Расщепление молекул воды на протон и кислород происходит в клетках растений под воздействием

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

Хлоропласты – это утолщенные овальные или круглые образования, расположенные в цитоплазме растительной клетки. В каждой клетке находится 40-50 хлоропластов. Они покрыты двойной мембраной, а внутри них размещаются плоские мешочки – тилакоиды. В тилакоидах находятся хлорофиллы, переносчики электронов и ферменты, участвующие в световой фазе фотосинтеза, а также АДФ, АТФ, НАДФ + и НАДФ-Н. Десятки тилакоидов плотно уложены в стопки, которые называются гранами. Во внутреннем пространстве между гранами – в строме – размещаются ферменты, участвующие в восстановлении СО2 до глюкозы за счет энергии продуктов световой фазы фотосинтеза – АТФ и НАДФ-Н. Хлоропласты имеют свой собственный генетический аппарат – молекулы ДНК – и автономно воспроизводятся внутри клеток.

Под воздействием солнечного света растения сине-зеленые бактерии и водоросли способны синтезировать органические вещества – углеводы, жиры, белки, нуклеиновые кислоты. Биосинтез, происходящий при использовании световой энергии, называют фотосинтезом. Организмы, способные к фотосинтезу, называют фотоавтотрофами. А человек, животные и грибы неспособны синтезировать органические вещества из неорганических соединений, их называют гетеротрофами.

Фотосинтез. Преобразование энергии света в энергию химических связей

Поток солнечных лучей несет волны света разной длины. Растения с помощью молекулы хлорофилла поглощают волны света красной и синей частей спектра. Волны света зеленой части спектра хлорофилл пропускает не задерживая, и поэтому у растений зеленый цвет.

Электроны, образующиеся при фотолизе, восполняют потери их хлорофиллом. Часть электронов при участии протонов восстанавливает НАДФ + до НАДФ-Н. Кислород – побочный продукт этой реакции. Когда растения используют энергию солнечного света, кислород им не нужен. Однако в отсутствие солнечного освещения растения становятся аэробами. В ночной темноте они потребляют кислород и окисляют запасенные днем глюкозу, фруктозу, крахмал и другие соединения, уподобляясь в этом животным.

Световая и темновая фазы фотосинтеза. В процессе фотосинтеза различают световую и темновую фазы.

В световой фазе энергия света преобразуется в энергию химических связей АТФ и НАДФ-Н, и происходит фотолиз воды.

В темновой фазе с участием АТФ и НАДФ происходит восстановление CO2 до глюкозы (C6H12O6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ - пища) - организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος - иной + τροφή - пища) - организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις - смешение + τροφή - пища) - организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Типы питания живых организмов

Фотосинтез

Фотосинтез (греч. φῶς - свет и σύνθεσις - синтез) - сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Фотосинтез

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός - зелёный и φύλλον - лист) - зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

Строение хлорофилла и гемоглобина

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: "Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического"

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Строение хлоропласта

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

Образовавшиеся при фотолизе воды протоны (H + ) скапливаются с внутренней стороны мембраны тилакоидов, а электроны - с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Световая фаза фотосинтеза - светозависимая фаза

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма - НАФД + превращается в восстановленную - НАДФ∗H2.

  • Свободный кислород O2 - в результате фотолиза воды
  • АТФ - универсальный источник энергии
  • НАДФ∗H2 - форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью - вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Темновая фаза фотосинтеза - светонезависимая фаза

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии - сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Озоновый слой

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Дождевые леса Амазонии

Хемосинтез (греч. chemeia – химия + synthesis - синтез)

Хемосинтез - автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

Хемосинтез у нитрифицирующих бактерий

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем - нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

  • Серобактерии - окисляют H2S --> S 0 --> (S +4 O3) 2- --> (S +6 O4) 2-
  • Железобактерии - окисляют Fe +2 -->Fe +3
  • Водородные бактерии - окисляют H2 --> H +1 2O
  • Карбоксидобактерии - окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества - аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Клубеньковые бактерии

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Рисунок 1

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь №1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

Мы знаем, что растение потребляет воду и солнечный свет, а в результате производит кислород. Но как это происходит? Чтобы понять, нужно рассмотреть процесс с точки зрения не только биологии, но и химии и физики. Каждая наука раскрывает свою сторону процесса, но, только объединившись, они дают целостную картину фотосинтеза.

Процесс фотосинтеза включает 2 фазы: световую, которая проходит на мембранах тилакоидов в присутствии света и темновую, которая не зависит от света и протекает в строме хлоропласта. В фотосинтезе участвуют многочисленные пигменты (особенно хлорофилл). В результате перемещения электронов по цепочке переносчиков запасается энергия в макроэргических связях АТФ, которая в последствии затрачивается на синтез углеводов в цикле Кальвина.

В виде побочного продукта фотосинтеза выделяется кислород, который используется многими организмами для дыхания. Благодаря ему, наша планета защищена от губительного воздействия ультрафиолетовых лучей. В противном случае, УФ- излучение способно вызвать у человека ожоги кожи и роговицы, генетические мутации. Фотосинтез обеспечивает питанием огромное количество живых организмов.

Состоит из черешка и листовой пластинки; выполняет функцию газообмена, транспирации, гуттации, фотосинтеза.

Процесс потребления организмом питательных веществ для поддержания нормального функционирования физиологических процессов

Пигменты, участвующие в фотосинтезе

Фотосинтез может осуществляться только с помощью определенных веществ — пигментов. Фотосинтетические пигменты высших растений делятся на две группы: хлорофиллы и каротиноиды.

Локализация

Пигменты локализованы в мембранах хлоропластов. В хлоропласте содержится около 400 молекул хлорофилла. Хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света (они могут перемещаться в клетке, в зависимости от того, как падает свет).

Хлорофилл

У растений в фотосинтезе участвует пигмент хлорофилл, который содержится в хлоропластах на мембранах тилакоидов. Хлорофилл придает хлоропластам и всему растению зеленую окраску. Хлорофилл обладает уникальным свойством: он умеет поглощать энергию солнечного света, переходя в возбужденное состояние.

Хлорофиллы поглощают главным образом красную и сине-фиолетовую часть спектра. Зеленую часть спектра они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты.

Пигменты содержатся не только в клетках высших растений, но и в клетках водорослей. В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл. Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

В красных водорослях очень много пигмента фикоэритрина, характеризующегося красным цветом. Этот пигмент и придает данному отделу этих растений соответствующий цвет.

В бурых водорослях присутствует пигмент фукоксантин – бурого цвета.
То же самое можно сказать о водорослях других цветов – желто-зеленых, сине-зеленых. В каждом случае цвет определяется каким-то пигментом или их сочетанием.

Каротиноиды поглощают солнечный свет (особенно в коротковолновой — сине-фиолетовой — части спектра) и поглощенную энергию передают хлорофиллу, а также защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

Каротиноиды постоянно присутствуют в листьях, но незаметны из-за присутствия хлорофилла. Зато осенью, когда хлорофилл разрушается, каротиноиды становятся хорошо видны. Именно они придают листьям желтую и красную окраску.

Универсальность молекулярного состава организмов

Биологические молекулы часто бывают универсальны и встречаются у совершенно разных организмов. Такая структура как молекула хлорофилла встречается у растений, а также у некоторых бактерий, но близкая ей по химическому составу молекула есть и у нас с вами. Это гемоглобин - железосодержащий белок крови животных. Различаются эти молекулы только центральными атомами железа, от которых, главным образом, и зависят основные функции этих веществ.

В зависимости от пигментного состава, водоросли могут поглощать солнечную энергию на разной глубине. Таким образом, увидев водоросль на картинке или в магазине, вы сможете сказать примерную глубину, на которой эта водоросль могла расти. Например, зеленые водоросли распространены на глубине до 30 м, поскольку более активно поглощают красный свет.

Красные водоросли, живущие на глубине от 50 до 200 м, осуществляют фотосинтез, используя слабый голубоватый зеленый свет, который проникает через толщу воды.

Световая фаза

Хлорофиллы объединяются в фотосистемы. Каждая фотосистема состоит из светособирающего комплекса, реакционного центра и переносчиков электронов. В них происходит возбуждение электрона, переход его по цепочке переносчиков, синтез АТФ и выделение О2 как побочного продукта . Световая фаза протекает на мембранах тилакоидов в хлоропластах исключительно при участии света.

Возбуждение хлорофиллов и перемещение электрона

Есть два типа фотосистем. Различаются они тем, что принимают разную длину волны света. Фотосистема II поглощает волны 680 нм за счет хлорофилла P680, а фотосистема I - свет длиной 700 нм за счет хлорофилла P700.

Молекулы хлорофилла фотосистем поглощают квант света. Один электрон каждой из них переходит на более высокий энергетический уровень (возбуждается) и перемещается далее по цепи переносчиков.

Фотолиз воды и образование кислорода

Одновременно с работой фотосистем происходит процесс распада воды под действием солнечного света. Этот процесс называется фотолиз.

В результате фотолиза образуются свободные электроны, кислород, ионы водорода. Электроны восполняют фотосистему II. Кислород выделяется в атмосферу. Ионы водорода накапливается в полости тилакоидов.

В полости тилакоида накапливается большой избыток ионов водорода, что приводит к созданию на мембране тилакоида градиента концентрации этих ионов.

Синтез молекул АТФ и образование НАДФ*2Н

Электрон проходит по цепи переносчиков (белков мембраны хлоропласта). В процессе этого перехода от одного переносчика к другому, электрон выделяет энергию, которая впоследствии тратится на синтез АТФ из АДФ и неорганического фосфата (Фн).

Градиент используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфата. Происходит перенос ионов водорода через мембрану восстановленным переносчиком НАДФ (никотинамидадениндинуклеотид-фосфатом) с образованием НАДФ*Н.

Далее этот водород, который присоединил к себе НАДФ, тратится на синтез углеводов в цикле Кальвина в темновой фазе фотосинтеза.

Таким образом, энергия света запасается в световой фазе фотосинтеза в виде двух типов молекул: восстановленного переносчика НАДФ*Н и макроэргического соединения АТФ.

Открытие фотосистем

Роберт Эмерсон путем опытов с 1942 по 1957 год анализировал влияние длины световой волны на квантовый выход фотосинтеза у одноклеточной водоросли хлореллы, то есть количество кислорода, выделившегося в процессе фотосинтеза в расчете на 1 квант поглощенной энергии.

Эмерсон установил, что у хлореллы наиболее эффективным для фотосинтеза был красный свет с длиной волны от 650 до 680 нм и синий свет с длиной волны от 400 до - 460 нм. Именно этот свет поглощается хлорофиллом. Он также вычислил, что фотосинтетическая эффективность красного света была на 36% выше, чем синего.

В следующих опытах было показано, что если клетки освещать красным светом с длиной волны от 650 до 680 нм, то квантовый выход достаточно высок.

Однако при дальнейшем увеличении длины волны света свыше 685 нм, квантовый выход фотосинтеза резко падает.

Если же хлореллу освещать и коротковолновым (650 нм) и длинноволновым (700 нм) красным светом, суммарный эффект будет больше, чем при действии каждого луча в отдельности. Это явление получило название эффекта усиления Эмерсона и дало возможность Эмерсону предположить, что в растениях существуют две фотосинтезирующие системы, которые должны работать согласованно.

Предположение Эмерсона легло в основу современной модели Z-фотосинтеза и дало толчок к исследованию физических, химических и функциональных свойств фотосистемы I и фотосистемы II.

Фотосинтез — процесс синтеза органических веществ за счет энергии света. Организмы, которые способны из неорганических соединений синтезировать органические вещества, называют автотрофными. Фотосинтез свойственен только клеткам автотрофных организмов. Гетеротрофные организмы не способны синтезировать органические вещества из неорганических соединений. Клетки зеленых растений и некоторых бактерий имеют специальные структуры и комплексы химических веществ, которые позволяют им улавливать энергию солнечного света.

Роль хлоропластов в фотосинтезе

В клетках растений имеются микроскопические образования — хлоропласты. Это органоиды, в которых происходит поглощение энергии и света и превращение ее в энергию АТФ и иных молекул — носителей энергии. В гранах хлоропластов содержится хлорофилл — сложное органическое вещество. Хлорофилл улавливает энергию света для использования ее в процессах биосинтеза глюкозы и других органических веществ. Ферменты, необходимые для синтеза глюкозы, расположены также в хлоропластах.

Световая фаза фотосинтеза

Квант красного света, поглощенный хлорофиллом, переводит электрон в возбужденное состояние. Возбужденный светом электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень. Возбужденный светом электрон можно сравнить с камнем, поднятым на высоту, который также приобретает потенциальную энергию. Он теряет ее, падая с высоты. Возбужденный электрон, как по ступеням, перемещается по цепи сложных органических соединений, встроенных в хлоропласт. Перемещаясь с одной ступени на другую, электрон теряет энергию, которая используется для синтеза АТФ. Растративший энергию электрон возвращается к хлорофиллу. Новая порция световой энергии вновь возбуждает электрон хлорофилла. Он снова проходит по тому же пути, расходуя энергию на образования молекул АТФ. Ионы водорода и электроны, необходимые для восстановления молекул-носителей энергии, образуются при расщеплении молекул воды. Расщепление молекул воды в хлоропластах осуществляется специальным белком под воздействием света. Называется этот процесс фотолизом воды. Таким образом, энергия солнечного света непосредственно используется растительной клеткой для: 1. возбуждения электронов хлорофилла, энергия которых далее расходуется на образование АТФ и других молекул-носителей энергии; 2. фотолиза воды, поставляющего ионы водорода и электроны в световую фазу фотосинтеза. При этом выделяется кислород как побочный продукт реакций фотолиза. Этап, в течение которого за счет энергии света образуются богатые энергией соединения — АТФ и молекулы-носители энергии, называют световой фазой фотосинтеза.

Темновая фаза фотосинтеза

В хлоропластах есть пятиуглеродные сахара, один из которых рибулозодифосфат, является акцептором углекислого газа. Особый фермент связывает пятиуглеродный сахар с углекислым газом воздуха. При этом образуется соединения, которые ща счет энергии АТФ и иных молекул-носителей энергии восстанавливаются до шестиуглеродной молекулы глюкозы. Таким образом, энергия света, преобразованная в течение световой фазы в энергию АТФ и иных молекул-носителей энергии, используется для синтеза глюкозы. Эти процессы могут идти в темноте. Из растительных клеток удалось выделить хлоропласты, которые в пробирке под действием света осуществляли фотосинтез — образовывали новые молекулы глюкозы, при этом поглощали углекислый газ. Если прекращали освещать хлоропласты, то приостанавливался и синтез глюкозы. Однако если к хлоропластам добавляли АТФ и восстановленные молекулы-носители энергии, то синтез глюкозы возобновлялся и мог идти в темноте. Это означает, что свет действительно нужен только для синтеза АТФ и зарядки молекул-носителей энергии. Поглощение углекислого газа и образование глюкозы в растениях называют темновой фазой фотосинтеза, поскольку она может идти в темноте. Интенсивное освещение, повышенное содержание углекислого газа в воздухе приводят к повышению активности фотосинтеза.

Читайте также: