Схема захода на посадку тромбон

Добавил пользователь Skiper
Обновлено: 18.09.2024

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

Point merge (если переводить дословно - точка соединения) это современный способ организации потока прибывающих воздушных судов на аэродром. Она по сути объединяет в себе все новые концепции обслуживания воздушного движения и технический прогресс. Данная система планируется для внедрения в 3-х аэропортах Москвы и аэропорту Пулково, Санкт-Петербург.
Так как же сейчас ВС выполняют полет в ТМА (район аэродрома) и заходят на посадку?
Не будем брать в расчет обычные STAR, они служат для того чтобы связать последнюю точку на маршруте с точкой начала захода на посадку, и они никак не предназначены для упорядочивания потока и выстраивания очередности.

У нас есть следующие способы:
1) Векторение
Самый широко распространенный способ. Воздушным судам задаются конкретные курсы и ВС выводятся за 3-5 км до ТВГ под углом не более 45 градусов. Ответственность за навигацию и выдерживание безопасных высот лежит на диспетчере.


  • требует быстроты принятия решений диспетчером и большой оперативности выполнения их экипажами
  • занятость частоты из-за большого количества команд
  • недостаточная осведомленность со стороны экипажей о дальнейших намерениях диспетчера
  • ступенчатый профиль полета ВС и продолжительное нахождение ВС в горизонте

trombones

Нет не эти, а вот эти:

Это маршруты прибытия основанные на зональной навигации (RNAV). После выхода к диспетчеру Подхода (Arrival или Approach) на связь, ВС получает указание следовать по всей схеме, либо спрямляется на какую либо точку и уже потом получает дальнейшие указания.
Это дальнейшее развитие обычных STAR уже более приспособлено для принятия на себя большого количества ВС и выстраивания их в единую очередь. Однако, по прежнему остаются такие проблемы как загруженность диспетчера (например, требуется корректировать движение ВС даже после выдачи команд DIRECT TO, т.к. после выхода на точку ВС должно следовать с последним курсом), опять остается ступенчатый профиль и долгое пребывание в горизонте. Хотя есть и положительные моменты, например экипаж остается на собственной навигации и уже имеет большее представление о своих дальнейших маневрах.
Но эффективность подобных схем при плотном движении проявляется только при качественной работе группы планирования, и, как показывает практика, в европейских аэропортах при высокой загрузке диспетчеры неизменно возвращаются к векторению.

3) Point Merge
Так как же соединить в себе плюсы всех имеющихся систем и максимально исключить минусы? Ответом на это стала Point Merge:

Концепция этой системы такова: существует некая точка, на которую в конечном счете выйдут все прибывающие ВС, эта точка находится на небольшом удалении от ТВГ. Перед выходом на эту точку ВС летят по дуге, таким образом в каждый момент времени, каждое ВС в схеме находится на одинаковом удалении от точки. Это значительно упрощает задачу по выстраиванию их очередности и созданию интервалов.

Воздушное судно просто летит на одном удалении от этой точки, затем в один момент получает указание выдерживать какую либо скорость (допустим 220 узлов) и брать курс прямо на точку. Через 1 минуту следующее ВС в этой же схеме получает ту же самую скорость и курс на точку, при этом не имеет значения где относительно друг друга эти воздушные суда находятся, ведь в любом случае им предстоит пройти одинаковое расстояние.

При этом в горизонтальном профиле ВС будет следовать только в момент нахождения на дуге, до входа в нее и после выхода снижение будет бесступенчатым (что касается бесступенчатого снижения до выхода на дугу, это конечно в идеале, на практике требуется соблюдение некоторых условий).

pm_1

Траектории движения ВС, Baseline - метод векторения.

pm_3

Вертикальные профили снижения. При использовании PM расчетное начало снижения у ВС позже, переходов в горизонт меньше и они более кратковременны, таким образом мы имеем значительный прирост в топливной эффективности.

pm_2

Количество инструкций выдаваемых диспетчером.
При использовании векторения, диспетчер в среднем выдает 3 указания по скорости, 3 курса, 3 высоты снижения.
При использовании PM, диспетчер выдает 3 указания по скорости, 1 снижение, 1 direct to (прямо на).


  • метод оказался удобным, безопасным и точным, даже при большом количестве трафика, хотя и менее гибкий чем векторение
  • предсказуемость действий выросла, нагрузка и количество радиообмена снизились
  • векторение более не применяется, ВС остаются на собственной навигации
  • final approach spacing as accurate as today (приведу эта фразу так как она есть, если в ней речь идет о точности выдерживания интервалов, то PM показала себя более точным методом, разброс интервалов на посадку стал меньше; или, возможно, я неправильно интерпретирую это фразу)
  • улучшены профили снижения (возможность бесступенчатого снижения с ФЛ100)
  • поток движения ВС более упорядочен с заранее определенным распределением траекторий
  • все эти элементы должны внести вклад в повышение уровня безопасности
  • не каких либо особенных дополнительных инструментов на борту ВС или наземного оборудования, кроме соответствия ВС P-RNAV (вот тут Евроконтроль лукавит, чтобы соответствовать P-RNAV (способность ВС находится в пределах +-1 nm от маршрута 95% своего времени) нужно все же иметь DME/DME, VOR/DME маяки на земле или работающую спутниковую систему, может в Европе это и является само собой разумеющимся, но для России это не так)

Быстрая двухминутная симуляция Point Merge в Париже.

Вид с экрана диспетчера, Point merge, 2 полосы, 4 точки входа, с радиообменом.


Cогласно PANS-OPS различают пять отдельных участков (этапов) инструментального захода на посадку:

– Участок подхода (Arrival Route)

– Начальный участок (Initial Approach Segment)

– Промежуточный участок (Intermediate Approach Segment)

– Конечный этап (Final Approach Segment)

– Уход на второй круг (Missed Approach)

Кроме того, также рассматривается зона, предназначенная для полета в визуальных условиях по кругу на аэродроме.

Участки захода на посадку начинаются и заканчиваются в установленных контрольных точках. Однако при некоторых условиях определенные участки могут начинаться в указанных точках, где нет контрольных точек. Например, конечный участок точного захода на посадку может начинаться в точке, где абсолютная высота полета на промежуточном этапе захода на посадку пересекает номинальную глиссаду (точка конечного этапа захода на посадку).

Участок подхода (Arrival Route )

Участок подхода ( Arrival Route ) - полет на последнем участке маршрута до контрольной точки начального участка захода на посадку IAF ( Initial Approach Fix ). При необходимости публикуется на схемах STAR. На маршруте подхода применяются критерии безопасности пролета препятствий аналогичные критериям маршрутной структуры.

Начальный участок (Initial Approach Segment)

Начальный участок (Initial Approach Segment) - полет от точки IAF до контрольной точки промежуточного этапа захода на посадку IF ( Intermediate Approach Fix ). Этот и последующие этапы должны иметь контрольные точки. При полете на начальном этапе ВС находится вне маршрутной структуры и осуществляет маневр для выхода на промежуточный участок захода на посадку. Скорость и конфигурация ВС зависят от расстояния до аэродрома и потребного снижения. Зона начального этапа захода может иметь протяженность 15-30 морских миль (25-50 километров) и ширину не менее 10 морских миль (по 5 миль в каждую сторону от оси маршрута).

Обеспечивается безопасная высота пролета над препятствиями 1000 футов (300 метров). Высота полета на начальном участке - не менее высоты входа в глиссаду или начальной высоты выполнения схемы захода на посадку.
В случае отсутствия подходящей точки начального или промежуточного этапа захода на посадку, применяется обратная схема захода, схема "Ипподром" и так далее.

Промежуточный участок (Intermediate Approach Segment)

Промежуточный участок (Intermediate Approach Segment) - полет от точки IF до контрольной точки конечного этапа захода на посадку FAP ( Final Approach Fix - FAF, USA или Final Approach Point - FAP, ICAO ). На этом этапе производится корректировка конфигурации и скорости полета ВС для подготовки к конечному этапу захода на посадку. На схемах, где указана FAP (указывается ´ ), промежуточный участок начинается с того момента, когда ВС находится на линии пути приближения стандартного разворота, обратного разворота на посадочный курс или на конечном участке приближения схемы "Ипподром". Там, где не указана точка FAP, линия пути приближения представляет собой конечный участок захода на посадку, а промежуточный этап отсутствует.
Точка IF и весь промежуточный участок должны лежать на линии посадочного курса.
Конфигурация и размеры зоны промежуточного этапа зависят от применяемых посадочных устройств и схемы захода на посадку, но ее протяженность не должна быть менее 8,5 морских миль. Безопасная высота пролета препятствий на этом участке составляет 500 футов (150 метров).

Конечный этап (Final Approach Segment)

Конечный этап ( Final Approach Segment ) - полет от точки FAP до точки ухода на второй круг MAP ( Missed Approach Point ).

Этот этап делится на две стадии:
Дальняя прямая ( Long Final ) - участок полета до внешнего маркера.
Ближняя прямая (Short Final) - участок полета от внешнего маркера до точки MAP, после которой может быть выполнена посадка или начат уход на второй круг.

При выполнении точного захода на посадку точка FAP находится в точке входа в глиссаду, пролет которой производится, как правило, на относительных высотах от 1000 до 3000 футов или на расстоянии от 3 до 10 морских миль от порога ВПП.
При выполнении неточного захода точка FAP может располагаться над радионавигационным средством или может определяться по дальности от радионавигационного средства. В этом случае ВС пересекает FAP на указанной абсолютной (относительной) высоте или выше, а затем начинает снижение. На схемах в расчетных таблицах публикуется градиент снижения.

Уход на второй круг (Missed Approach)

Уход на второй круг (Missed Approach) - прерванный заход на посадку. Во время этапа ухода на второй круг при полете по схеме захода по приборам экипажу ВС необходимо изменить конфигурацию ВС, угловое пространственное положение и абсолютную высоту ВС. В силу этого, схема ухода на второй круг максимально упрощена и состоит из трех этапов - начальный, промежуточный и конечный.

Схема ухода на второй круг, предназначенная для предотвращения столкновения с препятствиями при выполнении маневра ухода на второй круг, предусматривается для каждой схемы захода на посадку по приборам. На схеме указываются точка, где начинается уход на второй круг, а также точка или абсолютная / относительная высота, где он заканчивается. Допускается, что уход на второй круг должен начинаться не ниже, чем DA/H* в схемах точного захода на посадку, или при применении схем неточного захода - в указанной точке, которая расположена не ниже, чем MDA/H*.

*MDA/H - минимальная абсолютная/относительная высота снижения укaзaннaя в схeмe нeтoчнoгo зaхoдa нa пoсaдку или схeмe зaхoдa нa пoсaдку пo кругу aбсoлютнaя или oтнoситeльнaя высoтa, нижe кoтoрoй снижeниe нe должно прoизвoдиться бeз необходимого визуaльнoгo контакта с ориентирами.

*DA/H - абсолютная/относительная высота принятия решения установленная абсолютная или относительная высота при точном заходе на посадку или заходе на посадку с вертикальным наведением, на которой должен быть начат прерванный заход на посадку (уход на второй круг) в случае, если не установлен необходимый визуальный контакт с ориентирами для продолжения захода на посадку.


Заход на посадку и уход на второй круг — по статистике самые опасные этапы полёта.

Давайте разбираться, как это работает, и пользуясь моментом, посмотрим как устроена электронная система управления современным самолётом.

Но перед тем, как мы начнем, я вынужден обозначить эдакий дисклеймер: я действующий пилот Airbus семейства 320, который является самолетом 4-го поколения (отличительный признак которого — наличие технологии Fly-by-Wire). Соответственно, многие специфические системы и процедуры, описываемые в посте, будут привязаны к данному типу. На других типах (например Boeing 737 Classic/NG/MAX, которые являются самолетами предыдущего, 3-го поколения без технологии Fly-by-Wire) процедуры и логика построения и работы систем может значительно различаться. И да, я не имею отношения к инженерно-авиационной службе и службе ОрВД (организации воздушного движения), поэтому уж простите возможные огрехи в описании матчасти.

Краткий ликбез по 4 поколению самолетов (Fly-by-Wire)

Наверное, многие из вас наслышаны о технологии Fly-by-Wire (ЭДСУ или электродистанционная система управления по-нашему). Если кратко пробежаться по истории развития систем управления самолетом, то это выглядело примерно так:

  • прямая механическая связь между штурвалом и аэродинамическими поверхностями (в общем случае это — элеронами, рулем направления, горизонтальным стабилизатором, триммерами и т.д.);
  • появление гидроусилитей/бустеров/пружинных загружателей при наличии прямой механической связи;
  • электродистанционное управление (Fly-by-Wire/ЭДСУ)



Здесь много интересной информации по теме Fly-by-Wire

В отличии от классической схемы, где прямая механическая связь (пусть даже через отдельные преобразователи) является правилом, в случае Fly-by-Wire данная связь отсутствует (сейчас опустим тонкости типа управления RUDDER’ом или HORIZONTAL STABILIZER’ом напрямую в режиме MECHANICAL BACKUP, это точно тема для отдельной статьи). Т.е. управляющее воздействие на сайдстик (Airbus) или штурвал (Boeing 777) оцифровывается и передается на FLIGHT COMPUTERS. Кстати, в Airbus их – аж целых 7: 2 ELAC’а (Elevator Aileron Computer), 3 SEC’а (Spoilers Elevator Computer), 2 FAC’а (Flight Augmentation Computer). Далее, исходя из закона управления (FLIGHT CONTROL LAW в терминологии Airbus) и множества других параметров полета, компьютеры выдают сигнал на отработку соответствующих гидроприводов, через которые управляющее воздействие передается аэродинамическим поверхностям.

К чему я это все рассказал: посадка на самолетах с Fly-by-Wire по технике выполнения очень похожа на то, что мы делаем на классических самолетах, но она имеет определенные особенности, о которых необходимо знать. Более подробно мы все это затронем ниже.

Интересные факты

Подготовка к посадке на эшелоне

Итак, мы летим на крейсерском эшелоне, при подлете к аэродрому назначения примерно за 200 с небольшим миль по VHF радиостанции можно услышать информацию ATIS (Automatic Terminal Information Service) аэродрома назначения. Принимаем погоду, далее с помощью специального программного обеспечения от Airbus, размещенного на бортовых iPad’ах (они же EFB — Electronic Flight Bag), проверяем погоду на предмет соответствия нашим landing performance, в частности соответствия расчетной посадочной дистанции располагаемой длине полосы с учетом текущих погодных условий и коэффициента сцепления на полосе и имеющихся отказов оборудования. Airbus 320 семейства имеет ограничения как по попутному ветру для взлета/посадки, так и по боковому. При этом боковая составляющая ветра с учетом порывов не должна превышать значения, внесенные в AFM (Aircraft Flight Manual, оно же РЛЭ – Руководство по летной эксплуатации) при сертификации самолета. Кроме этого, могут быть дополнительные ограничения в аэропорту назначения/запасным, которые находятся в NOTAM’ах (NOTice To AirMan) – эдакая пачка бумаги, которая обязательно выдается перед вылетом экипажу.

Кроме этого, погодные условия на аэродроме должны соответствовать минимуму самолета, экипажа и аэродрома. Если говорить простым языком, то минимум это минимально допустимые значения дальности видимости на полосе и высота облачности над ней (профессионалы, молчать!) Кому интересно – на том же SKYbrary есть очень много статей, рассказывающих про минимумы и их применение.

Сама подготовка включает в себя внесение в FMGS (Flight Management Guidance System, на Airbus их 2) через мини-клавиатуру с дисплеем MCDU (Multipurpose Control and Display Unit) схем прибытия (STAR, STandard ARrival) и самого захода (Approach, обычно это одна из инструментальных схем захода – например заход по ILS, Instrument Landing system), погоду в аэропорту назначения (давление QNH, температура, ветер) и минимума для соответствующего типа захода.



MCDU

При этом схема захода берется автоматически из базы FMGS (которая обновляется техническим составом раз в 24 дня на каждом самолете) и обязательно полностью проверяется на соответствие аэронавигационным сборникам. Наша авиакомпания использует сборники фирмы Jeppesen, которые также размещены в электронном виде на бортовых EFB:



iPad, прибитый к самолету



Или более жесткий вариант. Спасибо lx_photos

После того, как один из пилотов внес данную информацию, второй проводит проверку внесенных в FMGS данных (crosscheck – это одно из основных правил в авиации). Далее пилот, проводивший подготовку к посадке, зачитывает брифинг. Основная задача брифинга – рассказать об особенностях захода на посадку и ее выполнения, схемы руления после посадки, уход на второй круг. Особое внимание – при категорированных заходах по CAT II/CAT III (заходах с очень низкими минимумами, требующих выполнения специальных процедур) и действиям в случае отказа бортового оборудования в процессе захода или имеющихся отказах на борту самолета. NOTAM’ы со всеми ограничениями разбираются здесь же. После разбора всех имеющихся вопросов мы готовы к посадке, осталось дождаться подхода к точке начала снижения, которая также рассчитывается автоматически исходя из внесенных в FMGS данных.

Интересные факты

Снижение и заход на посадку

По своей сути весь процесс полета – это процесс управления энергией. Химическая энергия топлива преобразуется через тягу двигателей и подъемную силу в кинетическую энергию движения самолета и его потенциальную энергию по мере набора высоты, что в сумме дает общую энергию. При снижении – мы наблюдаем обратный процесс, когда вся накопленная энергия расходуется через аэродинамику и снижение высоты таким образом, чтобы получить посадочную скорость и заданную высоту к моменту пролета торца полосы. Исходя из вышесказанного и с учетом отдельных ограничений по скорости/высоте пролета отдельных точек на схеме STAR, ветра, FMGS вычисляет TOD (Top Of Descend, точка начала снижения).

Снижение на самолетах семейства Airbus может выполняться в двух режимах: MANAGED и SELECTED. В первом режиме самолет при помощи автопилота (AP, Autopilot) и автомата тяги (A/THR, Autothrust) сам пытается выдержать профиль снижения с учетом всех ограничений выбранной схемы прибытия, пилоты только контролируют то, что делает автоматика. Это не всегда удается, так как кроме профиля и скоростей, посчитанных FMGS, есть параметры, задаваемые диспетчером. Но в любом случае задание высот и перевод самолета на снижение – это ответственность PF. Для этого в самолете есть FCU (Flight Control Unit) – эдакая панель управления автопилотом самолета:



FCU с красивой подсветкой. Второй автопилот и автомат тяги включен

В режиме SELECTED – пилоты сами управляют автопилотом задавая режимы его работы. Типичные параметры – задача вертикальных и поступательных скоростей, так же довольно часто используется векторение (полет по курсу, заданному диспечером).



Грозовые очаги, как их видят пилоты на ND (Navigation display)

Интересные факты

Выполнение посадки

Еще небольшое лирическое отступление касательно систем захода на посадку: они бывают точные (в первую очередь это ILS, GLS — GBAS Landing System) – это заходы с вертикальным наведением и неточные (NDB – Non Directional Beacon, он же заход по приводам, VOR, RNAV и т.д.) – это заходы без такового наведения. Для каждого из типа захода на посадку есть т.н. GUIDANCE MODE — по сути режим работы FMGS, который обеспечивает заход самолета на посадку с учетом выбранного типа захода. При этом GUIDANCE MODE может обеспечивать точное наведение самолета по курсу и глиссаде (режимы LOG GS или FINAL APP) так и наведение только в одной плоскости (режимы LOC FPA или NAV FPA) или полностью ручное наведение самолета по заданному курсу/углу снижения (режим TRK FPA). Если суммировать сказанное, то точные заходы — более просты с точки зрения поддержки бортовой автоматикой, неточные — требуют дополнительного контроля как профиля, так и курса захода на посадку, что так же требует дополнительных усилий при заходе. Точные заходы позволяют осуществлять посадку при более низких минимумах, чем неточные.

В свою очередь, точные заходы делятся по так называемым категориям: CAT I, CAT II, CAT III A/B/C с соответствующим минимумом. На бывшей территории Советского Союза наличие ILS в аэропортах было раньше непозволительной роскошью, что не позволяло осуществлять заходы при более низких минимумах (чем точнее система захода – тем ниже минимум аэропорта). Но сейчас почти все большие аэропорты севернее Томска имеют ILS. Заход по приводам на старой технике это было еще то искусство полета… Для примера: если взять всю маршрутную нашей авиакомпании в России – только 22 аэропорта оборудованы системой ILS для захода по II категории и только 5 – для захода по IIIA.

Переводим самолет на снижение, зачитываем LANDING чеклист, получаем от диспетчера разрешение на выполнение посадки. При этом диспетчер обязательно сообщит текущий ветер, если он выходит за наши ограничения – то уходим на второй круг. Почти любое срабатывание сигнализации об отказах ниже 1000 футов над полосой в отсутствии визуального контакта с полосой – тоже уход на второй круг.

В 99% в нашей авиакомпании посадка выполняется в ручном режиме. Исключения: категорированные заходы при низких минимумах (CAT II/CAT III), где автоматический заход желателен/необходим. Так же все самолеты семейства Airbus 320 умеют выполнять процедуру Autoland с последующим rollout’ом (автоматическая посадка с последующей остановкой на полосе, с выдерживанием направления пробега используя курсовой маяк системы ILS). Для выполнения данной процедуры еще более жесткие ограничения по ветру, состоянию ВПП, работоспособности бортовых и наземных систем. Как это выглядит вживую:

Буквально три слова про уход на второй круг – в реальной жизни это бывает не так часто, но из-за редкости выполнения и скоротечности самого процесса требует повышенного внимания со стороны экипажа и особенно PM'a. Самое главное здесь – выдержать все ограничения по скоростям, высотам и тангажу при уходе с небольших высот – риск tailstrike высок как никогда. В зависимости от причины ухода на второй круг можно выполнить либо повторный заход, либо уйти на запасной аэродром.

Интересные факты

После посадки и до выключения на стоянке

А вот именно здесь, экипаж отдышавшись после выполнения посадки и освобождения полосы, выполнив необходимые процедуры с последующим AFTER LANDING чеклистом, переходит на частоту руления и узнает дальнейший маршрут движения по аэродрому. Обычно это длинная тирада с номерами рулежек, пересечений иногда с частотами для перехода и командами на ожидание в определенных местах. Главное здесь – все записать, повторить всю эту тираду диспетчеру и найти на схеме аэродрома, где находятся все эти рулежки.

Вот здесь на видео с 6 минуты видно, что из себя представляет схема руления в приложении Jeppesen Mobile Flight Deck:

Так же все рулежки, полосы и и.д. в аэропорту имеют специальную разметку, которая позволяет ориентироваться как в дневное, так и в ночное время. Самое главное здесь – контролировать маршрут руления по всем этим знакам и в случае малейших сомнений – переспрашивать диспетчера. Самолет заднего хода не имеет, поэтому если вы заблокируете рулежку или выедете на рабочую полосу без разрешения диспетчера (Runway Incrusion, что само по себе является серьёзным авиационным инцидентом) то вас просто не поймут.

Подъезжаем к гейту, здесь обычно нас встречает либо система типа SafeDock (моя любимая и наверное, самая распространенная), либо специально обученный человек в оранжевой/зеленой жилетке, который при помощи жезлов заводит нас на стоянку.



Процесс заруливания в исполнении системы SafeDock

Скажу сразу, используемые маршалом сигналы являются стандартными во всем мире и описаны в одном из документов ICAO. Таким образом мы (пилоты) можем понять, что от нас хотят с земли.

В зависимости от используемого радиотехнического бортового и назем- Dtro оборудования заход на посадку выполняется по различным системам. В Гражданской авиации применяются следующие основные системы захода на посадку:

- заход по ОСП (по приводам);

- заход по ИЛС (по маякам, в режиме ПСП, автоматическом, или директорном);

- заход по РСП (по посадочному локатору);

Заход по ОСП (по приводам). Данный заход осуществляется с использо­ванием основной системы посадки, в состав бортового оборудования входит радиокомпас и маркерный приемник. В состав наземного оборудования входят привода - дальний (ДПРМ) и ближний (БПРМ), с расположенными на них маркерными маяками.


Рис.23. Заход на посадку по ОСП

Экипаж воздушного судна, заходящего на посадку по ОСП, устанавливается на двух полукомплектах радиокомпаса частоты работы дальнего (3) или ближнего (2) приводов (рис. 23). Радиокомпас, принимая сигналы всенаправленных антенн приводов (4), показывает экипажу направление на них. Дальний привод расположен, как правило, на удалении 4 км от начала ВПП (1). Ближний привод, как правило, расположен на удалении 1 км от начала ВПП. Оба привода расположены на продолжении оси ВПП, и экипаж при заходе на посадку по данной системе получает информацию о положении воздушного судна относительно ВПП по курсу, т. е. узнает, левее или правее оси ВПП следует ВС При пролете привода стрелка радиокомпаса, настроенного на пролетае­мый привод, развернется на 180°. Кроме того, на приводах установлены мар­керные маяки, формирующие в пространстве узконаправленное радиополе (5). Когда воздушное судно пролетает привод и оказывается в зоне действия такого радиополя, бортовой приемник улавливает сигнал маркерного маяка, и в кабине экипажа срабатывает световая сигнализация - информационное табло и звуковая сигнализация - звонок.

Данный заход на посадку является неточным и применяется в основном на тех аэродромах, где нет других систем посадки.

Заход по ИЛС. Самое широкое распространение в настоящее время имеет именно заход по ИЛС — инструментальной системе посадки (курсоглиссадной системе). В состав бортового оборудования входят приемники ИЛС и маркерных маяков. В состав наземного оборудования входит комплект мая­ков - курсового и глиссадного, а также маркерные маяки, расположенные на дальнем и ближнем приводах (рис. 24).


Рис.24. Заход на посадку ИЛС.

Экипаж воздушного судна, заходящего на посадку по ИЛС, контролирует положение воздушного судна в двух плоскостях - по курсу (при помощи радиополя (2), формируемого курсовым маяком (1)), и по глиссаде (при помощи радиополя (4), формируемого глиссадным маяком (3)). Положение планок прибора, установленного в кабине экипажа, указывает экипажу на отклоне­ния от линий курса и глиссады. Дополнительный контроль расстояния до ВПП осуществляется при помощи маркерных маяков, излучающих узкона­правленные радиополя (5).

Заход на посадку по РСП. Экипаж воздушного судна, заходящего на посадку по РСП (посадочному радиолокатору), лишь принимает информацию диспетчера ПДП и выполняет его команды. В состав наземного оборудования данной системы захода на посадку входит комплект из двух антенн - канала курса и канала глиссады. Антенны, расположенные, как правило, вблизи КТА, сканируют воздушное пространство в направлении предпосадочной прямой с высокой частотой - раз в секунду. При этом у диспетчера ПДП на отдельном экране (мониторе) представляется информация от посадочного локатора в двух плоскостях - по каналу курса и глиссады. Таким образом, имея радиолокационные данные о заходе воздушного судна, диспетчер ПДП с определенной периодичностью сообщает экипажу информацию об удалении до ВПП, о положении ВС относительно курса и глиссады, и задает новый курс и параметры снижения.


На рис.25 представлен вид экрана посадочного локатора, который разделен на две части: верхнюю- канал глиссады и нижнюю- канал курса. Информация представляется не в линейном, а в логарифмическом виде. Иными словами, две прямые в действительности линии – посадочный курс и глиссада снижения, на экране имеют вид логарифмической функции – (1) и (2). Примечательно и то, что шкала удалений по ВПП неравномерна, и цена деления уменьшается с увеличением удаления. Отметка от воздушного судна видна по обоим каналам - глиссаде (3) и курсу (4).

Данный заход на посадку является наиболее сложным для диспетчеров. Сами посадочные радиолокаторы являются неэкологичными (из-за мощного вредного радиомагнитного излучения сантиметрового диапазона волн), и сложными в эксплуатации. В связи с этим, такие заходы на посадку приме­няются в настоящее время достаточно редко.

Заход по ПВП. Заход на посадку по ПВП применяется на самолетах 4-го класса (прил. 1) и вертолетах, выполняющих полет на высотах ниже нижнего эшелона, по MBJI, и предусматривает визуальное маневрирование воздуш­ных судов для захода на посадку при условии установления и сохранения по­стоянного визуального контакта с ВПП.

Визуальный заход. Визуальный заход на посадку предусматривает:

- визуальное маневрирование воздушных судов в пределах установлен­ной зоны маневрирования для выхода на предпосадочную прямую;

- соблюдение установленной минимальной высоты снижения ( ) до момента начала разворота на посадочный курс;

- установление и сохранение постоянного визуального контакта с ВПП или ее ориентирами;

- уход на второй круг с любой точки визуального маневрирования в слу­чае потери визуального контакта с ВПП или ее ориентирами с выходом на схему захода на посадку по ППП.

Визуальный заход на посадку применяется на всех воздушных судах днем и в сумерках (только на аэродромах, оборудованных светотехнической сис­темой). Визуальный заход выполняется:

- на аэродромах, не оборудованных РТС посадки или в случае их отказа;

- с целью повышения пропускной способности аэродрома, экономии то­плива и летного времени;

- целью тренировки летного состава.

Диспетчер управления воздушным движением при визуальном заходе на посадку несет ответственность за:

- определение возможности выполнения визуального захода на посадку на основе анализа воздушной обстановки и метеорологических условий;

- контроль выдерживания схемы снижения и захода на посадку по приборам до точки начала визуального захода (при наличии радиолокационного контроля);

- контроль входа ВС в установленную зону визуального маневрирования и выдачу разрешения на выполнение визуального захода;

- контроль выдерживания экипажем схемы ухода на второй круг по приборам (при наличии радиолокационного контроля),

- своевременное информирование экипажа о воздушной, метеорологической и орнитологической обстановке.

Читайте также: