Признак который не проявлялся в первом поколении гибридов называется сортом рецессивным гибридом

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Первый шаг в познании закономерностей наследственности сделал выдающийся чешский исследователь Грегор Мендель. Он выявил важнейшие законы наследственности. Г. Мендель показал, что признаки организмов определяются дискретными (отдельными) наследственными факторами.

Гибридологический метод. Основной метод, который Г. Мендель разработал и положил в основу своих опытов, называют гибридологическим.

Суть его заключается в скрещивании (гибридизации) организмов, отличающихся друг от друга по одному или нескольким признакам. Поскольку потомков от таких скрещиваний называют гибридами, то и метод получил название гибридологического. Одна из особенностей метода Менделя состояла в том, что он использовал для экспериментов чистые линии, т. е. растения, в потомстве которых при самоопылении не наблюдалось разнообразия по изучаемому признаку (в каждой из чистых линий сохраняется однородная совокупность генов.) Другой важной особенностью гибридологического метода было то, что Г. Мендель наблюдал за наследованием альтернативных (взаимоисключающих, контрастных) признаков. Например, растения низкие и высокие; цветки белые и пурпурные; форма семян гладкая и морщинистая и т. д. Не менее важная особенность метода – точный количественный учет каждой пары альтернативных признаков в ряду поколений. Математическая обработка опытных данных позволила Г. Менделю установить количественные закономерности в передаче изучаемых признаков. Очень существенно было то, что Г. Мендель в своих опытах шел аналитическим путем: он наблюдал наследование многообразных признаков не сразу в совокупности, а лишь одной пары (или небольшого числа пар) альтернативных признаков.

Единообразие первого поколения. Первый закон Менделя. В том случае, когда родительские организмы отличаются друг от друга по одному изучаемому признаку, скрещивание называют моногибридным. Г. Мендель проводил опыты с горохом. Среди большого количества сортов он выбрал для первого эксперимента два, отличающиеся по одному признаку. Семена одного сорта гороха были желтые, а другого – зеленые. Известно, что горох, как правило, размножается путем самоопыления и поэтому в пределах сорта нет изменчивости по окраске семян. Используя это свойство гороха, Г. Мендель произвел искусственное опыление, скрестив сорта, отличающиеся цветом семян (желтым и зеленым). Независимо от того, к какому сорту принадлежали материнские растения, гибридные семена оказались только желтыми. Следовательно, у гибридов первого поколения проявился признак только одного родителя.

Такие признаки Г. Мендель назвал доминантными. Признаки, не проявляющиеся у гибридов первого поколения, он назвал рецессивными. В опытах с горохом признак желтой окраски семян доминировал над зеленой окраской. Таким образом, в потомстве Г. Мендель обнаружил единообразие гибридов первого поколения, т. е. все гибридные семена имели одинаковую окраску. В результате был сформулирован первый закон Менделя – закон единообразия гибридов первого поколения. Парные гены, определяющие альтернативные признаки, называются аллельными генами. Гены, полученные от родителей, называются генотипом. По генотипу организмы бывают гомозиготные (однородные доминантные или рецессивные аллели) и гетерозиготные (разные аллели). Фенотип – это совокупность внешних и внутренних признаков организма.

Расщепление признаков у гибридов второго поколения. Второй закон Менделя. Из гибридных семян гороха Г. Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. 3/4 семян гибридов второго поколения имели желтую окраску и 1/4 – зеленую. Следовательно, по фенотипу отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным признаком оказалось равным 3:1. Такое явление он называл расщеплением признаков. Сходные результаты во втором поколении дали многочисленные опыты по гибридологическому анализу других пар признаков. Основываясь на полученных результатах, Г. Мендель сформулировал свой второй закон – закон расщепления. При скрещивании гибридов первого поколения между собой во втором поколении наблюдается расщепление признаков. Соотношение по фенотипу составляет 3:1, по генотипу 1:2:1.

Скрещивание особи с неизвестным генотипом с гомозиготной особью по рецессивному признаку (аа) называется

При скрещивании растений гороха с красными цветками (генотип АА) и растений гороха с белыми цветками (генотип аа) при полном доминировании фенотип потомства возможен

Тип скрещивания для определения гомо- или гетерозиготности организма

Неполное доминирование – это

Совокупность всех признаков и свойств организма

Моногибридным скрещиванием называют

Первый закон Г. Менделя

При скрещивании горошка с желтыми и зелеными семенами признак, проявившийся у гибридов F1, Г. Мендель назвал

Согласно второму закону Г. Менделя (закону расщепления или чистоты гамет), во втором поколении моногибридного скрещивания расщепление по генотипу будет

При каком скрещивании происходит расщепление по фенотипу 3:1?

Проявление одного доминантного признака

При скрещивании растений гороха с красными цветками (АА) и растений с белыми цветками (аа) при полном доминировании возможный фенотип потомства

Закономерности наследственности и изменчивости организмов изучает генетика. Арсенал этой науки включает разнообразные методы исследований, одним из которых является гибридологический. Он основан на скрещивании организмов, различающихся по альтернативным признакам, с последующим анализом этих признаков у полученного потомства. Альтернативными называют признаки, которые взаимно исключают друг друга и в норме не могут присутствовать у организма одновременно (резус-положительность и резус-отрицательность у человека, желтая и зеленая окраска семян гороха и т. п.). Скрещивание организмов называется гибридизацией, а потомки от скрещивания родительских особей, отличающихся по одной или более парам альтернативных признаков, — гибридами.

Для записи скрещиваний применяется следующая символика:

Изучение наследственности Г. Менделем. Основные закономерности наследования признаков впервые установил выдающийся австрийский исследователь Г. Мендель в середине XIX в. Для того чтобы выяснить, как наследуются отдельные пары альтернативных признаков, он применил гибридологический метод. Следует отметить удачный выбор Г. Менделем объекта исследований. Им стал горох посевной — неприхотливое растение, которое легко культивируется и приносит многочисленное потомство. Из множества сортов гороха Г. Мендель выбрал те, которые четко различались по семи парам альтернативных признаков (рис. 30.1).


Еще одной важной особенностью исследований Г. Менделя было то, что он вел точный учет числа потомков, унаследовавших те или иные родительские признаки. Это позволило Г. Менделю установить количественные закономерности наследования признаков.

Моногибридное скрещивание . Закон единообразия гибридов первого поколения. В ходе исследований Г. Мендель сначала скрещивал растения чистых линий, которые различались по одной паре альтернативных признаков, затем по двум и т. д. Скрещивание, при котором родительские организмы отличаются друг от друга по одной паре альтернативных признаков, называется моногибридным.


В одном из экспериментов Г. Мендель изучал наследование окраски семян гороха. Он скрещивал растения, выросшие из семян желтого цвета, с растениями, выросшими из зеленых горошин. Для того чтобы предотвратить самоопыление, Г. Мендель у растений одного сорта удалял в цветках тычинки, у другого — пестики и проводил гибридизацию путем искусственного опыления. Выяснилось, что все гибридные растения первого поколения имели семена желтого цвета (рис. 30.2). При этом оказалось неважно, использовались ли родительские растения, выросшие из желтых горошин, в качестве материнских или отцовских. Гибриды первого поколения в любом случае были единообразными по желтой окраске семян:

Р: ♀ желтые семена × ♂ зеленые семена (или ♀ зеленые семена × ♂ желтые семена)
F1: все растения имеют желтые семена.

Скрещивая растения, отличающиеся по другим парам альтернативных признаков, например по форме плодов или окраске цветков, Г. Мендель обнаружил, что во всех случаях у гибридов первого поколения проявлялся только один из двух альтернативных признаков. Явление преобладания одних признаков над другими было названо доминированием, а преобладающие признаки — доминантными. Признаки, которые не проявлялись у гибридов первого поколения, принято называть рецессивными.

Открытая Г. Менделем закономерность носит название закона единообразия гибридов первого поколения или первого закона Менделя. Согласно этому закону при скрещивании особей чистых линий, отличающихся по одной паре альтернативных признаков, гибриды первого поколения будут единообразными по доминантному признаку.

Закон расщепления. Путем самоопыления гибридов первого поколения Г. Мендель получил второе поколение, в котором растений имели желтые семена и — зеленые (см. рис. 30.2). Появление в потомстве особей, различающихся по альтернативным признакам, называется расщеплением. В данном случае наблюдалось расщепление 3 : 1.

F1: ♀ желтые семена × ♂ желтые семена

F2: 3 желтые семена : 1 зеленые семена.

Аналогичное расщепление было обнаружено и при исследовании других пар альтернативных признаков: во втором поколении у 75 % растений проявлялись доминантные признаки, а у 25 % — рецессивные. Таким образом, рецессивные признаки, которые не наблюдались в первом поколении, вновь проявлялись у гибридов второго поколения. Это значит, что данные признаки у гибридов F1 были подавлены и сохранялись в скрытом состоянии, а не исчезали полностью.

Сущность закона расщепления, или второго закона Менделя, заключается в том, что при скрещивании гибридов первого поколения между собой во втором поколении наблюдается расщепление по альтернативным признакам в соотношении: 3 части особей с доминантным признаком к 1 части особей с рецессивным признаком.

*Г. Мендель был монахом, а затем настоятелем Августинского монастыря в Брюнне (ныне это город Брно, Чехия). В молодости он получил разностороннее образование, в том числе в области математики и теории вероятности. Поэтому при проведении опытов исследователь понимал, что получить достоверные результаты можно лишь при большом количестве исследуемых растений. Идеального соотношения 3 : 1 среди гибридов второго поколения Г. Мендель не наблюдал ни в одном эксперименте (табл. 30.1). Однако возможность оперировать большими числами и использование статистических методов анализа позволили ему обобщить результаты опытов и выявить математический характер расщепления.*

*Таблица 30.1. Результаты экспериментов Г. Менделя по изучению наследования семи пар альтернативных признаков гороха

Доминантный признак

Рецессивный признак

Количество гибридов F2 с признаком

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

Механизм кроссинговера

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Образуются гаметы:

Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Образуются гаметы:

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза), или в разных (транс-фаза).

Механизм цис- и транс-фазы

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

Хромосомное определение пола

У животных можно выделить следующие четыре типа хромосомного определения пола.

Женский пол — гомогаметен ( ХХ ), мужской — гетерогаметен ( ХY ) (млекопитающие, в частности, человек, дрозофила).

Генетическая схема хромосомного определения пола у человека:

Р♀46, XX ×♂46, XY
Типы гамет 23, X 23, X 23, Y
F46, XX
женские особи, 50%
46, XY
мужские особи, 50%

Генетическая схема хромосомного определения пола у дрозофилы:

Женский пол — гомогаметен ( ХХ ), мужской — гетерогаметен ( Х0 ) (прямокрылые).

Генетическая схема хромосомного определения пола у пустынной саранчи:

Женский пол — гетерогаметен ( ХY ), мужской — гомогаметен ( ХХ ) (птицы, пресмыкающиеся).

Генетическая схема хромосомного определения пола у голубя:

Р♀80, XY ×♂80, XX
Типы гамет 40, X 40, Y 40, X
F80, XY
женские особи, 50%
80, XX
мужские особи, 50%

Женский пол — гетерогаметен ( Х0 ), мужской — гомогаметен ( ХХ ) (некоторые виды насекомых).

Генетическая схема хромосомного определения пола у моли:

Наследование признаков, сцепленных с полом

Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х - или Y -хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х -хромосоме ( Х А — красный цвет глаз, Х а — белый цвет глаз), а Y -хромосома таких генов не содержит.

Р♀ X A X A
красноглазые
×♂ X a Y
белоглазые
Типы гамет X A X a Y
F1 X A X a
♀ красноглазые
50%
X А Y
♂ красноглазые
50%

Р♀ X A X a
красноглазые
×♂ X A Y
красноглазые
Типы гамет X A X a X A Y
F2 X A X A X A X a
♀ красноглазые
50%
X А Y
♂ красноглазые
25%
X a Y
♂ белоглазые
25%

Р♀ X a X a
белоглазые
×♂ X A Y
красноглазые
Типы гамет X a X A Y
F1 X A X a
♀ красноглазые
50%
X a Y
♂ белоглазые
50%

Р♀ X A X a
красноглазые
×♂ X a Y
белоглазые
Типы гамет X A X a X a Y
F2 X A X A
♀ красноглазые
25%
X a X a
♀ белоглазые
25%
X А Y
♂ красноглазые
25%
X a Y
♂ белоглазые
25%

Схема половых хромосом человека и сцепленных с ними генов:
1 — Х-хромосома; 2 — Y-хромосома.

У людей мужчина получает Х -хромосому от матери, Y -хромосому — от отца. Женщина получает одну Х -хромосому от матери, другую Х -хромосому от отца. Х -хромосома — средняя субметацентрическая, Y -хромосома — мелкая акроцентрическая; Х -хромосома и Y -хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х -хромосомы (с генами, имеющимися только в Х -хромосоме); 2) гомологичный участок Х -хромосомы и Y -хромосомы (с генами, имеющимися как в Х -хромосоме, так и в Y -хромосоме); 3) негомологичный участок Y -хромосомы (с генами, имеющимися только в Y -хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

Тип наследованияЛокализация геновПримеры
Х -сцепленный рецессивныйНегомологичный участок Х -хромосомыГемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.
Х -сцепленный доминантныйНегомологичный участок Х -хромосомыКоричневый цвет зубной эмали, витамин D устойчивый рахит и пр.
Х-Y -сцепленный (частично сцепленный с полом)Гомологичный участок Х - и Y -хромосомСиндром Альпорта, общая цветовая слепота
Y -сцепленныйНегомологичный участок Y -хромосомыПерепончатость пальцев ног, гипертрихоз края ушной раковины

Большинство генов, сцепленных с Х -хромосомой, отсутствуют в Y -хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х -хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если Х А — нормальная свертываемость крови, Х а — гемофилия и если женщина является носительницей гена гемофилии, то у фенотипически здоровых родителей может родиться сын-гемофилик:

Вам может понравиться Все решебники

ГДЗ Дидакт. материалы 5 класс

ГДЗ Разумовская 9 класс

ГДЗ Пасечник 10 класс

ГДЗ Дидакт. материалы 9 класс

ГДЗ Сиротин 8 класс

ГДЗ Александрова 8 класс

Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.

Читайте также: