Тип скрещивания при которых ряд исходных сортов скрещивают с определенным набором других сортов

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Первоначально в основе селекции лежал искусственный отбор, когда человек отбирает растения или животных с интересующими его признаками. До XVI—XVII веков отбор происходил бессознательно: то есть человек, например, отбирал для посева лучшие, самые крупные семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении.

Только в последнее столетие человек, ещё не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени.

Однако методом отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы, которые уже существуют в популяции. Поэтому для получения новых пород и сортов животных и растений применяют гибридизацию, скрещивая растения с желательными признаками и в дальнейшем отбирая из потомства те особи, у которых полезные свойства выражены наиболее сильно. Например, один сорт пшеницы отличается прочным стволом и устойчив к полеганию, а сорт с тонкой соломиной не заражается стеблевой ржавчиной. При скрещивании растений из двух сортов в потомстве возникают различные комбинации признаков. Но отбирают именно те растения, которые одновременно имеют прочную соломину и не болеют стеблевой ржавчиной. Так создается новый сорт.

В связи с развитием генетики, селекция получила новый импульс к развитию. Генная инженерия позволяет подвергать организмы целенаправленной модификации. Окончательно производится уже отбор лучших, но среди искусственно созданных генотипов.

Селекция как наука оформилась лишь в последние десятилетия. В прошлом она была больше искусством, чем наукой. Навыки, знания и конкретный опыт, нередко засекреченный, были достоянием отдельных хозяйств, переходя от поколения к поколению. Только гению Дарвина удалось обобщить весь этот огромный и разрозненный опыт прошлого, выдвинув идею естественного и искусственного отбора как основного фактора эволюции наряду с наследственностью и изменчивостью.

Теоретической основой селекции является генетика, так как именно знание законов генетики позволяет целенаправленно управлять появлением мутаций, предсказывать результаты скрещивания, правильно проводить отбор гибридов. В результате применения знаний по генетике удалось создать более 10000 сортов пшеницы на основе нескольких исходных диких сортов, получить новые штаммы микроорганизмов, выделяющих пищевые белки, лекарственные вещества, витамины и т. п.

К задачам современной селекции относится создание новых и улучшение уже существующих сортов растений, пород животных и штаммов микроорганизмов.

Многолетняя селекционная работа позволила вывести много десятков пород домашних кур, отличающихся высокой яйценоскостью, большим весом, яркой окраской и т. п. А их единый предок — банкивская кура из Юго-Восточной Азии. На территории России не растут дикие представители рода крыжовник. Однако на основе вида крыжовник отклоненный, встречающийся на Западной Украине и Кавказе, получено более 300 сортов, многие из которых прекрасно плодоносят в России.

Выдающийся генетик и селекционер академик Н. И. Вавилов писал, что селекционеры должны изучать и учитывать в своей работе следующие основные факторы: исходное сортовое и видовое разнообразие растений и животных; наследственную изменчивость; роль среды в развитии и проявлении нужных селекционеру признаков; закономерности наследования при гибридизации; формы искусственного отбора, направленные на выделение и закрепление необходимых признаков.

Селекция растений

Основные методы селекции вообще и селекции растений в частности — отбор и гибридизация. Для перекрестноопыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Таким образом получают, например, новые сорта ржи. Эти сорта не являются генетически однородными. Если же желательно получение чистой линии — то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками. Таким методом были получены многие сорта пшеницы, капусты, и т. п.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого — переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают, выбраковываясь естественным отбором.

Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса: гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Эффект гетерозиготной (или гибридной) мощности бывает сильным только в первом гибридном поколении, а в следующих поколениях постепенно снижается. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина — объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. В сельскохозяйственной практике широко используются триплоидная сахарная свекла, четырёхплоидный клевер, рожь и твердая пшеница, а также шестиплоидная мягкая пшеница. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре. Одно из таких веществ — колхицин. Применение колхицина для получения искусственных полиплоидов является одним из примеров искусственного мутагенеза, применяемого при селекции растений.

Путем искусственного мутагенеза и последующего отбора мутантов были получены новые высокоурожайные сорта ячменя и пшеницы. Этими же методами удалось получить новые штаммы грибов, выделяющие в 20 раз больше антибиотиков, чем исходные формы. Сейчас в мире культивируют более 250 сортов сельскохозяйственных растений, созданных при помощи физического и химического мутагенеза. Это сорта кукурузы, ячменя, сои, риса, томатов, подсолнечника, хлопчатника, декоративных растений.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

К одному из достижений современной генетики и селекции относится преодоление бесплодия межвидовых гибридов. Впервые это удалось сделать Г. Д. Карпеченко при получении капустно-редечного гибрида. В результате отдаленной гибридизации было получено новое культурное растение — тритикале — гибрид пшеницы с рожью. Отдаленная гибридизация широко применяется в плодоводстве

Селекция животных

Основные принципы селекции животных не отличаются от принципов селекции растений. Однако селекция животных имеет некоторые особенности: для них характерно только половое размножение; в основном очень редкая смена поколений (у большинства животных через несколько лет); количество особей в потомстве невелико. Поэтому в селекционной работе с животными важное значение приобретает анализ совокупности внешних признаков, или экстерьера, характерного для той или иной породы.

Одним из важнейших достижений человека на заре его становления и развития (10—12 тыс. лет назад) было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У домашних животных весьма развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Например, способность некоторых пород кур давать более 300 яиц в год лишена биологического смысла, поскольку такое количество яиц курица не сможет высиживать. Поэтому в естественных условиях одомашненные формы существовать не могут.

Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости и расширило его спектр. При этом одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более спокойный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у животных определенных качеств, удовлетворяющих человека.

Процесс одомашнивания новых животных для удовлетворения потребностей человека продолжается и в наше время. Например, для получения модной и высококачественной пушнины создана новая отрасль животноводства — пушное звероводство.

Отбор и типы скрещивания

Отбор родительских форм и типы скрещивания животных проводятся с учетом цели, поставленной селекционером. Это может быть целенаправленное получение определенного экстерьера, повышение молочности, жирности молока, качества мяса и т. д. Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства. Поэтому необходимо хорошо знать их родословную. В племенных хозяйствах при подборе производителей всегда ведется учёт родословных, в которых оцениваются экстерьерные особенности и продуктивность родительских форм в течение ряда поколений. По признакам предков, особенно по материнской линии, можно судить с известной вероятностью о генотипе производителей.

В селекционной работе с животными применяют в основном два способа скрещивания: аутбридинг и инбридинг.

Аутбридинг, или неродственное скрещивание между особями одной породы или разных пород животных, при дальнейшем строгом отборе приводит к поддержанию полезных качеств и к усилению их в ряду следующих поколений.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец—дочь, мать—сын, двоюродные братья—сестры и т. д.). Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственное скрещивание используют при инбридинге. Однако гомозиготизация при инбридинге, как и в случае растений, ведет к ослаблению животных, снижает их устойчивость к воздействию среды, повышает заболеваемость. Во избежание этого необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.

У домашних животных, как и у растений, наблюдается явление гетерозиса: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности. Классическим примером проявления гетерозиса является мул — гибрид кобылы и осла. Это сильное, выносливое животное, которое может использоваться в значительно более трудных условиях, чем родительские формы.

Гетерозис широко применяют в промышленном птицеводстве (пример — бройлерные цыплята) и свиноводстве, так как первое поколение гибридов непосредственно используют в хозяйственных целях.

Отдаленная гибридизация. Отдаленная гибридизация домашних животных менее эффективна, чем растений. Межвидовые гибриды животных часто бывают бесплодными. При этом восстановление плодовитости у животных представляет более сложную задачу, поскольку получение полиплоидов на основе умножения числа хромосом у них невозможно. Правда, в некоторых случаях отдаленная гибридизация сопровождается нормальным слиянием гамет, обычным мейозом и дальнейшим развитием зародыша, что позволило получить некоторые породы, сочетающие ценные признаки обоих использованных в гибридизации видов. Например, в Казахстане на основе гибридизации тонкорунных овец с диким горным бараном архаром создана новая порода тонкорунных архаромериносов, которые, как и архары, пасутся на высокогорных пастбищах, недоступных для тонкорунных мериносов. Улучшены породы местного крупного рогатого скота.

Гомологические ряды в наследственной изменчивости — понятие, введенное Н. И. Вавиловым при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений.

Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Закономерности в полиморфизме у растений, установленные путем детального изучения изменчивости различных родов и семейств, можно условно до некоторой степени сравнить с гомологическими рядами органической химии, например с углеводородами (CH4, C2H6, C3H8…).

Суть явления состоит в том, что при изучении наследственной изменчивости у близких групп растений были обнаружены сходные аллельные формы, которые повторялись у разных видов (например, узлы соломины злаков с антоциановой окраской или без, колосья с остью или без и т. п.). Наличие такой повторяемости давало возможность предсказывать наличие ещё не обнаруженных аллелей, важных с точки зрения селекционной работы. Поиск растений с такими аллелями проводился в экспедициях в предполагаемые центры происхождения культурных растений. Следует помнить, что в те годы искусственная индукция мутагенеза химическими веществами или воздействием ионизирующих излучений ещё не была известна, и поиск необходимых аллелей приходилось производить в природных популяциях.

Н. И. Вавилов рассматривал сформулированный им закон как вклад в популярные в то время представления о закономерном характере изменчивости, лежащей в основе эволюционного процесса (например, теория номогенеза Л. С. Берга). Он полагал, что закономерно повторяющиеся в разных группах наследственные вариации лежат в основе эволюционных параллелизмов и явления мимикрии.

В 70-80-х годах XX века к закону гомологических рядов обратился в своих трудах Медников Б. М., написавший ряд работ, в которых показал, что именно такое объяснение возникновения сходных, часто до мелочей, признаков в родственных таксонах вполне состоятельно.

Изменение наследственности исходного материала для селекции при гибризации осуществляется однократными, или простыми, скрещиваниями и многократными скрещиваниями, названными сложными или ступенчатыми скрещиваниями. Наиболее распространенное деление скрещиваний на простые и сложные с последующим подразделением на целый ряд типов можно представить такой схемой.

Простыми скрещиваниями называют однократные скрещивания между двумя родительскими формами. Если родительские виды или сорта обозначить буквами, то этот тип скрещивания можно изобразить как АЧБ или ВЧГ и т, д., после которых в гибридном потомстве проводится отбор элитных растений и оценка их потомства. При простых скрещиваниях гибриды получаются на основе комбинаций генов материнской и отцовской форм. Простые парные скрещивания имеют большее значение при внутривидовой гибридизации.

Диаллельные скрещивания – каждая испытываемая линия, форма или сорт скрещивается со всеми другими линиями или сортами во всех возможных комбинациях. Например, АЧБ, АЧВ, АЧГ, АЧД, АЧЕ и т.д. Число всех возможных комбинаций при диаллельных скрещиваниях может быть очень большим и будет возрастать – по мере увеличения количества исходных линий, форм или сортов. Так, при диаллельном скрещивании 10 линий число всех возможных комбинаций составляет 45, а при 100 линиях уже 4950. Поэтому на практике диаллельные скрещивания обычно проводят в пределах сравнительно небольших групп, в которых бывает примерно по 10 линий или сортов. Диаллельные скрещивания можно применять в работе по гибридизации с древесными растениями с целью изучения варьирования признаков в гибридном потомстве, а также определения отобранных по фенотипу деревьев на проявление хозяйственно ценного признака в гибридном потомстве.














Реципрокными скрещиваниями называются скрещивания растений, при которых каждый из двух сортов или видов в одном случае является материнской формой, во втором – отцовской. Например, скрещивание, осуществленное по схеме АЧБ и БЧА. Первое скрещивание АЧБ называют прямым, второе БЧА –обратным. Реципрокные скрещивания часто используют с разведывательной целью, чтобы выяснить какую из двух форм лучше взять в качестве материнской, а какую в качестве отцовской. Реципрокные скрещивания важны при отдаленной гибридизации, так как часто успех работы решается удачным подбором отцовских и материнских видов. Для реципрокных скрещиваний составляют план, или сетку, скрещиваний.

Сложными скрещиваниями называются скрещивания, когда в гибридизацию вовлекается более двух родительских форм или когда гибридное потомство повторно скрещивается с одним из родителей. Сложные скрещивания в селекционной практике имеют значительно большее значение, чем простые.

Множественные скрещивания, или поликросы, – это такие скрещивания, когда материнское растение опыляется смесью пыльцы нескольких видов и сортов. Этот вид скрещивания схематически можно изобразить так: АЧ (Б+В+Г+Д и т.д.), где буквой А обозначен материнский сорт, а буквами Б, В, Г, Д – отцовские сорта, от которых берется пыльца для составления смеси. Множественные скрещивания осуществляются двумя способами: искусственным опылением материнского растения смесью пыльцы нескольких отцовских форм: свободным опылением материнского растения с помощью ветра или насекомых, когда материнские и отцовские растения высаживаются рядом на одной и той же семенной площадке. Метод множественного опыления успешно применил к плодовым культурам И.В. Мичурин. В селекции многих кормовых многолетних трав и некоторых древесных растений сейчас широко используется этот метод, получивший название метода поликроссной селекции.

Основные условия успешного применения метода множественных скрещиваний: растения должны быть многолетними, самостерильными, обладать способностью к клонированию и иметь одинаковые сроки цветения. Таким условиям могут удовлетворять многие древесные породы.

Возвратные скрещивания, или беккроссы, – скрещивания, при которых гибрид повторно скрещивается с одной из родительских форм. В природных условиях повторные скрещивания спонтанных гибридов с одной из родительских форм называются интрогрессивной гибридизацией. В практике селекционной работы беккроссы называют повторными (возвратными) скрещиваниями. Возвратные скрещивания можно записать схематически так: 1-й год – А ЧБ; 2-й год – (АЧ Б) ЧА или (АЧБ)ЧБ. Этот тип скрещивания широко применяется в селекционной практике. Он используется в тех случаях, когда у ценных по комплексу признаков сортов имеется дефект, который желательно устранить. Тогда новый сорт стал бы совершеннее, расширились бы возможности его практического использования. При возвратных скрещиваниях тот сорт, от которого хотят взять основной комплекс признаков, берется при первом скрещивании обычно в качестве материнского, а при повторных скрещиваниях он используется в качестве отцовского. Изменчивость гибридного потомства при возвратных скрещиваниях суживается. Полученные гибриды дают расщепление в отношении 1:1 (1-й год – ааЧАААа; 2-й год – АаЧаа-1АаЧ1 аа). Селекционная цель достигается сравнительно быстро.

Насыщающие и конвергентные скрещивания – повторные возвратные скрещивания. Этот метод часто применяется при выведении сортов устойчивых к болезням. При насыщающих скрещиваниях признаки и свойства одного из родителей почти полностью вытесняются за исключением немногих генов. Во многих случаях это бывает нежелательным. Во избежание этого разработана система конвергентных скрещиваний. Конвергентные скрещивания представляют собой дальнейшее развитие метода возвратных скрещиваний. Метод заключается в том, что после получения F1 дальнейшее скрещивание проводят в двух направлениях. В одном случае гибриды повторно скрещивают с материнским сортом, а во втором – с отцовским. В результате получают две сближенные линии. Их скрещивают между собой и среди гибридного потомства производят отбор. После возвратных скрещиваний и сближения линий гибридное потомство проявляет менее сложный характер расщепления. Вследствие этого среди потомства легче найти желаемую комбинацию признаков.

Ступенчатые скрещивания – полученный от простого скрещивания гибрид повторно скрещивается не с родительской формой, а с третьим сортом или видом растений, затем с четвертым и т.д. Таким образом, в этих скрещиваниях участвуют несколько родительских форм, которые последовательно или ступенчато включаются в гибридизацию. При ступенчатых скрещиваниях создается гибридный материал, включающий наследственные свойства нескольких сортов, или видов растений.

Межгибридными скрещиваниями называют такие, при которых объединение наследственности нескольких родителей осуществляют не последовательно, как при ступенчатой гибридизации, а параллельно после предварительного получения простых гибридов и последующего их скрещивания.

Межгибридные скрещивания–главный метод при создании гетерозисных гибридных семян кукурузы и некоторых других культур.

Все типы скрещиваний успешно применяются к лесным древесным растениям. Они позволяют в ряде случаев создавать оригинальные комплексные программы применительно к особенностям той или иной группы видов. Перспективным приемом создания таких программ является включение внутривидовой и межвидовой гибридизации по родовым комплексам.

Лесные древесные растения выращиваются обычно с целью получения вегетативной массы, поэтому стерильность гибридных растений не может препятствовать их выращиванию в промышленных масштабах. В современной лесной генетике и селекции гибридизация играет более важную роль, чем в селекции сельскохозяйственных культур. Применение межвидовой гибридизации близких видов в некоторых родовых комплексах древесных пород из разных районов произрастания имеет большое значение для получения гетерозисных межвидовых гибридов. Если такие географически изолированные виды отобрать и посадить вместе, то можно получить гибрид, между ними от свободного переопыления.

Накоплены многочисленные экспериментальные данные, доказывающие целесообразность широкого применения внутривидовой гибридизации к лесным древесным растениям Проявление гетерозиса у лесных пород чаще наблюдается в первом гибридном поколении. Однако в некоторых случаях рациональнее селекционную работу распространять на второе и третье поколения. В связи с длительным периодом смены поколений у лесных древесных растении большое значение приобретает умелый подбор родительских пар с целью обеспечения в первом поколении гибрида с желательной комбинацией хозяйственно ценных признаков.

Желтую горошину – в горшок, зеленую – в плетеную миску, снова желтую – в горшок. Нет, это не Золушка по заданию мачехи перебирает семена, чтобы, окончив работу, пойти на бал. Это монах и ученый Грегор Мендель в саду Августинского монастыря в чешском городе Брно собирает урожай с выращенных особым способом гороховых кустов, чтобы определить, как наследуется цвет у гороха.

Попытки скрещивать растения и изучать полученное потомство предпринимались исследователями и раньше. Но определенные выводы ученые сделать не смогли из-за большого разнообразия признаков среди потомков. И, поскольку, основы гибридологического анализа отсутствовали, а статистику для исследования наследственности никто не применял, ни один из исследователей не смог определить точные формулы наследования.

Для своих опытов Мендель выбрал горох не случайно:

  • Это неприхотливое растение легко выращивать, и в условиях теплой погоды в Чехии за один год можно получить несколько поколений.
  • Потомство одного семени довольно многочисленно: вспомните, сколько стручков на растении, выросшем из одной горошины.
  • Сорта гороха разнообразны в своих фенотипических проявлениях, а отличительные признаки наследуются.
  • Горох — самоопыляющееся растение. Это значит, что опыление происходит внутри одного цветка. Пыльца с другого растения в дикой природе попасть в другой цветок не может, поскольку органы размножения гороха защищены от проникновения пыльцы с других растений.
  • И вместе с тем, у исследователя есть возможность после удаления тычинок материнского растения искусственно перенести пыльцу с другого растения с помощью инструментов для получения растений-гибридов.
  • Гибриды, полученные в результате искусственного оплодотворения, способны давать свое потомство, что важно для прослеживания наследования признаков в поколениях.

Для того, чтобы оценить масштабы проделанной ученым работы, представьте, что на всех семеноводческих хозяйствах Чехии ученый заказал сорта выращиваемого там гороха. В результате ему прислали 34 образца, из которых для исследований он отобрал 22 варианта.

Исследуемый Менделем горох отличался по следующим признакам:

  • цвет семян (желтый или зеленый);
  • вид кожуры семян (гладкая или сморщенная);
  • высота стебля (высокое растение или низкое);
  • оттенок цветков (белые или розовые);
  • форма бобов (простые или членистые);
  • расположение цветов (верхушечные или пазушные).

Биология. Общая биология. 10-11 класс. Базовый уровень. Рабочая тетрадь. С тестовыми заданиями ЕГЭ. Вертикаль. ФГОС

Биология. Общая биология. 10-11 класс. Базовый уровень. Рабочая тетрадь. С тестовыми заданиями ЕГЭ. Вертикаль. ФГОС

Тетрадь содержит различные репродуктивные и творческие вопросы и задания, в том числе в виде лабораторных работ, познавательных задач, таблиц, схем и рисунков. В тетрадь включены также тестовые задания, которые помогут ученикам подготовиться к успешной сдаче ЕГЭ. Специальными знаками отмечены задания, направленные на формирование метапредметных умений (планировать деятельность, выделять различные признаки, сравнивать, классифицировать и др.) и личностных качеств учеников.

В своих опытах Мендель учел ошибки предшественников, которые пытались сравнивать растения одновременно по разным признакам и потерпели фиаско.

Исследователь решил начать с изучения наследования лишь одного признака — цвета горошин. Именно благодаря тому, что ученый сознательно сузил задачу, его ждал успех и он смог четко установить определенные закономерности наследования.

Мендель вручную оплодотворил растения, семена которых имели желтый цвет кожуры, пыльцой с растений с зеленой кожурой. Когда ученый собрал урожай высаженных растений, то обнаружил, что кожура у всех потомков желтая.

Повторив эксперименты с морщинистыми и гладкими горошинами, с кустами гороха разной высоты, растениями с разной окраской цветков и стручков и т.д., Мендель отметил, что все потомки в первом поколении унаследовали признак одного из родительских организмов, т.е. по фенотипу не отличаются друг от друга.

Ведущее свойство, характерное для всех семян, полученных в первом поколении, Мендель обозначил как доминантное. Свойство другого родителя, которое не проявилось у гибридов первого поколения, ученый определил как рецессивное. Закономерность получила название первого закона Менделя, или закона единообразия гибридов I-го поколения, или закона доминирования.

Все выращенные образцы нужно было собрать, сосчитать и выделить определенные закономерности. Одним из первых Мендель использовал и применил конкретные количественные методы для обработки данных. Зная о теории вероятности, он понимал необходимость исследования большого числа семян гороха, полученных в результате скрещиваний, чтобы избежать статистической ошибки из-за случайных отклонений.

Для выведения законов наследования Мендель изучил более двадцати тысяч семян — гибридов второго поколения. Согласитесь, для обычного монаха, который жил в конце XIX века, без доступа к современным исследовательским инструментам, с лупой и микроскопом, в перерывах между молитвами и проповедями — это ли не подвиг!

Горох – самоопыляющееся растение, поэтому в следующем поколении ученый предоставил работу по опылению матушке-природе, чем облегчил себе задачу исследовательскую, но не статистическую. Учитывая, что способ размножения гороха – половой, неопыленные цветки просто-напросто не дадут потомство, и случайные отклонения не искажали итоги экспериментов с растениями.

Мендель продолжил опыты с одинаково желтыми гибридами первого поколения. И для исследователя было большим сюрпризом увидеть примерно треть зеленых горошин в корзинке семян с новым урожаем.

Когда ученый проанализировал результаты экспериментов с гибридами второго поколения, он увидел следующую закономерность: гибриды разделились на два различных по внешнему виду, т.е. фенотипу, класса. Бо´льшая часть унаследовала доминантные признаки, меньшая — рецессивные.

Генетические законы Менделя

Далее ученый начал проводить опыты с растениями, у которых отличались две пары признаков, и использовал гомозиготные семена гороха, отличающиеся цветом и формой семян. Такой тип скрещивания ученый назвал дигибридным. Для определения гомозиготности растений он использовал анализирующее скрещивание

У потомков во втором поколении треть горошин имеет проявления доминантного фенотипа, однако при этом отличается по генотипу (Аа и АА). И чтобы определить генотип, Мендель использовал семена с проявлениями рецессивного признака. Поскольку рецессивные свойства проявляются только в гомозиготном состоянии генов (аа), потомки, в зависимости от генотипа исходной особи, будут иметь единый фенотип, если родительская особь гомозиготна, согласно 1 закону Менделя, либо произойдет расщепление в соотношении 1:1.

В результате искусственного опыления гладких (B) и желтых (A) растений с морщинистыми (b) и зелеными(a), в первом поколении все растения дали потомство с желтыми гладкими горошинами, что подтвердило первый закон Менделя о единообразии гибридов первого поколения при дигибридном скрещивании.

Генетические законы Менделя

Замеченные Менделем закономерности о наследовании генов подтвердились при анализе итогов экспериментов со всеми семью парами признаков. В ходе анализа результатов ученый пришел к выводу об универсальности закономерностей наследования и вывел Третий закон Менделя, или закон независимого распределения признаков.

Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары. В опытах по скрещиванию организмов с гомозиготным набором генов, при анализе по двум и более парам отличающихся качеств, у гибридов в третьем поколении (получены при скрещивании гибридов второго поколения) наблюдается независимое комбинирование свойств и кодирующих их генов разных аллельных пар.

Опыты ученого, проведенные с тысячами гороховых зерен в монастырском саду, и тщательная статистическая работа по анализу признаков, проявившихся у потомков, позволили ученому доложить на заседании Общества естествоиспытателей в г. Брно в 1865 году о своих выводах.

Мендель утверждал, что:

Из-за неудачи с другими растениями и пчелами сам Мендель разочаровался в своем открытии. А с 1868 года, после того, как получил сан аббата монастыря, биологией больше не занимался.

И только в начале XX века, благодаря пересмотру законов Менделя, генетика смогла сделать огромный шаг вперед.


Плоды земляники садовой. Предположительно возникла в результате скрещивания земляники чилийской и земляники виргинской.

Скрещивание (гибридизация) — один из методов селекции растений и животных [1] . Естественное или искусственное соединение двух наследственно различающихся генотипов посредством оплодотворения [2] .

В селекции растений

Анализирующее скрещивание — возвратное скрещивание гибридов первого поколения с рецессивной гомозиготной родительской формой.

Беккросс — скрещивание гибридов F1 с одной или обеими родительскими формами.

Внутривидовое скрещивание — скрещивание организмов, относящихся к одному и тому же виду.

Диаллельное скрещивание — скрещивание, при котором испытываемые линии или сорта скрещиваются во всех возможных комбинациях.

Инконгруентное скрещивание (трудноудающееся) — отдалённые скрещивания между организмами, имеющими несоответствующие наборы хромосом или разное их число. Могут быть межвидовыми или межродовыми.

Конгруентное скрещивание — скрещивание организмов с совместимыми наборами хромосом.

Насыщающее скрещивание — многократное возвратное скрещивание гибридов или форм с одной из исходных родительских форм.

Ступенчатое скрещивание — скрещивание, при котором последовательно используется несколько родительских форм.

Простые скрещивания — скрещивания, при которых разные родительские формы участвуют только в одной комбинации.

Реципрокные скрещивания (взаимные скрещивания) — скрещивания между двумя формами, когда каждая из них в одном случае используется в качестве материнской, а в другом — в качестве отцовской ( А × В и В × А).

Топкроссы — скрещивания, когда ряд исходных сортов скрещивают с определённым набором других сортов [2] .

Примечания

  1. Скрещивание // Большая советская энциклопедия.
  2. 12Самигуллина Н. С. Практикум по селекции и сортоведению плодовых и ягодных культур: Учебное издание. — Мичуринск: Мичуринский государственный аграрный университет, 2006. — 197 с.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Скрещивание" в других словарях:

СКРЕЩИВАНИЕ — СКРЕЩИВАНИЕ, скрещивания, мн. нет, ср. (книжн.). 1. Действие и состояние по гл. скрещивать скрещиваться, то же, что скрещение в 1 и 2 знач. Скрещивание шпаг. Скрещивание животных. 2. Оплодотворение мужской особью женской особи у животных и… … Толковый словарь Ушакова

Скрещивание — спаривание особей, различающихся своими признаками. См. также: Скрещивание Спаривание Селекция Финансовый словарь Финам … Финансовый словарь

СКРЕЩИВАНИЕ — объединение генетич. материала разных клеток в одной клетке; один из методов селекции. У раздельнополых Срганизмов С. осуществляется за счёт слияния специализир. клеток гамет и образования зиготы; у ряда одноклеточных, эукариот и прокариот,… … Биологический энциклопедический словарь

скрещивание — сталкивание, панмиксия, метизация, беккросс, сочетание, ауткроссинг, ауткросс, соединение, бастардирование, агглютигация, инцухт, скрещение, кроссбридинг, интрогрессия, аутбридинг, инбридинг, перепутье, бекросс, перекрещивание, гибридизация,… … Словарь синонимов

скрещивание — СКРЕСТИТЬ, ещу, естишь; ещенный и ещённый ( ён, ена); сов. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

скрещивание — Спаривание животных двух или нескольких пород разного генетического корня, проявляющееся в гетерозиготности потомства. [ГОСТ 27773 88] Тематики скотоводство … Справочник технического переводчика

СКРЕЩИВАНИЕ — метод разведения животных и растений. Применяются разные типы С.: внутри одного вида или породы, простые парные (например, самка карп и самец карп) или множественные (“гнездовые” в карповодстве одна самка x два самца); С. между представителями… … Прудовое рыбоводство

Скрещивание — * скрыжаванне * crossing естественное или искусственное соединение двух генотипически различных гамет при оплодотворении. Син. Гибридизация … Генетика. Энциклопедический словарь

Скрещивание — гибридизация, один из методов селекции (См. Селекция) растений и животных. Применяется для получения Гибридов и помесей (См. Помесь) (метисов), представляющих исходный материал для отбора и подбора по хозяйственно полезным признакам, и… … Большая советская энциклопедия

скрещивание — breeding, crossing скрещивание. Процесс объединения генетического материала двух особей, как правило, осуществляемый в процессе направленной (искусственной) селекции (возвратное С., близкородственное С. и др.): С. можно рассматривать как… … Молекулярная биология и генетика. Толковый словарь.

Читайте также: