Расчет натяга конической посадки

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Стандарт распространяется на гладкие конусы диаметром до 500 мм, конусностью от 1 : 3 до 1 : 500 и устанавливает допуски и поля допусков, а также назначение конических посадок.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ОСНОВНЫЕ НОРМЫ ВЗАИМОЗАМЕНЯЕМОСТИ

СИСТЕМА ДОПУСКОВ И ПОСАДОК
ДЛЯ КОНИЧЕСКИХ СОЕДИНЕНИЙ

ГОСТ 25307-82
(СТ СЭВ 1780-79)

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

РАЗР АБОТАН Министерством станкостроительной и инструментальной промышленности

ИСПОЛНИТЕЛИ

М.А. Палей (руководит ель темы), Л.Б. Свичар

ВНЕСЁН Министерством станкостроительной и инструментально й промышленности

Зам. министра Н.А. Паничев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 14 июня 1982 г. № 2377

ГОСУДАРСТВЕН НЫЙ СТАНДАРТ СОЮЗА ССР

Основные нормы взаимозаменяемости

СИСТЕМА ДОПУСКОВ И ПОСАДОК ДЛЯ КОНИЧЕСКИХ СОЕДИНЕНИЙ

Basic norms of inter changeability.
Cone joining system of limits and fits

ГОСТ
25307-82

(СТ СЭВ 1780 -79)

Постановлением Государственного комитета СССР по стандартам от 14 июня 1982 г. срок действия установлен

с 01.07 1983 г.

до 01.07 1993 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на гладкие конусы диаметром до 500 мм, конусностью от 1:3 до 1:500 и устанавливает допуски и поля допусков, а также назначение конических посадок.

Стандарт полностью соответствует СТ СЭВ 178 0-79.

1.1. Алфавитный указатель обозначений приведен в справочном приложении 5.

1.2. Коническое соединение характеризуется конической посадкой и базорасстоянием соединения.

1.3.1. Посадки с фиксацией путем совмещения конструктивных элементов сопрягаемых конусов: при этом способе фиксации возможно получение посадок с зазором, переходных и с натягом (черт. 1).

1.3.2. Посадки с фиксацией по заданному осевому расстояни ю Z pf , между базовыми плоскостями сопрягаемых конусов; при этом способе фиксации возможно получение посадок с зазором, переходных и с натягом (черт. 2).

1.3.3. Посадки с фиксацией по заданному осевому смещению E а , сопрягаемых конусов от их начального положения; при этом способе фиксации возможно получение посадок с зазором и натягом (черт. 3).

1.3.4. Посадки с фиксацией по заданному усилию запрессовки F s , прилагаемому в начальном положении сопрягаемых конусов; при этом способе фиксации возможно получение посадок с натягом (черт. 4).

допуск диаметра конуса;

допуск угла конуса;

допуски формы конуса;

допуск круглости и допуск прямолинейности образующей.

1.5. Устанавливаются два способа нормирования допусков конусов.

1.5.1. Способ 1 - с овместное нормиро вание всех видов допусков допуском T D диаметра конуса в любом сечении.

Допуск t d определяет поле допуска конуса, ограниченное двумя предельными конусами, между которыми должны находиться все точки реальной поверхности конуса, и ограничивает не только отклонения диаметра, но и отклонения угла и формы конуса (черт. 5).

1 - конечное положение; 2 - начальное положение; 3 - наружный конус; 4 - внутренний конус

1 - конечное положение; 2 - начальное положение; 3 - наружный конус; 4 - внутренний конус

При необходимости допуск T D может быть дополнен более узкими допусками угла и формы конуса; при этом все точки реаль ной поверхности конуса также должны находиться в поле допуска ограниченном двумя предельными конусами.


1 - реальная поверхность; 2 - поле допуска конуса; 3 - наибольший предельный конус; 4 - наименьший предельный конус

1.5.2. Способ 2 - раздельное нормирование каждого вида допусков; допуска T DS диаметра конуса в заданном сечении, допуска AT угла конуса, допуска TFR круглости и допуска T FL прямолинейности образующей конуса.

1.6. В посадках с фиксацией по конструктивным элементам и по заданному осевому расстоянию между базовыми плоскостями сопрягаемых конусов допуски конусов предпочтительно нормировать способом 1.

В этих посадках величины зазоров или натягов зависят от предельных отклонений диаметров сопрягаемых конусов. Отклонения угла и формы конуса влияют на неравномерность зазоров или натягов, а также на длину контакта и при необходимости смогут ограничиваться дополнительными допусками угла конуса AT и формы конуса T FR и T FL более узкими, чем допуск T D .

1.7. В посадках с фиксацией по заданному осевому смещению сопрягаемых конусов от их начального положения или по заданному усилию запрессовки допуски конусов предпочтительно нормировать способом 2.

В этих посадках величины зазоров или натягов определяются, в основном, условиями сборки. На неравномерность зазоров или натягов и на длину контакта оказывают влияние только допуски угла и формы конуса, а допуски диаметра влияют на базорасстояние соединения.

1.8. Допуски несопрягаемых конусов предпочтительно нормировать способом 2.

2.1. Допуски T D и T DS должны соответствовать ГОСТ 25346 -82.

При выбранном квалитете допуск T D определяется по номинальному диаметру большого основания конуса, а допуск TDS - по номинальному диаметру в заданном сечении конуса.

2.2. Допуск AT угла конуса (черт. 6) назначается:

при заданном допуске T D , если отклонения угла конуса должны быть ограничены в более узких пределах, чем это возможно при полном использовании допуска T D ;

при заданном допуске T DS .

Наибольшие отклонения угла конуса, возможные при полном использовании допуска TD , и соотношения между допусками угл а и диаметра конуса приведены в справочном приложении 1.

2.4. Расположение предельных отклонений углов сопрягаемых конусов должно быть односторонним (+АТ или -AT) или симметричным , для несопрягаемых концов симметричным .

Данные о влиянии расположения предельных отклонений углов сопрягаемых конусов на характер их соединения приведены в справочном приложении 2.

2.5. Допуски формы конуса - допуск TFR круглости (черт. 7 ) и допуск TFL прямолинейности образующей (черт. 8 ) назначаются:

при заданном допуске TD , если отклонения формы конуса должны быть ограничены в более узких пределах, чем это возможно при полном использовании допуска TD ,

при заданном допуске TDS .

Наибольшие отклонения формы конуса, возможные при полном использовании допуска TD и соотношения между допусками формы и диаметра конуса или формы и угла конуса приведены в справочном приложении 1.

2.6. Допуски Т FR и T FL должны соответств овать ГОСТ 24643-81 .

При выбранной степени точности допуск T FR определяется по номинальному диаметру большого основания конуса, а допуск TFL - по номинальной длине конуса.

1 - поле допуска конуса;

2 - поле допуска круглости;

3 - реальный профиль


1 - поле допуска конуса; 2 - поле допуска прямолинейности; 3 - реальный профиль

3.1. Поля допусков диаметров наружных и внутренних конусов приведены в табл. 1.

Указанные поля должны применяться как при назначении предельных отклонений (допусков) для диаметра в любом сечении конуса, так и при назначении предельных отклонений (допусков) для диаметра в заданном сечении конуса.

Примечание . Если применение полей допусков по табл. 1 не может обеспечить требований, предъявляемых к изделиям, допускается применение других полей допусков по ГОСТ 25347-82 .

3.2. Выбор полей допусков из табл. 1 производится с учетом способа фиксации взаимного осевого положения сопрягаемых конусов.

3.2.1. В посадках с фиксацией по конструктивным элементам или по заданному осевому расстоянию между базовыми плоскостями сопрягаемых конусов следует применять поля допусков не грубее 9-го квалитета с основным отклонением: для внутренних конусов - Н, для наружных конусов - с любым из числа указанных в табл. 1.

3.3. Предельные отклонения диаметров конусов, соответствую щие полям допусков, приведенным в табл. 1, - по ГОСТ 25347-82 и по табл. 2 для полей допусков, устанавливаемых дополнительно к ГОСТ 25347-82 .

Коническое соединение – соединение наружного и внутреннего конусов, имеющих одинаковые номинальные углы (рис. 3.96). Оно характеризуется большим диаметром D, малым диаметром d, длиной конического соединения Lр, базорасстоянием zр (расстоянием между принятыми базами наружного и внутреннего конусов, образующих коническое сопряжение).

Рис. 3.96. Параметры конического соединения

Стандарты устанавливают два способа нормирования допуска диаметра конуса.

Второй способ – назначение допуска диаметра ТD (D), одинакового в любом поперечном сечении конуса и определяющего два предельных конуса, между которыми должны находиться все точки поверхности реального конуса. При этом способе нормируют допуск только в заданном сечении конуса (ТDs). Допуски ТD или ТDs должны соответствовать ГОСТ 25346–89. Для образования нужных посадок в конических соединениях деталей обычно применяют именно этот способ назначения допусков.

Для конических соединений ГОСТ 25307–82 устанавливает три вида посадок: с зазором, натягом и переходные.

В отличие от цилиндрических сопряжений с гарантированным зазором, где оси валов и отверстий не совпадают, конические сопряжения могут обеспечить самоцентрирование деталей с образованием нулевого зазора за счет осевого смещения охватываемой и охватывающей деталей. Поскольку смещение охватываемой детали к меньшему или большему основанию конуса приводит к уменьшению или увеличению зазора, в конических соединениях часто применяют специальные устройства регулировки зазора (или методы обеспечения натяга) между сопрягаемыми деталями.

Конические посадки с зазором применяют в соединениях типа подшипников скольжения, а также в устройствах разобщения и соединения двух пространств при взаимном перемещении (повороте) сопряженных деталей. Примерами устройств разобщения и соединения являются краны в пневматических и гидравлических системах.

При наличии установленных стандартом переходных посадок фактически конические сопряжения могут быть реализованы либо как посадки с зазором либо как посадки с натягом.

Хотя стандартом установлены переходные конические посадки, фактически конические сопряжения могут быть реализованы либо как посадки с зазором либо как посадки с натягом.

Посадки с натягом используют для получения неподвижных герметичных соединений, а также соединений, обеспечивающих передачу крутящего момента, например хвостовикам стержневого режущего инструмента.

Конические соединения с натягом в отличие от неразъемных цилиндрических соединений могут быть или неразъемными, или разъемными. Разъемные конические соединения с натягом, обеспечивают более легкую по сравнению с цилиндрическими прессовыми соединениями разборку, кроме того, их конструктивные особенности могут позволять регулировку натяга после некоторого времени эксплуатации.

Так как сопрягаемые поверхности конические и диаметры сопрягаемых деталей вдоль оси переменные, для одной и той же конической пары вал-втулка может быть достигнут желаемый характер соединения за счет:

а) фиксации взаимного положения наружного и внутреннего конусов в осевом направлении;

б) фиксации заданной силы запрессовки (для посадок с натягом).

Сборка с применением полной взаимозаменяемости может осуществляться, например, совмещением нерегулируемых конструктивных элементов конусов.

Фиксация взаимного положения наружного и внутреннего конусов в осевом направлении по заданной силе запрессовки в отличие от рассмотренных выше методов регулировки предусматривает не контроль длины (заданного расстояния), а контроль силы, которая функционально связана с натягом в сопряжении.

При назначении посадок для конических соединений следует использовать поля допусков со следующими основными отклонениями:

· для внутренних конусов: Н; Js; N;

· для наружных конусов: d, e, f, g, h, js, k, m, n, p, r, s, t, u, x, z.

Для образования посадок рекомендуются поля допусков в квалитетах от 4 до 9, причем рекомендуемые поля допусков отверстий ограничены номенклатурой Н4, Н5, Н6, Н7, Н8, Н9, то есть рекомендуемые посадки организуются в системе основного отверстия.

Поля допусков в остальных квалитетах могут использоваться для таких изделий высокой точности как конические калибры, эталонные меры и т.п. (квалитеты от 01 до 5) или несопрягаемых деталей низкой точности (квалитеты от 10 до 17).

В посадках рекомендуется сочетать поля допусков диаметров наружного и внутреннего конусов одного квалитета, но в обоснованных случаях допуск диаметра конического отверстия можно назначать на один или два квалитета грубее.

Для получения посадок различного характера в соответствии с ГОСТ 25307–82 для наружных конусов можно использовать следующие основные отклонения:

· при формировании посадок с зазором – d, e, f, g, h;

· для переходных – js, k, m, n, p;

· для посадок с натягом – r, s, t, u, х, z.

Соединение деталей с гарантированным натягом – неподвижное соединение деталей, у которых перед сборкой наружный размер охватываемой детали больше соответствующего внутреннего размера охватывающей детали. Упругие свойства соединяемых деталей вызывают силы сопротивления растяжению-сжатию материалов, которые, преодолевая трение и неровности контактирующих поверхностей, создают гарантированный натяг, обеспечивая прочность соединения.

Соединения деталей, которые передают рабочие нагрузки при гарантированном натяге, могут быть с цилиндрическими и коническими поверхностями.

1. Соединения цилиндрических деталей по посадке с гарантированным натягом

Эти соединения имеют преимущественное распространение и занимают промежуточное положение между неразъемными и разъемными соединениями, так как допускают нечастую разборку, нарушая целостность составных частей изделия. Следует учесть, что разборка соединения с гарантированным натягом изменяет свойства соединения.

Нагрузочная способность соединений с гарантированным натягом определяется преимущественно величиной натяга, который определяется выбором посадок для соединяемых деталей. Посадка определяет степень относительной подвижности (без напряженности соединения) или неподвижности (с напряженностью соединения) соединяемых деталей.

По размеру зазоров и натягов различают ряд посадок, подразделяющихся на три большие группы:

  • посадки с натягом – обеспечивают натяг в соединении (поле допуска отверстия расположено под полем допуска вала). Рекомендуемые посадки H7/p6; H7/r6; H7/s7;
  • переходные посадки – возможен натяг или зазор (поля допусков отверстия или вала перекрываются частично или полностью);
  • посадки с зазором – обеспечивают зазор в соединении (поле допуска отверстия расположено над полем допуска вала) (рис. 1).

Следовательно, для соблюдения условия создания натяга разность между размерами вала В и отверстия О должна быть больше нуля, т.е. В – О = Н > 0.

Поля допусков для обеспечения посадок с натягом

Рис. 1. Поля допусков для обеспечения посадок с натягом

Создание натяга должно учитывать упругие свойства соединяемых деталей. Если свойства материала детали не будут учтены, то возможны случаи, когда посадка не может быть реализована по условию прочности деталей.

Достоинства таких соединений в простоте и технологичности конструкции за счет отсутствия соединительных деталей, в обеспечении хорошего центрирования соединяемых деталей, в возможности применения при очень больших осевых нагрузках и вращающих моментах и в высокой надежности при ударных нагрузках.

Основные недостатки этих соединений – возможная неконтролируемая потеря упругости соединяемых деталей, ограниченность несущей способности при вибрационных нагрузках и падение несущей способности соединения после разборки.

Характерными примерами применения соединений с гарантированным натягом являются колесные пары и бандажи железнодорожного подвижного состава (рис. 2, а), ступицы и венцы зубчатых и червячных колес (рис. 2, б), крепление на валу неподвижных колец подшипников качения (рис. 2, в), где показана подшипниковая посадка.

Соединения с гарантированным натягом могут быть выполнены тремя способами:

Примеры прессовых соединений деталей

  • продольной сборкой путем запрессовки осевой силой (рис. 2, г);
  • поперечной сборкой с помощью нагрева или охлаждения одной из деталей до состояния, при котором они свободно соединяются;
  • комбинированной, например, гидропрессовой сборкой, при которой одновременно с действием осевого усилия в зону контакта сопрягаемых деталей подается масло под высоким давлением для получения необходимой поперечной деформации.

Рис. 2. Примеры прессовых соединений деталей

Из этих трех способов наиболее доступным и наименее совершенным является первый – запрессовка, так как при нем неизбежно повреждение контактных поверхностей, нарушение микрогеометрии их поверхности и, как следствие, снижение нагрузочной способности соединения, которое обычно называют прессовым.

2. Расчет на прочность прессовых соединений

В результате сборки прессового соединения за счет натяга на сопрягаемых поверхностях возникают контактные давления р (рис. 2, в), которые полагаем равномерно распределенными по поверхности контакта. Если на конструкцию действуют осевая сила F и вращающий момент Т, то на сопрягаемых поверхностях возникнут силы трения, которые должны исключить относительное смещение деталей соединения. Пользуясь принципом независимости действия сил, можем написать условия равновесия:


где f – коэффициент трения (табл. 1).

Из вышеприведенных условий равновесия определим минимально необходимые значения контактного давления:


Таблица 1. Коэффициент трения (сцепления) f при посадках с натягом


Если осевая сила F и вращающий момент Т действуют одновременно, то расчет ведут по равнодействующей R осевой и окружной силы:


,



В зависимости от ответственности соединения полученное минимально необходимое значение pmin увеличивают, умножая его на коэффициент запаса сцепления К = 1,5…3.

Если в соединении предусмотрена призматическая шпонка, то К = 1,3…1,5.

По найденному расчетному контактному давлению р = Kpmin определяем расчетный натяг Np:


где C = (d 2 + d1 2 ) / (d 2 — d1 2 ) — υ1 ; C = (d2 2 + d 2 ) / (d2 2 — d 2 ) + υ2 ; E1 , υ и E2 ,

υ2 – модули упругости и коэффициенты Пуассона соответственно для материалов охватываемой и охватывающей деталей (табл. 2).

Таблица 2. Модуль упругости E, коэффициент Пуассона v, температурный коэффициент линейного расширения α, °С, материала деталей

Размеры d (H7/r6), d1 и d2 показаны на рис. 2, б; если охватываемая деталь сплошная, то d1=0.

Учитывая возможное нарушение микрогеометрии (огранки) контактных поверхностей при сборке прессового соединения, полученное значение расчетного натяга Np увеличивают на поправку на срезание и сглаживание микронеровностей (шероховатости):



где Rz1+Rz2, Ra1+Rа2 – высоты микронеровностей; тогда требуемый натяг


(если сборку выполняют нагреванием или охлаждением деталей, то u=0).

По величине требуемого натяга NT подбирают рекомендуемую ближайшую посадку с наименьшим натягом, при котором NTNmin.

Наибольший расчетный натяг, соответствующий выбранной посадке Nб:


Максимальное давление р, которое может возникнуть на контактной поверхности соединяемых деталей:


Эквивалентное напряжение охватывающей детали из упругого материала:


Две предыдущие формулы применимы только при натягах в области упругих деформаций.

3. Сборка прессового соединения с нагревом охватывающей или охлаждением охватываемой детали

Разность температур охватываемой и охватывающей детали, при которой достигается свободное их сопряжение во время сборки, определяют по формуле:


где Nmax – наибольший натяг выбранной посадки, мкм; δ0 – зазор, необходимый для свободного соединения деталей, принимаемый равным 10 мкм при d=30 ÷ 80 мм, 15 мкм при d>80 ÷ 180 мм и 20 мкм при d>180 ÷ 400 мм; d – номинальный диаметр соединяемых поверхностей, мм; α – коэффициент линейного расширения нагреваемой или охлаждаемой детали: для стали α=12•10 -6 ; для чугуна α=10,5•10 -6 ; для оловянных бронз α=17•10 -6 ; для латуни α=18•10-6; для алюминиевых сплавов α=23•10 -6 .

Для случая, когда особо важна прессовая посадка толстостенной втулки (ступицы) на сплошной вал, предельный наибольший натяг Nпpeд можно определить из условия прочности втулки по формуле:


где ⎡σp⎤ = σT/[s] – допускаемое напряжение для втулки, σ = 240 МПа;

[s] – допускаемый коэффициент запаса прочности; Е – модуль упругости; для стальной толстостенной втулки Е = 2•10 5 МПа, [s]=1,2.

Пример. Цилиндрическое соединение с натягом – соединение венца червячного колеса со ступицей колеса, при следующих данных (рис. 2, а): диаметр посадочной поверхности d=250 мм, длина посадочной поверхности l=60 мм, диаметр отверстия для вала в центре колеса d1=80 мм, диаметр впадин зубчатого венца d2=280 мм, крутящий момент, передаваемый червячным колесом, T=400 Н•м. Материал венца – бронза Бр АЖ9-4Л (отливка в кокиль). Материал ступицы колеса – чугунное литье СЧ15.

Определим необходимое давление р на поверхности контакта венца с центром колеса, приняв коэффициент трения между ними f=0,05:


Для вычисления требуемого расчетного натяга Nр соединения при υ1=0,25; υ2=0,35:



.

Модули упругости для чугуна Е1 =1,3•10 5 МПа, для бронзы Е2 =1,1•10 5 МПа.

Расчетный натяг соединения:


Обработку контактных поверхностей зубчатого венца и центра колеса назначаем с высотами неровностей Rz1=Rz2=10 мкм.

Действительный натяг соединения:



По полученному значению NТ подбираем соответствующую стандартную посадку. Из таблицы допусков и посадок для данного соединения примем посадку ø 250 Н/s7 с наименьшим натягом Nм=68 мкм и наибольшим натягом Nб=186 мкм. Наибольший расчетный натяг, соответствующий выбранной посадке:

Максимальное давление р, которое может возникнуть на контактной поверхности соединяемых деталей:


Проверим венец червячного колеса на прочность. Примем с некоторым приближением, что материал венца пластичен и одинаково работает на растяжение и сжатие; при этом применима третья теория прочности. Эквивалентное напряжение венца:


Такое напряжение вполне допустимо (оно ориентировочно в 2,5…3 раза ниже условного предела текучести для бронзы Бр АЖ9-4Л при отливке в кокиль).

4. Соединения деталей с коническими поверхностями с гарантированным натягом

В конических соединениях натяг создают осевым смещением ступицы относительно вала. Так как упорный бурт на валу не выполняют, в конических соединениях не может быть обеспечена осевая точность фиксации ступицы на валу. Для обеспечения хорошего центрирования соединяемых деталей без перекоса отношение длины соединения к наибольшему диаметру должно составлять l/d > 0,7.

Относительная простота безударной сборки и демонтажа, высокая надежность при действии радиальных сил и опрокидывающих моментов является достоинством конических соединений, особенно для консольных участков валов редукторов и электродвигателей (рис. 3).

Коническое соединение деталей с гарантированным натягом

Рис. 3. Коническое соединение деталей с гарантированным натягом

В соответствии с ГОСТ 12081-72 конусность концов валов принимают:


Относительное осевое смещение ступицы и вала осуществляют гайкой.

Осевое усилие F, создаваемое гайкой, и давление на сопряженную поверхность связаны зависимостью:


В связи с разбросом в значениях коэффициента трения f и сложностью контроля усилия затяжки гайки рассматриваемое коническое соединение применяют в сочетании с призматической шпонкой, повышающей надежность соединения.

Осевое усилие F, необходимое для передачи крутящего момента Т (Н•м), определяют по формуле:


где λ – коэффициент запаса сцепления, λ=1,3.

Учитывая допускаемое напряжение [σр] для наименьшего сечения d3 (рис. 3), найдем осевую силу:


где [σр]=σт/[s] – допускаемое напряжение и σт – предел текучести для материала вала; [s] – допускаемый коэффициент запаса прочности; при контролируемой затяжке принимают [s]=1,5 ÷ 2,2 для валов из углеродистой стали; [s]=2 ÷ 3 – из легированной стали; при неконтролируемой затяжке для d3 ≤ 30 мм приведенные значения [s] необходимо увеличить в два раза.


где F – осевое усилие, создаваемое гайкой, эквивалентное продольной силе;

Читайте также: