При посадки на какое космическое тело не применяются парашютные системы

Добавил пользователь Евгений Кузнецов
Обновлено: 19.09.2024

Е. И. Попов

СПУСКАЕМЫЕ АППАРАТЫ

Запуски первых космических аппаратов сначала на орбиты искусственных спутников Земли, а затем для исследования Луны и планет стали первым этапом практической космонавтики. Однако в связи с предстоящим полетом человека в космос требовалось возвращение космического аппарата (или его части) на Землю. В свою очередь, полеты космических аппаратов для исследования Луны и планет потребовали решить проблему осуществления посадки на изучаемое небесное тело. Решение этих задач осложнялось наличием больших скоростей космических аппаратов. Скорости полета космического аппарата относительно Земли и других тел Солнечной системы составляют от 2,4 км/с для Луны и до 60 км/с для Юпитера. И это при условии начальной нулевой скорости вдали от планеты (как говорят специалисты, скорости на бесконечности). При больших начальных скоростях, т. е. отличных от нулевой, скорость встречи будет еще больше.

Даже в случае перевода космического аппарата на орбиту искусственного спутника небесного тела скорость относительно данного тела будет меньше лишь примерно в 1,4 раза (например, для Луны — 1,7 км/с, для Юпитера — около 43 км/с). Прямое же столкновение космического аппарата с небесным телом ведет при таких скоростях к полному разрушению и уничтожению аппарата. Поэтому для осуществления посадки на Землю или другую планету нужно было снизить скорость космического аппарата до приемлемого значения. Причем снижение этой скорости должно быть достаточно плавным в целях обеспечения безопасности космонавтов при возвращении на Землю, но может быть и резким для межпланетных станций при посадке на другие планеты и для возвращения автоматических отсеков с орбитальных научных станций…

В чем же здесь дело? Почему для посадки космических аппаратов обычно используются их отдельные части?

Отметим, что скорость искусственного спутника Земли порядка 8 км/с в 10 раз больше скорости пули, выпущенной из ружья. Примерно со скоростью пули летал лишь один барон Мюнхаузен, оседлав пушечное ядро, да и то это было в сказке. А сейчас типичные скорости космического корабля на орбите искусственного спутника Земли в 10–20 раз больше, чем у пушечного ядра. И внутри космического корабля и орбитальной станции живут и трудятся космонавты.

Кинетическая энергия движения космических аппаратов очень велика. Если, к примеру, уже при меньших скоростях пуля при ударе о препятствие сильно деформируется и нагревается, то что же произойдет с имеющим громадную скорость космическим аппаратом при ударе о поверхность Земли или другого тела Солнечной системы?

Помимо разрушения, происходит разогрев падающего тела до чудовищных температур вследствие превращения огромной кинетической энергии в тепло. Так, например, искусственный спутник Земли, летящий со скоростью 8 км/с, обладает энергией 32 МДж на каждый килограмм массы, а космическое тело, летящее относительно Юпитера со второй космической скоростью (60 км/с), — 1800 МДж на каждый килограмм массы. Если, например, растопить лед, а затем нагреть образовавшуюся воду до полного испарения, то потребуется всего лишь более 3 МДж на каждый килограмм массы. При нагреве металлов до плавления с последующим их кипением до полного испарения на каждый килограмм массы потребуется 8 МДж для железа, 6,5 МДж — для меди, 7,16 МДж — для магния, 11,6 МДж — для алюминия.

Следовательно, если всю кинетическую энергию даже в случае искусственного спутника Земли обратить в тепло, то он весь испарится, из какого бы материала ни был он изготовлен. Для сравнения отметим, что, если вся кинетическая энергия скорого поезда, мчащегося со скоростью 60 м/с (200 км/ч), превратится в тепло и целиком пойдет на нагрев поезда, то он, изготовленный из алюминиево-магниевых сплавов, нагреется лишь на 1 °C. Такое различие в нагреве определяется тем, что кинетическая энергия движущегося тела возрастает от увеличения скорости не линейно, а пропорционально квадрату скорости.

Все эти оценки демонстрируют, с какой важной и ответственной задачей столкнулись конструкторы космических кораблей при обеспечении безопасного возвращения космонавтов на Землю, и в то же время показывают, с какими гигантскими энергиями пришлось иметь дело. При этом имелись два пути: торможение космического аппарата, затрачивая немалую энергию, и обеспечение достаточно эффективной теплозащиты космического корабля от его нагрева при торможении в атмосфере планеты. Естественным желанием здесь было уменьшить количество затрачиваемой энергии на торможение или же в связи с большими потоками энергии сделать теплозащиту сравнительно небольшой массы, однако, естественно, не за счет снижения безопасности полета космонавтов при спуске на Землю.

Эта проблема легко разрешается, если ограничиться задачей спасти не весь космический аппарат, а только его часть, которая получила название спускаемого аппарата. В этом отдельном отсеке вполне можно разместить необходимую аппаратуру для исследования других планет, а также космонавтов и материалы, доставляемые на Землю после пилотируемого полета.

Итак, спускаемые аппараты предназначены для доставки космонавта-исследователя на Землю или научной аппаратуры на другую планету для проведения исследований в ее атмосфере или на поверхности.

В настоящее время космические исследования перешли от отдельных экспериментов к повседневному использованию космической техники. Системы космических аппаратов обеспечивают мировую связь, включая телевидение и Интернет; наблюдения Земли из космоса позволяют вести разведку полезных ископаемых, более надёжно предсказывать погоду и метеорологические катастрофы, следить за экологической обстановкой, и многое другое. Но путь в космос всё ещё труден и опасен. Даже совершенная, сложнейшая космическая техника пока, к сожалению, не может быть абсолютно надёжной. Случались и катастрофы, уносившие жизни героев. Так при спуске с орбиты едва не погиб Юрий Гагарин и трагически закончилось возвращение на Землю лётчика-космонавта СССР Владимира Комарова. Среди всех этапов полёта в космос спуск космического аппарата (КА) остаётся наиболее опасным.

Спуск КА с орбиты в конечном счете заключается в безударной посадке в заданном районе или в заданной точке поверхности Земли. Посадка, при которой относительная скорость сближения с Землей в момент ее достижения не превосходит допустимых пределов, называется мягкой. С методической точки зрения траекторию спуска с околокруговой орбиты можно разделить на четыре характерных участка (рис.1).

- участок торможения 1-2, осуществляемого, как правило, кратковременным включением тормозной двигательной установки (ТДУ). Назначение торможения - перевод КА с исходной орбиты ss1, (рис.2) на такую эллиптическую траекторию s1sвх, перицентр которой (точка, наиболее близко расположенная к притягивающему центру) расположен ниже верхней границы плотных слоев атмосферы. Высота верхней границы плотных слоев земной атмосферы (границы входа) составляет 100-120 км.

- участок свободного полета КА 2-3 от момента выключения ТДУ до момента достижения (пересечения) верхней условной границы атмосферы ( заатмосферная часть s1sвх траектории снижения). Движение на этом участке в первом приближении может рассматриваться как движение в центральном поле силы притяжения.

- участок движения в атмосфере 3-4 ( атмосферная часть sвхsn траектории снижения). Это участок от момента прохождения верхней границы атмосферы до момента начала использования посадочных средств: парашютной системы, ТДУ мягкой посадки. На этом участие спускаемый на Землю аппарат испытывает воздействие больших аэродинамических сил, в несколько раз превышающих силу земного притяжения. Этот участок опасен как в смысле перегрузок, испытываемых КА, так и в смысле интенсивности аэродинамического нагрева корпуса КА.

-участок посадки 4-5 (от начала использования посадочных средств до момента приземления).

В зависимости от того, используется или нет на атмосферном участке полета аэродинамическое качество(Сy/Cx- где Сy и Cx аэродинамические коэффициенты ) различают баллистический спуск и управляемый[1].

Под баллистическим понимают спуск без использования аэродинамического качества, а под управляемым - с аэродинамическим качеством. Такое деление является условным и дается лишь с целью, чтобы подчеркнуть наиболее существенную сторону спуска (используется или нет аэродинамическое качество).

При баллистическом спуске участок 3-4 характеризуется аэродинамическим торможением до такой скорости, когда можно ввести в действие парашютную систему, при этом аэродинамическое сопротивление состоит из одной лишь силы лобового сопротивления, а подъемная и боковая силы полностью отсутствуют.

Аэродинамическое торможение уменьшает скорость спускаемого аппарата от первой космической до 150 - 250 м/с.

При этом сила лобового сопротивления делается равной проекции силы земного притяжения на направление движения и спуск становится равномерным. Дальнейшее торможение вплоть до мягкой посадки (скорость приземления несколько метров в секунду) может быть осуществлено с помощью тормозной системы: парашюта, ротора (винт такого типа, как у вертолета), небольшого ракетного двигателя.

Своеобразным методом торможения служит захват спускаемого аппарата самолетом с помощью сети (применялся в CШA в 1960-1962 гг. при спусках с орбиты контейнеров спутников серии "Дискаверер", а так же в 2004 году).

Участок траектории посадки 4-5, в свою очередь, целесообразно разбить на два самостоятельных элемента посадки: торможение с помощью парашютной системы и окончательное торможение с помощью ТДУ мягкой посадки непосредственно перед приземлением.

При осуществлении мягкой посадки на поверхность Луны, не имеющей атмосферы, торможение КА осуществляется реактивными двигателями. Такой тип спуска называется реактивным спуском. .

Наконец, принципиально возможен комбинированный спуск в атмосфере, т.е. такой спуск, при котором торможение осуществляется при совместном действии аэродинамических сил и реактивной силы.

В печати сообщалось о практической реализации следующих типов спусков:

  • аэродинамического баллистического (корабли "Восток" и "Восход" и др.);
  • аэродинамического планирующего (кабины кораблей "Союз" и ДР.)?
  • реактивного ("Луна-9 И , "Луна-17" и др.).

Краткая характеристика различных типов спуска позволяет сделать вывод о весьма существенном влиянии величины угла входа в плотные слои атмосферы ( ивх на рис.2), на перегрузки и аэродинамический нагрев КА при движении на атмосферном участке траектории снижения (sвхsn).


В этом смысле можно говорить об управляющем импульсе скорости, понимая под этим приращение скорости, вызываемое действием импульса силы (·t). Специфика спуска проявляется на атмосферном участке полёта. Поэтому за исходное состояние движения примем момент пересечения КА верхней условной границы атмосферы. Для расчёта баллистического спуска достаточно задать на этот момент времени высоту Нвх, скорость вх и угол наклона вектора скорости к местному горизонту вх (рис.2). Основным параметром, характеризующим интенсивность входа КА в атмосферу, является угол входа вх. Он определяет вертикальную скорость входа


Vr=VвхSin вх.


или при малых углах вх


Vr=Vвх· вх.


Например, при Vвх=8000 м/с, вх.= - 0,1 рад. Имеем Vr= 800 м/с. Чем больше угол входа, тем интенсивнее КА погружается в атмосферу. Погружение в атмосферу сопровождается возрастанием силы лобового сопротивления

Q = Cх сV 2 S/2, а, следовательно, и перегрузки


nx =Q/mg0= Cх·(h)·V 2 ·S/(2m·g0), где


(h)- плотность воздуха в зависимости от высоты


Когда перегрузка nх , возрастая, достигает значения nх = | Sin | с этого момента начинается торможение (уменьшение скорости).

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ТРАЕКТОРИЯМ СПУСКА.

Требования к траекториям спуска вытекают из характера решаемой задачи. Если речь идет о спуске обитаемого (пилотируемого) КА, то при этом основным требованием является безопасность. В свою очередь, о безопасности полета при спуске судят по совокупности таких характеристик, как максимальная перегрузка, длительность действия больших (выше определенного уровня) перегрузок, аэродинамический нагрев, максимальные отклонения точки приземления по дальности и в боковом направлении.

Вторая группа требований обусловлена ограниченным запасом топлива на борту КА и сводится к наиболее рациональному использованию имеющихся энергозапасов. Если спускаемый аппарат находится в стадии проектирования, то стремятся удовлетворить всем другим требованиям к траектории спуска при минимально возможных энергозатратах.

Если КА уже создан с определенным запасом рабочего тела для ТДУ на борту, то доминирует требование о минимизации промаха.

Итак, перегрузка, аэродинамический нагрев, промах и энергозатраты - вот перечень важнейших характеристик, которые регламентируются условиями безопасности и экономичности в виде определенных требований.

Необходимо подчеркнуть, что требования минимума перегрузки, нагрева (минимума веса теплозащиты), энергозатрат и, наконец, рассеивания несовместимы (противоречивы). Например, чем круче баллистический спуск (больше угол входа в атмосферу), тем меньше время движения в атмосфере, меньше возмущения траектории спуска и, как следствие этого, выше точность посадки. Однако увеличение углов входа в атмосферу, с одной стороны, сопряжено с увеличением затрат топлива, необходимых для совершения маневра, а с другой стороны, это приводит к возрастанию максимальной перегрузки. Точно так же противоречивы требования минимума энергозатрат и минимального промаха. Поэтому, естественно, возникает вопрос о том, как подойти к обоснованию этих требований.

На рис.3 приведены зависимости максимальной перегрузки nх max и некоторого коэффициента, характеризующего интегральный тепловой поток Qy от угла входа в атмосферу для баллистического спуска. На этом рисунке коридор входа представлен допустимым диапазоном углов входа в атмосферу. Левая граница определена из условия безопасного входа (захвата КА атмосферой), а правая - из условия того, чтобы перегрузка при спуске не превосходила nх доп. Если наложить ограничение на интегральный тепловой поток, то этот коридор может стать еще меньше. При Qy = 1,5 левая граница коридора показана пунктирной линией.

О коридоре входа имеет смысл говорить не только для баллистического спуска, но и для спуска с использованием аэродинамического качества.

Маневрирование в атмосфере за счет использования аэродинамического качества позволяет существенно снизить уровень максимальной перегрузки. Изменение максимального уровня перегрузки происходит за счет регулирования с помощью подъемной силы интенсивности погружения КА в атмосферу. Тем самым обеспечивается длительное торможение в более разреженных слоях атмосферы при меньших перегрузках. Примерная зависимость nх max от К=Сух при углах входа от 0 до -2° с низких круговых орбит показана на рис.4.

Относительно суммарного теплового потока надо заметить, что в связи с возрастанием продолжительности полета при "срезании" пика перегрузки тепловой поток увеличивается.

Наличие у КА маневренных возможностей, обусловленных максимальной величиной аэродинамического качества, создает объективные предпосылки для оптимизации траектории спуска в атмосфере. Если произвести оптимизацию траекторий спуска при различных ограничениях, то возможно найти максимальный коридор входа.

При оптимизации управления спуском возникают дополнительные ограничения. В частности, аэродинамическое качество не должно превышать Кmax. Кроме того, могут быть наложены ограничения на угол крена и на угол атаки.

Таким образом, совокупность требований, предъявляемых к спуску КА, можно систематизировать в следующем виде:

1. Общие требования к качеству спуска:

- минимум энергозатрат ;

- минимум интегрального теплового потока;

- минимальное рассеивание по дальности и по боку;

2. Ограничения, налагаемые на траекторию спуска и параметры управления:

- по запасу рабочего тела на борту КА;

- по возможной ориентации вектора тяги ТДУ, например, двигатель должен быть ориентирован на Солнце;

- по допустимой перегрузке;

- по допустимому аэродинамическому качеству;

- по углам атаки и крена;

- по допустимому тепловому потоку;

- по безопасности входа.

1. Инженерный справочник по космической технике. Военное издательство МО СССР, 1977.

В конце января с Международной космической станции на Землю вернулся корабль Dragon CRS-24 компании SpaceX. В ходе его приземления один из четырёх парашютов раскрылся медленнее остальных, что происходит уже второй раз подряд. Поэтому инженеры Национального управления по аэронавтике и исследованию космического пространства (NASA) США и SpaceX занялись более детальным изучением возможных причин такого поведения парашютной системы.

Источник изображения: Associated Press

Источник изображения: Associated Press

Согласно имеющимся данным, во время возвращения корабля Dragon в рамках миссии CRS-24 один из четырёх парашютов раскрылся примерно на минуту позже остальных. Об этом сообщил представитель NASA Стив Стич (Steve Stich). Аналогичный инцидент с запоздалым раскрытием одного из парашютов произошёл в ноябре прошлого года, когда с МКС возвращалась группа астронавтов. По словам Стича, такая же ситуация уже возникала при посадке грузовых кораблей Dragon.

Официальные лица заявили, что корабль Dragon может осуществить мягкую посадку, даже в случае, если один из парашютов системы вообще не раскроется. Однако очередной инцидент заставил NASA и SpaceX приложить больше усилий, чтобы разобраться в причинах и обеспечить процесс безопасного возвращения кораблей Dragon на Землю в будущем. Вице-президент SpaceX Ульям Герстенмайер (William Gerstenmaier) сообщил, что раскрывающийся с опозданием парашют помогает обеспечить плавное снижение корабля, хотя и делает это не так, как ожидалось.

В конструкции Dragon предусмотрены два парашюта, которые стабилизируют корабль при входе в атмосферу, а также парашюты, предназначенные для снижения скорости и обеспечения мягкой посадки на воду. Источник отмечает, что парашюты на других кораблях, например, аппарате Orion компании Lockheed Martin, также раскрываются медленнее запланированного.

SpaceX доставляет на МКС грузы, а также имеет сертификат NASA на проведение пилотируемых полётов к орбитальной станции. В настоящее время SpaceX является единственной частной компанией, имеющей разрешение на доставку астронавтов на МКС и возвращение их на Землю. Следующий пилотируемый полёт SpaceX должен состояться в апреле.

Электронно-вычислительные машины Центра управления и бортовая ЭВМ выдали все необходимые данные для ориентации спускаемого аппарата. Поочередно включаются и выключаются ракетные движки ориентации. Спускаемый аппарат разворачивается под нужным углом к горизонту. Теперь сопло тормозного двигателя смотрит в направлении полета. Внизу появляется Африка. Пора. В заранее рассчитанный на ЭВМ момент с точностью до долей секунды включается тормозной двигатель. Мощность этого двигателя мала, и работает он всего лишь десятки секунд. В результате его работы спускаемый аппарат замедляется примерно на 200 м/сек. Это очень незначительное уменьшение, но этого достаточно — ведь скорость стала уже меньше первой космической и под действием силы притяжения спускаемый аппарат начинает сходить с орбиты и постепенно приближаться к Земле. Сначала он движется в очень разреженной атмосфере — плотность воздуха здесь в миллиард (!) раз меньше, чем у поверхности Земли. И только поэтому спутники и орбитальные станции могут летать здесь достаточно долго. Если бы мы запустили спутник на орбиту с высотой 100 километров, то он не сделал бы даже одного оборота вокруг Земли, хотя здесь плотность воздуха в миллион раз меньше, чем у поверхности Земли. Для того чтобы летать вокруг Земли на этих высотах, нужно время от времени включать двигатель.

Итак, спускаемый аппарат, снижаясь под действием силы притяжения Земли, постепенно входит во все более плотные слои атмосферы. Чем ниже, тем больше сопротивление воздуха, тем сильнее тормозит он спускаемый аппарат, тем меньше становится скорость, тем круче становится траектория его снижения.

Как происходит передача и превращение энергии, мы здесь рассматривать не будем. Сейчас для нас важно, что эта кинетическая энергия огромна — такая же, как у тяжелогруженого железнодорожного состава, мчащегося со скоростью 100 км/час! И почти вся эта огромная энергия должна превратиться в тепловую. Если не принять специальных мер, то одной трети ее будет достаточно, чтобы превратить весь спускаемый аппарат в пар.

В результате торможения передняя поверхность спускаемого аппарата нагревается до температуры примерно 6000°. Такую температуру будет иметь воздух у передней стенки спускаемого аппарата. Это уже не привычный нам воздух, состоящий из молекул азота, кислорода и углекислого газа, а плазма, состоящая из атомов азота, кислорода и углерода, ионов и электронов.

Вспомните таблицу температур плавления различных веществ. Найдется в ней хоть один материал, который при такой температуре останется в твердом состоянии? Нет. Все известные нам материалы при такой температуре превращаются в жидкость или даже в пар. И даже если бы мы имели материал, который не плавился бы при такой температуре, этого мало. Ведь самое главное заключается в том, чтобы возникающее при торможении огромное количество тепла не передавалось внутрь спускаемого аппарата. Какова бы ни была температура вне спускаемого аппарата, в отсеке экипажа она должна быть обычной, комнатной. Для этого стенки спускаемого аппарата должны хорошо защищать от тепла, то есть иметь малую теплопроводность. Но и это не все. Они должны быть очень прочными — ведь при торможении в плотных слоях спускаемый аппарат подвергается огромному давлению. Кроме того, нужно, чтобы стенки корабля имели возможно меньший вес, ибо на космическом корабле каждый грамм веса на счету.

Итак, материал должен иметь и высокую температуру плавления, и низкую теплопроводность, и высокую прочность, и к тому же малый удельный вес. И хотя в наше время ученые создали и создают множество самых разнообразных искусственных материалов, ни один из них не может удовлетворить одновременно всем этим требованиям.

Как же быть? Когда этот вопрос возник, ученые и инженеры начали интенсивные поиски выхода из создавшегося положения. Может быть, покрыть весь спускаемый аппарат медной обшивкой? У меди очень хорошая теплопроводность, и за счет этого тепло с передней поверхности будет отводиться на боковые и заднюю стенки спускаемого аппарата (сильно нагревается только передняя, лобовая поверхность корабля).
Но такая обшивка будет весить целую тонну, а это значит, что стартовый вес ракеты-носителя и, следовательно, тягу двигателя придется увеличить на 50 тонн. Кроме того, в этом случае почти все тепло все равно останется на корабле и постепенно пройдет внутрь спускаемого аппарата.

Было предложение делать переднюю поверхность аппарата пористой (то есть имеющей множество мельчайших дырочек) и через эти поры во время спуска продавливать холодную жидкость или выдувать газ изнутри корабля. Эта идея вообще-то неплоха, но осуществить ее трудно, так как при высоких температурах и давлениях, возникающих на передней поверхности спускаемого аппарата, поры будут засоряться, заплавляться и т. д.

Наиболее эффективный способ предложили советские ученые. Сейчас этот способ применяется при возвращении на Землю всех спускаемых аппаратов — и советских, и американских.

Ученые рассуждали примерно так. Материалов, удовлетворяющих всем четырем требованиям, в настоящее время нет, и вряд ли удастся создать их в ближайшие годы. Нет даже материала, который удовлетворял бы только первому требованию, то есть имел бы достаточно высокие температуры плавления и испарения. Но ведь главная-то задача состоит в том, чтобы температура в отсеке экипажа оставалась комнатной, то есть чтобы как можно меньше тепла прошло внутрь корабля. А этого можно добиться следующим образом.

Покроем переднюю стенку спускаемого аппарата материалом, который хотя и плавится или испаряется при такой температуре, но требует для своего плавления и испарения большого количества тепла (или, как говорят ученые, имеет большие скрытые теплоты фазовых переходов), а в расплавленном состоянии обладает малой вязкостью (легко течет). Тогда во время спуска этот материал будет нагреваться, плавиться и испаряться, а как только он расплавится, капли и пары материала будут встречным потоком воздуха сдуваться с поверхности спускаемого аппарата. При этом тепло, которое накопилось в каплях и парах при нагреве, плавлении и испарении материала, будет уноситься с аппарата вместе с каплями и парами вместо того, чтобы передаваться от них внутрь корабля.

Именно этот способ и применяется в настоящее время на всех спускаемых аппаратах. Таким образом, во время снижения в плотных слоях атмосферы спускаемый аппарат мчится, окруженный пеленой раскаленной плазмы и капель теплозащитного материала. Эта пелена обволакивает и антенны корабля, а так как плазма не пропускает радиоволны, то прекращается связь с Землей. Но это длится всего несколько минут. Воздух так сильно тормозит корабль, что, пока он спускается со 100 километров до 30 километров, его скорость уменьшается в 56 раз! Теперь уже можно выпускать стабилизирующий парашют с диаметром купола в несколько метров, а на высоте 10 километров — основной, диаметром в несколько десятков метров. Очень просто и остроумно придумали конструкторы, как сделать, что

бы корабль встречался с поверхностью Земли мягко, совсем без удара (без толчка). Для этого с нижней стороны из аппарата выпускается штырь длиной примерно в один метр. Когда этот штырь втыкается в поверхность Земли, он автоматически включает твердотопливные двигатели мягкой посадки, сопла которых направлены вниз. В результате гасятся остатки скорости.

Почему же применяется такая сложная система спуска и посадки? Почему не тормозить спускаемый аппарат с начала и до конца с помощью ракетного двигателя? Ответ простой: это невыгодно, а для достаточно тяжелого спускаемого аппарата и просто невозможно.

Дело вот в чем. Для запуска спутника, то есть для разгона его до первой космической скорости, требуется ракета-носитель, вес которой на старте должен быть больше веса спутника примерно в 50 раз. Если мы захотим запустить спутник весом 5 тонн, то потребуется ракета весом 250 тонн. Если мы захотим вернуть спутник на Землю, мы должны затормозить его от первой космической скорости до нулевой — чтобы обеспечить мягкую посадку. А для этого потребуется такая же ракета — весом 200 тонн. Ее мы должны захватить с собой при старте корабля с Земли. Но тогда мы должны вывести на орбиту не 5 тонн груза, а уже 255 тонн. А чтобы это сделать, нужно взять ракету весом 12 700 тонн. Чтобы оторвать ракету от поверхности Земли, тяга ее на старте должна быть хотя бы немного больше ее стартового веса, то есть в данном случае примерно 13 000 тонн. А таких ракет пока нет — самая мощная современная ракета пока имеет тягу примерно 3500 тонн.

Понятно также, что и стоимость такого полета возрастает во много раз.

Таким образом, гораздо выгоднее использовать для основного торможения при посадке на Землю сопротивление воздуха. Это относится к посадке и на другие планеты, обладающие атмосферой,— такие, как Венера, Марс, Юпитер и т. п. Другое дело—посадка на небесные тела, лишенные атмосферы, — например, на Луну. Здесь уж ничего не поделаешь— тормозить можно только двигателями.

Вернемся к спуску корабля на Землю (или на другую планету, обладающую атмосферой), а именно, к моменту, когда спускаемый аппарат только что сошел с орбиты и пошел к Земле. Очень важно, насколько крутой будет траектория его полета. Даже самые тренированные космонавты погибнут, если вес их тела станет в десять—тринадцать раз больше, чем на Земле. Действительно, представьте себе, что на вас взгромоздили груз в десять раз больше вашего собственного веса, — вы будете раздавлены им. Вот в таком же положении окажутся и космонавты.

Но и чересчур пологой траектория тоже не должна быть. Иначе корабль очень долго будет лететь к Земле, в результате чего он будет слишком нагреваться и температура внутри него станет больше, чем могут выдержать космонавты.

От чего зависит крутизна траектории? Если тормозной двигатель будет включен дольше, чем нужно, — спускаемый аппарат пойдет слишком круто. Точно такой же результат получится, если сила тяги окажется больше, чем нужно. Крутизна траектории зависит также и от направления сопла двигателя во время торможения.

Особенно большое значение это имеет в случае неуправляемого — баллистического—спуска. Если спускаемый аппарат имеет форму шара, то такой корабль не обладает аэродинамическим качеством (подемкой силой). Это значит, что во время его спуска даже в плотных слоях атмосферы космонавты не имеют никакой возможности изменить траекторию. Спуск происходит по так называемой баллистической траектории (по такой траектории будет падать камень, если вы бросите его с вершины горы в горизонтальном направлении) и называется баллистическим, или неуправляемым, спуском. Вся траектория такого спуска, в том числе и место посадки, определяется уже в момент окончания работы тормозного двигателя, когда корабль только-только сошел с орбиты. Если крутизна будет задана неправильно (например, вследствие того, что тормозной двигатель проработал на несколько секунд больше или меньше, чем требовалось), спускаемый аппарат приземлится на несколько десятков и даже сотен километров ближе или дальше, чем предполагалось. А это значит, что корабль может приземлиться в горах, в тайге или в море, а не в ровной степи. Конечно, спускаемый аппарат не утонет и космонавты не погибнут, даже если корабль опустится в воду или в тайге, — у космонавтов есть с собой и рация, и сигнальные ракеты, запасы пищи и т. д., — однако это все-таки связано и с риском, и с дополнительными трудностями. Представьте, например, что будет, если они приземлятся на склон высокой и крутой горы.

Избежать этих трудностей и неприятностей можно, если придать спускаемому аппарату такую форму, которая обладает подъемной силой. Для этого форма аппарата должна быть несимметричной относительно направления полета. Именно такую форму, получившую название сегментально-конической, имеют современные спускаемые аппараты.

Когда ось спускаемого аппарата совпадает с направлением полета (угол атаки равен нулю), подъемная сила равна нулю. Изменяя угол атаки, то есть наклон спускаемого аппарата относительно оси полета, космонавты увеличивают или уменьшают тем самым подъемную силу и за счет этого могут изменять траекторию спуска и выбирать место посадки. Кроме того, таким образом можно регулировать и перегрузки.

Летит такой спускаемый аппарат сегментальной частью вперед. В этом положении сопротивление воздуха значительно больше, чем если бы он летел конической частью вперед. А чем больше сопротивление, тем быстрее тормозится корабль. Если бы аппарат летел конической частью вперед, он подошел бы к поверхности Земли со слишком большой скоростью.

Сегментально-конические спускаемые аппараты с высоты 20—30 километров опускаются на парашюте— так же, как и шарообразные.

Читайте также: