – Papilionaceae. Род: Фасоль – Phaseolus. Вид: Фасоль обыкновенная - Phaseolus vulgaris L. и вид: Фасоль огненно-красная, или турецкая - Phaseolus coccineus L. Семена фасоли используют для приготовления супов, соусов, гарнира к мясным блюдам и многих видов холодной закуски, а также муки, из которой делают разнообразные кондитерские изделия. Зеленые бобы с недозрелыми семенами - важнейшее сырье для консервной промышленности. В семенах – от 20 до 30% белка, 0,7-3,6% жира, 50- 60% углеводов, 3,1-4,6% золы, 2,3- 7,1% сырой клетчатки. Фасоль способствует накоплению в почве азота и как пропашная культура является хорошим предшественником для многих полевых культур. Культура фасоли широко распространена в мировом земледелии, ее возделывают более чем в 70 странах в различных почвенно-климатических зонах.

В фасоли содержатся практически все минералы и вещества , необходимые для нормал

№ слайда 4

В фасоли содержатся практически все минералы и вещества , необходимые для нормальной жизнедеятельности человеческого организма : легко усваиваемые (на 75%) белки, различные кислоты , каротин , витамины С, B1,В2,В6, РР , множество макро- и микроэлементов . Высокая концентрация фасоли микро- и макроэлементов, витаминов, легко усвояемых белков позволяет отнести фасоль к разряду диетических и лечебных продуктов. Фасоль благотворно влияет на нервную и сердечнососудистую систему. Ее употребление рекомендуется больным гипертонией и атеросклерозом , а также тем , у кого наблюдаются сбои ритма деятельности сердца . Употребление фасоли ускоряет процесс восстановления сил после перенесенных заболеваний. Употребление фасоли способствует снижению содержания в крови сахара , поэтому она очень полезна для больных сахарным диабетом. Фасоль очень полезна для пищеварения,она нормализует обмен веществ, поэтому желающим похудеть рекомендуется включать в своё меню блюда из фасоли. Фасоль способствует очищению кожи от угревой сыпи. Полезна ли фасоль?

Фасоль увеличивает газообразование в кишечнике. Фасоль не рекомендована людям с

№ слайда 5

Фасоль увеличивает газообразование в кишечнике. Фасоль не рекомендована людям с гастритами и язвенными заболеваниями . Плохо переносятся блюда из фасоли при заболевании поджелудочной железы – панкреатите , а также при холецистите Не стоит употреблять в пищу сырые зерна фасоли , поскольку они могут быть токсичны . Вред фасоли.

Подготовка семян к посеву - обязательный агроприем ,способствующий ускорению соз

№ слайда 6

Подготовка семян к посеву - обязательный агроприем ,способствующий ускорению созревания , повышению урожайности и качества овощных культур . Она повышает скорость прорастания и всхожесть семян , препятствует возможному распространению с посевным материалом болезней и вредителей , создает для появляющихся проростков улучшенные условия питания , способствует более раннему созреванию . Для получения высокого урожая хорошего качества необходимо отбирать чистосортные правильно подготовленные семена. Для этого рекомендуется погружать семена на несколько минут в 3 - 5 процентный раствор поваренной соли ( 30 - 50 г соли на 1 л воды) Осевшие на дно семена следует тщательно промыть , просушить и использовать для посева. Важным приёмом является намачивание и проращивание семян , которое проводят с тем , чтобы ускорить их прорастание . При намачивании семян следует иметь в виду , что для набухания семян различных видов овощей требуется неодинаковое количество воды. Термическая обработка семян перед посевом также имеет важное значение. Способы предпосевной обработки при повышенных температурах называют прогреванием. Обработку семян при пониженной температуре-закалкой . Предпосевная обработка семян.

Дрожирование - обволакивание семян органо-минеральной питательной смесью , в кот

№ слайда 7

Дрожирование - обволакивание семян органо-минеральной питательной смесью , в которую добавляют стимуляторы роста , культуры полезных микроорганизмов , витамины , протравители и т. п. Посев дрожированными семенами повышает полевую всхожесть , улучшает питание проростков , а также способствует более равномерному распределению растений по площади . Дрожировать можно семена всех культур . Однако чаще всего дрожируют семена медленно прорастающих культур. Перед посевом дрожированные семена увлажняют и выдерживают в теплом помещении от 12 часов до 3 суток. При дрожировании семян вносят и микроудобрения.

При попадании в благоприятные условия семена начинают прорастать. Прорастание се

№ слайда 8

При попадании в благоприятные условия семена начинают прорастать. Прорастание семян — это переход их от состояния покоя к вегетативному росту зародыша и формирующегося из него проростка. Этот процесс начинается при оптимальном для каждого вида и сорта растения сочетании внутренних и внешних (экологических) факторов — влажности, тепла и свободного до-, ступа кислорода. При набухании семян в клеточных органеллах активизируются окислительно-восстановительные ферменты, усиливающие дыхание и гидролиз белков, углеводов, жиров и других органических соединений запасающих тканей эндосперма, перисперма и (или) семядолей зародыша. В результате образуются простые водорастворимые соединения, доступные для поглощения клетками развивающегося зародыша. Кроме того, набухание семян сопровождается активированием фитогормонов, регулирующих их прорастание, а также освобождением энергии, которая используется в биохимических процессах зародыша и проростка. На ранних стадиях прорастание может быть полностью анаэробным, но как только семенная кожура лопается, оно становится аэробным и требует кислорода. Свободный доступ кислорода усиливает интенсивность дыхания прорастающих семян в сотни раз. Если почва перенасыщена водой, доступное семени количество кислорода может оказаться недостаточным для такого дыхания и прорастание станет невозможным. Только у немногих растений (рис, тимофеевка) семена могут прорастать при пониженной аэрации. Прорастание семян.

При прорастании семени первым появляется корешок, или зародышевый корень, которы

№ слайда 9

При прорастании семени первым появляется корешок, или зародышевый корень, который быстро растет и укрепляется в почве, всасывает из нее воду и растворенные минеральные вещества и поставляет их зародышу. Затем трогается в рост зародышевый стебелек, который выносит из почвы почечку и семядоли. Из почечки развивается надземная часть растения — стебель с листьями. Такое прорастание называется надземным (огурец, тыква, фасоль, морковь). В том случае, когда семядоли на поверхность почвы не выносятся, а остаются в семени (горох, дуб, пшеница, ячмень), — прорастание подземное. Молодые растеньица, которые развиваются из зародыша семени, называются проростками, В начальный период своего развития проростки питаются запасными веществами семени, а после образования настоящих листьев переходят на фототрофный способ питания. Сроки посева и глубина заделки семян зависят от вида и сорта растений, механического состава почвы, ее влажности, климатических условий местности и т. п. Чем тяжелее и увлажненнее почва, тем на меньшую глубину нужно заделывать семена.


№ слайда 10

Обрабатывали фасоль удобрениями, глюкозой, солью и марганцовкой. 1. ОПЫТ:

№ слайда 11

Обрабатывали фасоль удобрениями, глюкозой, солью и марганцовкой. 1. ОПЫТ:

2.

№ слайда 12

3.

№ слайда 13

4.

№ слайда 14

Лучше всего семена фасоли проросли в растворе удобрений и марганцовки. РЕЗУЛЬТАТ

№ слайда 15

Лучше всего семена фасоли проросли в растворе удобрений и марганцовки. РЕЗУЛЬТАТ:

Обрабатывать семена удобрениями или раствором марганцовки Мы рекомендуем:

№ слайда 16

Обрабатывать семена удобрениями или раствором марганцовки Мы рекомендуем:

Улучшить посевные качества семян подсолнечника, получить опережающие в развитии растения, заранее запланировать высокие и качественные урожаи можно, если перед заделкой в почву выполнить предварительную обработку посевного материала. Одним из вариантов такой подготовки является воздействие на семена электромагнитного поля переменного тока высокого напряжения и последующая за этим обработка этих же семян регулятором роста Зеребра Агро.

Используя стандартные методики, применяемые для исследования посевных качеств семян, в лабораторных и полевых условиях изучены варианты предпосевной обработки семян подсолнечника отдельно препаратом Зеребра Агро, отдельно в электромагнитном поле переменного тока высокого напряжения, а также воздействуя на семена одновременно электрофизическим фактором и регулятором роста.

Комплексная обработка, непосредственно проведенная перед заделкой семян в почву, произвела существенный стимулирующий эффект.

Ключевые слова: предпосевная обработка семян, электромагнитное поле, регулятор роста Зеребра Агро.

Aksenov M.P.

FSBEI HPE “Volgograd State Agricultural University”

INFLUENCE OF PRESOWING TREATMENT OF SEEDS OF SUNFLOWER ELECTROPHYSICAL IMPACTS AND GROWTH REGULATOR ON THEIR SOWING QUALITIES

Abstract

There is possible to improve the quality of the sunflower seeds crop, get the forward-looking plants, pre-plan high quality crop if before incorporation into the soil to conduct a preliminary seed treatment. One option of such treatment is to affect the seeds by the AC high voltage electromagnetic field and the consequent processing of the seed with Zerebra Agro growth regulator.

Applying standard techniques used to survey the seeds sown characteristics in the laboratory and field there were explored such options of sunflower seeds preplant treatment as separately by Zerebra Agro drug, separately in the high-voltage alternating current electromagnetic field, as well as affecting the seeds simultaneously by electrophysical factor and growth regulator.

Integrated treatment conducted immediately before seed placement in the soil produced a significant stimulating effect.

Keywords: presowing seed treatment, electromagnetic field, Zerebra Agro growth regulator.

Сельское хозяйство Волгоградской области, ведется в зоне рискованного земледелия, для которой характерны периодично чередующиеся дождливые и засушливые годы. Неблагоприятные природно-климатические условия региона зачастую снижают качество семян и соответственно количество получаемого из них валового сбора подсолнечника. Поэтому возникает естественная необходимость внедрения высокоэффективных методов предпосевной подготовки и обработки семян, как залога будущего полновесного урожая.

В последнее время в практику ведения эффективного хозяйствования на земле стали все чаще внедрять электрофизические методы воздействия на растения и семена зерновых, бобовых, бахчевых и овощных культур с целью их стимуляции – ускорения роста, повышения урожайности и улучшения качества получаемой продукции [3, 4, 7].

Среди разнообразия применяемых в растениеводстве электрофизических методов, обработке в электромагнитном поле переменного тока высокого напряжения можно отвести особое место, так как ее реализация менее затратна, чем например, обработка в электростатическом поле или в поле коронного разряда.

Еще в 1959 году опыты, проведенные в ВИЭСХ, позволили говорить, что электромагнитное поле переменного тока – сильный действующий фактор, оказывающий стимулирующее действие на семена в зависимости от напряженности и времени обработки, а также от физического состояния семян и биологических особенностей культуры и сорта. Стимулирующее действие предпосевной обработки семян в электромагнитном поле проявляется в существенном повышении энергии прорастания и улучшении всхожести семян, в опережающем развитии растений и увеличении количества собираемого урожая. Установлено, что для получения положительного эффекта от электростимуляции для семян различных культур и сортов требуются различные параметры обработки, а также разные временные интервалы выдержки семян и срок их отлежки от обработки до посева [3, 4, 7].

Высокую эффективность подготовки семян перед посевом также имеет технологическая операция по обработке их регуляторами роста, применение которых улучшает посевные качества семян и позволяет планировать высокие урожаи [1].

В исследованиях Д.Н. Прянишникова, Ф.В. Турчина, И.С. Шатилова, А.С. Устименко, А.Т. Гвоздиковской, B.C. Шевелухи, Г.А. Медведева и других ученых было изучено и подтверждено положительное действие таких препаратов как ФлорГумат, Мивал, Крезацин, Бишофит, Мастер-С, Силк, Гибберсит, Агат-25К, Никфан на рост, развитие и урожайность различных сельскохозяйственных культур. Особого же внимания заслуживает новый регулятор роста Зеребра Агро, обладающий ростостимулирующими, фунгицидными и бактерицидными свойствами.

Препарат Зеребра Агро положительно зарекомендовал себя на полях России, показав хорошие результаты в практическом применении. В 2013-2014 гг. он был протестирован и исследован в научных учреждениях и передовых хозяйствах [5, 6]:

– в Республике Башкортостан на подсолнечнике сорта Енисей;

– в Краснодарском крае на гибриде подсолнечника Кубанский 930, а также на рисе, подсолнечнике, сое;

– в хозяйствах Ставропольского края на озимых колосовых;

– в Саратовской и Липецкой областях на озимой пшенице;

– в Волгоградской области на яровой пшенице сорта Добрыня.

Результаты проведенных испытаний показали повышение полевой всхожести семян, усиление ростовых и формообразовательных процессов у выращиваемых культур, повышение их устойчивости к неблагоприятным факторам среды, увеличение урожайности, улучшение качества собираемой продукции.

Проанализировав достигаемые положительные эффекты от воздействия электромагнитным полем или препаратом Зеребра Агро на семена можно предположить, что одновременное использование обоих перечисленных факторов может дать еще более существенный эффект предпосевной стимуляции.

Целью работы является исследование влияния комплексного воздействия электромагнитного поля и регулятора роста Зеребра Агро на посевные, ростовые и продуктивные свойства подсолнечника НК Неома в зоне черноземных почв Волгоградской области.

При проведении исследований семена подсолнечника подвергались воздействию в два этапа – сначала электромагнитным полем переменного тока высокого напряжения, а затем, после отлежки в течение 30 минут, обрабатывались регулятором роста Зеребра Агро.

Предварительно осуществлялся поиск наиболее приемлемых режимов воздействия на семена. Было лабораторно исследовано 14 вариантов предпосевной обработки, по следующим экспериментальным схемам:

  1. Контроль – без обработки;
  2. Обработка Зеребра Агро;

3-8. Электростимуляция семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжения значением 1; 5; 10; 15; 20 и 25 кВ и временем обработки – 30, 60 и 90 секунд;

9-14. Электростимуляция семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжения значением 1; 5; 10; 15; 20 и 25 кВ и временем обработки – 30, 60 и 90 секунд с последующей обработкой препаратом Зеребра Агро.

Анализ результатов лабораторных исследований позволил констатировать тот факт, что наибольший эффект воздействия на энергию прорастания и лабораторную всхожесть семян гибрида подсолнечника НК Неома наблюдался при совместном применении электростимуляции семян в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ, экспозицией 60 секунд и обработкой препаратом Зеребра Агро. При этом опытное значение энергии прорастания превосходило контроль на 6%, а лабораторная всхожесть – на 7%.

Таким образом, в полевых условиях было решено закладывать опыты по следующей схеме:

  1. Контроль – без обработки;
  2. Обработка Зеребра Агро;
  3. Электростимуляция семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ и временем обработки 60 секунд;
  4. Электростимуляция семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ и временем обработки 60 секунд с последующей обработкой препаратом Зеребра Агро.

В проведенных опытах использовали регулятор роста Зеребра Агро – водный раствор, содержащий 500 мг/л коллойдного серебра + 100 мг/л полигексаметилен бигуанид гидрохлорида. Расход препарата составлял 100 мл/т, расход рабочего раствора – 10 л/т.

Механизм действия препарата основан на возможности действующего вещества – гуанидина формировать у растения неспецифическую, системную, продолжительную (до 1-2 месяцев) устойчивость к грибам, бактериям, вирусам, а также активировать ростовые и биологические процессы, что в купе с электрофизической обработкой позволит планировать получение существенных прибавок в урожае подсолнечника.

Обработку семян электромагнитным полем переменного тока высокого напряжения производили с помощью установки, состоящей из промышленно выпускаемого аппарата СКАТ-70, двух пластинчатых электродов размещенных в экспериментальной ячейке.

Семена подсолнечника размещались равномерным слоем в экспериментальной ячейке на нижнем электроде, в то время как верхний электрод во всех опытах был на одном и том же расстоянии 15 см от обрабатываемого слоя семян подсолнечника.

Полевые опыты проводились в Новоаннинском районе Волгоградской области.

К посеву гибридов подсолнечника НК Неома приступали с наступлением среднесуточной температуры почвы на глубине 0,08…0,10 м 10…12 ° С. Сев гибридов подсолнечника НК Неома производили 30.05.2015 и 31.05.2015, с нормой высева 60 тыс. всх. семян/га., способ посева – пунктирный с междурядьями – 0,60 м, повторность – трехкратная, размещение систематическое, площадь делянок – 432 м 2 , предшественник – кукуруза.

По своим природным условиям район относится к зоне сухих степей. Почвы опытного участка представлены южным черноземом. Содержание гумуса 5,63-5,69%. Обеспеченность подвижным фосфором (P2O5) – 22,3 мг/кг, обменным калием (K2O) – 340-390 мг/кг, гидролизуемым азотом (N) 75,6-80,0 мг/кг.

Климат континентальный, с жарким летом, умеренно-холодной зимой, недостаточным количеством осадков. Среднегодовая температура составляет +4,5 С ° . Абсолютный максимум в июле +45 С ° , абсолютный минимум в январе –44 С ° . Среднегодовое количество осадков в 2015 году составило 475 мм, в том числе за период вегетации подсолнечника (май-сентябрь) – 209 мм. Влажность воздуха в зимние месяцы превышает 80%, в летние месяцы составляет 41…47%.

Как показали наши исследования, предпосевная обработка семян подсолнечника НК Неома способствовала повышению их посевных качеств (табл. 1).

Таблица 1. Влияние способа предпосевной обработки на посевные качества семян подсолнечника НК Неома

24-02-2016 17-14-10

Данные таблицы 1 показывают, что как энергия прорастания семян подсолнечника НК Неома, так и лабораторная и полевая всхожесть в среднем за год наблюдения были достаточно высокими и полностью отвечали требованиям, предъявляемым к оригинальным семенам.

Семена, обработанные регулятором роста Зеребра Агро, также как и под воздействием электромагнитного поля переменного тока высокого напряжения значением 20 кВ и временем обработки 60 секунд прорастали быстрее, чем в контроле в среднем на 5%. Следует отметить, что в данных вариантах увеличилась и энергия прорастания по сравнению с контролем на 3-4 %.

В тоже время наибольший эффект воздействия на энергию прорастания и всхожесть семян гибрида подсолнечника НК Неома наблюдался при совместном применении электростимуляции семян в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ и обработкой препаратом Зеребра Агро. При этом опытное значение энергии прорастания превосходило контроль на 6%, а лабораторная и полевая всхожесть – на 7% (рис. 1).

24-02-2016 17-14-22

Рис. 1. Зависимость посевных качеств семян подсолнечника НК Неома от способа предпосевной обработки

Изучаемые варианты обработки, начиная с фазы бутонизации и вплоть до наступления полной спелости, оказывали заметное влияние на продолжительность межфазных периодов у растений, а также способствовали лучшему накоплению пигментов в листьях подсолнечника. При этом отмечено повышение содержания всех выделяемых фракций пигментов.

Таким образом, можно считать установленным положительное действие всех изучаемых вариантов предпосевной обработки на содержание пигментов в листьях, увеличивая фотосинтетический потенциал посевов, что в конечном итоге положительно сказалось на урожайности подсолнечника НК Неома.

В опытных вариантах формируется большее число листьев, что приводит к увеличению ассимиляционной поверхности (табл. 2). Увеличение высоты растений и площади листовой поверхности в опытных вариантах приводит к повышению подземной массы растений подсолнечника.

Таблица 2. Влияние способа предпосевной обработки на листовой аппарат подсолнечника НК Неома

24-02-2016 17-14-39

Усиление ростовых и формообразовательных процессов при применении Зеребра Агро, а также под воздействием электромагнитного поля положительно сказывается на формировании элементов структуры урожая подсолнечника (табл. 3).

Таблица 3. Влияние способа предпосевной обработки на элементы структуры урожая подсолнечника НК Неома

24-02-2016 17-14-57

Из данных таблицы 3 видно, что в опытных вариантах формировались более крупные по диаметру корзинки, с большим числом семян и массой семян с корзинки. Наиболее высокие значения рассматриваемых показателей отмечены в варианте 4 по схеме опыта. Формирование более крупных корзинок с большим числом и массой семян с корзинки приводит к существенному повышению урожайности подсолнечника и увеличению содержания масла в семенах (табл. 4).

Таблица 4. Влияние способа предпосевной обработки на продуктивные свойства гибрида подсолнечника НК Неома

24-02-2016 17-15-13

Результаты проведенных исследований показали, что наибольший урожай семян гибрида подсолнечника НК Неома был получен при совместном применении электростимуляции семян в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ, экспозицией 60 секунд и обработкой препаратом Зеребра Агро – 3,10 т/га, что на 14,8 % больше, чем на контрольном варианте.

Совместное применение электростимуляции семян и регулятора роста Зеребра Агро способствовало повышению урожая и его качества, положительно повлияло на элементы структуры урожая: если масса 1000 семян подсолнечника НК Неома на контрольном варианте составляет – 56 г, то после комплексной обработки семян – 61 г.

В результате проведенных опытов в полевых условиях наиболее благоприятным можно считать комбинированный способ обработки семян подсолнечника – совместное применение электростимуляции семян подсолнечника в поле высокого переменного напряжения, с прикладываемым к рабочим электродам напряжением 20 кВ, экспозицией 60 секунд и обработки препаратом Зеребра Агро.

Результаты исследований свидетельствуют о целесообразности использования комбинированного способа предпосевной обработки семян подсолнечника в сельскохозяйственном производстве.

Читайте также: