Посев вируса на культуру клеток

Добавил пользователь Skiper
Обновлено: 18.09.2024

Лабораторных животных (взрослых или новорожденных белых мышей, хомяков, кроликов, обезьян и др.) заражают исследуемым вируссодержащим материалом различными способами (подкожно, внутримышечно, интраназально, интрацеребрально и др.) в зависимости от тропизма вирусов. Использование животных для культивирования вирусов в диагностических целях весьма ограничено из-за видовой невосприимчивости животных ко многим вирусам человека, контаминации животных посторонними микробами, а также по экономическим и этическим соображениям.

2. Куриные эмбрионы

Куриные эмбрионы (5-12 дневные) заражают путем введения исследуемого материала в различные полости (аллантоисная, амниотическая, желточный мешок) и ткани зародыша. Таким образом, можно культивировать вирусы гриппа, герпеса, натуральной оспы и др. Достоинствами модели являются возможность накопления вирусов в больших количествах, отсутствие скрытых вирусных инфекций, доступность для любой лаборатории.

3. Клеточные культуры

Культуру клеток (тканей) наиболее часто применяют для культивирования вирусов. Метод культур клеток разработан в 50-х годах XX века Дж. Эндерсом и соавт., получившими за это открытие Нобелевскую премию. Клетки, полученные из различных органов и тканей человека, животных, птиц и других биологических объектов, размножают вне организма на искусственных питательных средах в специальной лабораторной посуде. Большое распространение получили культуры клеток из эмбриональных и опухолевых тканей, обладающих по сравнению с нормальными клетками взрослого организма, более активной способностью к росту и размножению.

Типы тканевых культур

1. Первичные (трипсинизированные) культуры - фибробласты эмбриона курицы (ФЭК), человека (ФЭЧ), клетки почки различных животных. Их получают из клеток различных тканей путем размельчения и трипсинизации. Используют однократно, т.е. постоянно необходимо иметь соответствующие органы или ткани.

2. Линии диплоидных клеток (полуперевиваемые) пригодны к повторному диспергированию и росту, как правило, не более 40-50 пассажей (теряют исходные свойства). Их обычно получают из диплоидных клеток эмбриона человека. В процессе пассажей эти культуры сохраняют диплоидный набор хромосом, не претерпевают злокачественной трансформации, но имеют ограниченную продолжительность жизни. Так, например, пользуется известностью штамм ДКЛЧ (диплоидные клетки лёгких человека), штаммы WJT-38, JMR-90, MRC-5 из лёгких ткани эмбриона человека.

3. Перевиваемые линии (гетероплоидные культуры), адаптированы к условиям, обеспечивающим им постоянное существование in vitro, способны к многократному диспергированию и перевиванию, т.е. к многократным пассажам. Наиболее удобны в вирусологической работе - линии опухолевых клеток Hela (рак шейки матки), Hep (рак гортани).

Питательные среды, используемые для выращивания культур клеток: среда 199, среда Игла и др.

Методы индикации вирусов

Индикация вирусов – обнаружение факта их репродукции, основана на выявлении различных биологических свойств вирусов и особенностей их взаимодействия с чувствительными клетками.

Таблица 37. Методы индикации вирусов

ЦПД (цитопатическое действие) - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов. ЦПД вируса в культуре клеток можно выявить микроскопией в сроки от 3-5 суток после заражения и до 1 месяца.


Культура клеток ЦПД вируса

“Цветная” реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению рН среды и соответственно цвета индикатора смалинового на желтый. При репродукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный малиновый цвет.

III. План практической работы

1. Изучить и записать методику заражения клеточной культуры вирусом полиомиелита.

Материал для исследования:смывы из зева (первые дни болезни), фекалии.

Вирусологическое исследование. Выделение энтеровирусов из исследуемого материала осуществляют путем заражения клеточных культур. Для уничтожения сопутствующей бактериальной микрофлоры нестерильный материал (испражнения, глоточные смывы) предварительно обрабатывают антибиотиками (смесь пенициллина со стрептомицином, содержащая по 1000 ЕД/мл каждого антибиотика в среде 199) в течение суток при 4ºC, после чего производят контрольный посев на стерильность. При сохранении бактериальной флоры материал повторно обрабатывают теми же антибиотиками. Затем одновременно заражают по 2-3 пробирки с первичной (эмбриональные фибробласты человека или клетки почек обезьян) и перевиваемой культурой клеток (HeLa, амниона человека и др.), поскольку одни серотипы энтеровирусов лучше репродуцируются в первичных, другие – в перевиваемых клетках. Индикацию вирусов проводят по ЦПД на 2-3 день инкубации при 35 ºC.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.003)

3. Использование для вирусологического метода куриного эмбриона

4. Основные способы заражения куриных эмбрионов

–на хорион-аллантоисную
оболочку
–в хорион-аллантоисную полость
–в полость желточного мешка
–в полость амниона
–в тело эмбриона

5. Обнаружение вирусов в курином эмбрионе

• индикация:
– гибель эмбриона
– морфологические изменения
эмбриона/оболочек
– РГА с жидкостью из полостей куриного
эмбриона
• идентификация:
– РН (в т.ч. РТГА)
– РСК

6. Использование культур клеток

Культуры клеток = соматические или
эмбриональные клетки человека или
животных, культивируемые в лабораторных
условиях.
Подразделяют по числу жизнеспособных
генераций на:
- первичные,
- перевиваемые,
- полуперевиваемые.

7. Первичные культуры клеток

• получают из тканей (эмбриональных или
нормальных) многоклеточных организмов.
Такие клетки не способны к делению –
используются однократно.
• В основе получения лежит обработка
протеолитическими ферментами (трипсином)
= первично-трипсинизированные.
• Н-р, эмбриональная ткань человека, почечная
ткань эмбрионов человека и обезьян.

8. Перевиваемые культуры клеток

Перевиваемые = стабильные = готовят из
опухолевых клеток, способных длительно
размножаться in vitro не меняя своих свойств.
Н-р,HeLa – выделены из карциномы шейки матки,
Hep-2 – из карциномы гортани,
Hep-3 – лимфокарцинома,
KB – эпидермоидная карцинома полости рта,
Детройт-6 – костный мозг больного раком
легкого.

9. Полуперевиваемые культуры клеток

– диплоидные клетки различных тканей и
органов, способные к ограниченному
размножению in vitro.
Они сохраняют свои свойства в течение
20-50 пассажей (пересевов) = до года.
При культивировании не претерпевают
злокачественного перерождения –
преимущество перед перевиваемыми →
могут использоваться в производстве
вакцин.

10. Преимущества перевиваемых культур клеток перед первичными:

• продолжительность культивирования – десятки
лет,
• высокая скорость размножения,
• меньшая трудоемкость,
• сохраняют свои свойства в замороженном
состоянии много лет,
• возможность использования международных
линий культур.
• Но: злокачественный характер и возможность
мутаций ограничивает применение для
производства вакцин.

11. Использование культур клеток

Чаще – перевиваемые монослойные
• индикация:
– ЦПД (цитопатическое действие вирусов – любое
изменение клеток монослоя, включая
бляшкообразование и цветную пробу)
– гемадсорбирующая активность монослоя (РГАдс)
– РИФ (= идентификация)
• идентификация:
– РН (в т.ч. РТГАдс)
– РСК
– РИФ

12. Условия культивирования клеток:

Питательные среды сложного состава (среда 199,
Игла), сод-т источники энергии (глюкозу),
минеральные вещества, аминокислоты, витамины,
сыворотку крови, факторы роста.
Клетки чувствительны к изменениям рН – для
контроля рН добавляют индикатор и буферные
растворы.
Соблюдение правил асептики.
Использование лабораторной посуды из
нейтрального стекла – пробирки, флаконы, матрасы
(=флакон 4-х гранной формы)
Добавление антибиотиков к питательной среде для
подавления роста бактерий
Соблюдение оптимальной температуры
культивирования (36-38,5о).

13. Условия культивирования клеток:

Питательные среды сложного состава (среда 199,
Игла), сод-т источники энергии (глюкозу),
минеральные вещества, аминокислоты, витамины,
сыворотку крови, факторы роста.
Клетки чувствительны к изменениям рН – для
контроля рН добавляют индикатор и буферные
растворы.
Соблюдение правил асептики.
Использование лабораторной посуды из
нейтрального стекла – пробирки, флаконы, матрасы
(=флакон 4-х гранной формы)
Добавление антибиотиков к питательной среде для
подавления роста бактерий
Соблюдение оптимальной температуры
культивирования (36-38,5о).

14. Обнаружение = индикация вирусов в культуре клеток

• проводят на основе следующих феноменов:
- цитопатогенного действия (ЦПД) вирусов
или цитопатического эффекта,
- образования внутриклеточных включений,
- образования “бляшек”,
- реакции гемагглютинации, гемадсорбции
или “цветной” реакции.

15. ЦПД = видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате

16. Виды ЦПД

• округление и сморщивание клеток –
пикорнавирусы,
• нарастающая деструкция – герпесвирусы,
• пролиферация (образование дырок) –
поксвирусы,
• образование гигантских многоядерных
клеток = симпласты – парамиксовирусы.

17. ЦПД вирусов

18. Включения

= скопление вирионов или отдельных их
компонентов в цитоплазме или ядре
клеток, выявляемые под микроскопом при
специальном окрашивании.
• Н-р, вирус натуральной оспы образует
цитоплазматические включения - тельца
Гварниери;
• вирус бешенства в цитоплазме образует
тельца Бабеша-Негри,
• вирусы герпеса и аденовирусы внутриядерные включения.

19. Тельца Бабеша-Негри

20. Бляшки, или “негативные” колонии

= ограниченные участки разрушенных вирусами
клеток, культивируемых на питательной среде
под агаровым покрытием, видимые как светлые
пятна на фоне окрашенных живых клеток.
• Один вирион образует потомство в виде одной
бляшки.
• “Негативные” колонии разных вирусов
отличаются по размеру, форме, поэтому метод
бляшек используют для дифференциации
вирусов, а также для определения их
концентрации.

21. Реакция гемагглютинации (РГА)

• основана на способности некоторых
вирусов вызывать агглютинацию
(склеивание) эритроцитов за счет вирусных
гликопротеиновых шипов –
гемагглютининов.

22. Реакция гемадсорбции =РГАдс = способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности

23. Реакция иммунофлюоресценции (РИФ)

24. Использование лабораторных животных

взрослые или новорожденные белые мыши,
хомяки, кролики, обезьяны
применяется для выделения тех вирусов, которые
плохо репродуцируются в культуре клеток или
курином эмбрионе,
Вид и способ заражения – от вируса
индикация:
заболевание животного
его гибель
идентификация:
РН

25. Способы заражения лабораторных животных

26. Обнаружение вируса при заражении лабораторных животных

обнаруживают вирус по:
- развитию видимых клинических проявлений – параличи
– рабдовирусы,
-патоморфологическим изменениям органов и тканей –
пикорна-, тогавирусы
- в реакции гемагглютинации с суспензией из органов,
недостаток:
- высокая вероятность контаминации организма
животных посторонними микробами,
- необходимость заражения культуры клеток для
выделения чистой культуры вируса.

27. Прионы

• – белковые молекулы, способные
вызывать разрушение клеток организма
человека и животных.
• Они характеризуются устойчивостью:
- к высоким температурам,
- ионизирующей радиации,
- ультрафиолету.

28. Прионы

Прионный белок может существовать в двух
формах:
нормальная клеточная форма(РrPc) обнаруживается в организме всех
млекопитающих.
Ген, кодирующий этот белок, расположен
в коротком плече 20 хромосомы.
РrPc участвует в передаче нервных
импульсов, в поддержании циркадных
ритмов клетки,

29. Прионы

инфекционная форма (PrPs) –
характеризуется:
- измененной вторичной и третичной
структурой молекулы,
- высокой устойчивостью к нагреванию,
ультрафиолетовому свету, проникающей
радиации и переваривающему действию
протеаз.

35. БАКТЕРИОФАГИ

36. БАКТЕРИОФАГИ

39. Строение бактериофагов

• икосаэдрическая головка,
• хвостовой отросток: внутри – полый
цилиндрический стержень, сообщающийся с
головкой, а снаружи - чехол отростка,
заканчивающийся шестиугольной базальной
пластинкой с шипами, от которых отходят
фибриллы (нити),
• капсид головки и чехол хвостового отростка
бактериофага состоят из полипептидных
субъединиц, уложенных по икосаэдрическому
(головка) или спиральному (отросток) типу
симметрии.

41. Нуклеиновая кислота фага

• Бактериофаги (фаги) содержат ДНК или
РНК:
- двунитевые
- однонитевые
- линейные,
- -кольцевые.
• Большинство – двунитевую ДНК,
замкнутую в кольцо

42. В состав головки входит:

• полипептид, состоящий из аспарагиновой,
глутаминовой кислот и лизина,
• - у некоторых – гистоноподобный белок →
суперспирализация ДНК.

43. В состав сокращающегося чехла входит:

44. Морфологические типы бактериофагов

• I тип (нитчатые)
– без головки (только отросток)
• II тип
– без отростка (только головка)
• III тип
– головка и отросток, короткий без чехла
• IV тип
– головка и отросток, длинный с чехлом, не
сократительный
• V тип
– головка и отросток, длинный с чехлом, сократительный

46. Классификация бактериофагов по спектру действия

• полифаги
– поражают несколько видов
• монофаги (видовые)
– поражают один вид
• типовые фаги
– поражают часть вида (фаговар)

47. Классификация фагов в зависимости от эффекта действия на бактериальную клетку

48. Классификация фагов в зависимости от эффекта действия на бактериальную клетку

49. Классификация фагов в зависимости от эффекта действия на бактериальную клетку

умеренный фаг
лизогения
• без изменения фенотипа бактерии
• с изменением фенотипа бактерии (фаговая конверсия)
лизис
умеренный
дефектный
специализированная трансдукция

50. Взаимодействие фагов с бактериями

• может происходить:
- по продуктивному типу – вирулентные
фаги→фаговое потомство, бактерии
лизируются
- интегративному – умеренные →встраиваются
в геном клетки и сосуществуют с ней,
- абортивному типу →фаговое потомство не
образуется, бактерии сохраняют свою
жизнедеятельность

51. Вирулентные бактериофаги

• попав в бактерию, реплицируются,
формируя 200-300 фаговых частиц, и
вызывают гибель (лизис) бактерии = это
продуктивный тип взаимодействия

52. Взаимодействие вирулентного фага с бактериальной клеткой

53. Этапы взаимодействия вирулентного фага с бактериальной клеткой =продуктивный тип взаимодействия

• 1. Бактериофаги с сокращающимся чехлом
адсорбируются на клеточной стенке с помощью
фибрилл хвостового отростка.
• 2. Чехол хвостового отростка сокращается, и
стержень с помощью ферментов (лизоцима)
просверливает оболочку клетки.
• 3. Через канал стержня бактериофага
нуклеиновая кислота инъецируется из головки
в бактериальную клетку, а капсид бактериофага
остается снаружи бактерии.

54. Взаимодействие бактериофага с оболочкой клетки

55. Этапы взаимодействия вирулентного фага с бактериальной клеткой =продуктивный тип взаимодействия

• 4. Инъецированная внутрь клетки нуклеиновая
кислота подавляет биосинтез компонентов
клетки, заставляя ее синтезировать
нуклеиновую кислоту и белки бактериофага:
- происходит полный распад ДНК бактерии и ее
утилизация.
- если ДНК бактерии не хватает для образования
фаговой ДНК – она синтезируется из компонентов
среды.

56. Этапы взаимодействия вирулентного фага с бактериальной клеткой =продуктивный тип взаимодействия

• 5. Образовавшиеся в разных частях клетки
компоненты бактериофага собираются в
фаговые частицы путем заполнения фаговой
нуклеиновой кислотой пустотелых капсидов
головки
• 6. Сформированная головка соединяется с
хвостовой частью, образуя новый фаг.
• Затем в результате лизиса клетки бактериофаги
выходят из нее.

57. Взаимодействие умеренного фага с бактериальной клеткой

адсорбция фага на специальных рецепторах КС
(на протопластах не происходит)
проникновение НК
(депротеинизация)
интеграция фаговой НК в геном бактерии
профаг
(фаговый репрессор блокирует транскрипцию)
лизогенная культура
ЛИЗОГЕНИЗАЦИЯ
в дальнейшем – может
индукция профага
продуктивная инфекция

58. Взаимодействие умеренного фага с бактериальной клеткой

• Умеренные бактериофаги
взаимодействуют с бактериями:
- либо по продуктивному,
- либо по интегративному типу.
• Продуктивный цикл умеренного фага идет
как и у вирулентных фагов, и заканчивается
лизисом бактерий.

59. Взаимодействие умеренного фага с бактериальной клеткой

• При интегративном типе ДНК умеренного
фага встраивается в хромосому бактерии:
- приобретает форму кольца,
- интегрируется в гомологичную область,
- реплицируется синхронно с геномом
бактерии, не вызывая ее лизиса
(передается при делении бактерии).

60. Взаимодействие умеренного фага с бактериальной клеткой

• ДНК фага, встроенная в хромосому
бактерии, называется профагом,
• культура бактерий — лизогенной;
• сам процесс – лизогенией
(от греч. lysis – разложение, genea –
происхождение).

61. Взаимодействие умеренного фага с бактериальной клеткой

• При лизогении фаги не образуются в результате
“выключения“ фаговых генов репрессором
(=низкомолекулярный белок), кодируемым одним
геном фага.
• Профаги могут спонтанно или под действием
индуцирующих агентов (УФ-лучи, митомицин С и
др.) дерепрессироваться, исключаться из
хромосомы. Этот процесс заканчивается
продукцией фагов (индукция профага) и лизисом
бактерий.

62. Взаимодействие умеренного фага с бактериальной клеткой

• Профаг придает бактерии новые свойства, что
получило название фаговой конверсии (лат.
conversio – превращение).
• Конвертироваться могут:
- морфологические,
- культуральные,
- биохимические,
- антигенные и другие свойства бактерий.
• Например, наличие профага в дифтерийной
палочке обусловливает ее способность
продуцировать дифтерийный экзотоксин.

63. Применение фагов

• для профилактики,
• для лечения инфекций,
• в генной инженерии в качестве векторов для
получения рекомбинантной ДНК,
• для диагностики (например, для
фаготипирования с целью выявления
источника инфекции или внутривидовой
идентификации).

64. Практическое применение бактериофагов

65. Практическое применение бактериофагов

66. Практическое применение бактериофагов

Фагодиагностика
1. Выявление определённого вида бактерий в
патологическом материале

реакция нарастания титра фага
2. Идентификация чистой культуры

определение вида

фагоиндикация
определение фаговара
фаготипирование

67. Выделение бактериофага

материал
• объект внешней среды
• бактериальная культура
бактериальный фильтр
фильтрат
МПБ + чувствительная бактерия
Инкубация 24 час
роста нет – фаг присутствует (очищают фильтрованием)
рост есть – фаг отсутствует

68. Определение активности бактериофагов = фагоиндикация

69. Определение активности бактериофагов = фагоиндикация

71. Определение активности бактериофагов = фагоиндикация

72. Титрование фага по Грациа

• МПА + разведение
фагосодержащего
материала +
чувствительная
культура
• МПА (подложка)
чашка Петри со средой
(в разрезе)

74. Определение активности бактериофагов = фагоиндикация

–Количественные методы:
Б) Метод Аппельмана: готовят десятикратные
разведения фага в питательном бульоне
от 10-2 до 10-8.
• Затем в каждую пробирку добавляют по 0,2мл
бульонной культуры и ряды ставят в термостат.
• После инкубации в термостате учитывают результаты:
= в положительном случае наблюдается
просветление среды.
Разведение в последней пробирке, где произошел
полный лизис культуры, называется титром фага.

75. Титрование фага по Аппельману

76. Фаготипирование бактерий

78. Фаготипирование стафилококков

79. Определение спектра литического действия фага

Культивирование вирусов - выращивание вирусов в искусственных условиях.

Гальтье впервые осуществил в 1879 г. культивирование вируса бешенства, заразив кролика мозгом больной собаки. Способность вируса вакцины (коровьей оспы) репродуцироваться в тканевой культуре была доказана Паркером и Наем в 1925 г. В 1931 г. Вудрафф и Э. Гудпасчер показали возможность культивирование вирусов на хорион-аллантоисной оболочке эмбрионов кур (вирус оспы птиц).

Методы культивирования:

• На лабораторных животных

• В куриных эмбрионах

• В тканевых культурах

Клеточная культура – система клеток, получаемая из ткани, находящаяся в виде слоя клеток, прикрепленных к стеклу, или в виде суспензии. Подразделяются на:

1) Первичные культуры – могут быть получены практически из любого органа (почки, легкие, кожа, тимус), однако даже при систематической смене питательной среды существуют лишь до первого пересева.

2) Стабильные (перевиваемые) линии – полностью адаптированные к существованию вне организма; их получают из нормальных и раковых тканей; размножаются неограниченно долгое время. Бывают 2 типов:

а) Нормальные клетки. В качестве стабильной культуры используют почки барана (ПКБ) и сердце обезьяны циномольгус (СОЦ);

б) Опухолевые клетки. В качестве опухолевых используют культуру клеток Hela - рак шейки матки, Hep-1 - эпидермоидный рак гортани, Дейтройт 6 - костный мозг больного раком легкого.

3) Диплоидные (эмбриональные) культуры – получаемые из эмбриональных тканей человека и животных, сохраняющие диплоидный набор хромосом до 50 пересевов.

Наиболее практическое применение получили однослойные культуры первично-трипсинизированных и перевиваемых линий клеток.

Приготовление первичных (трипсинизированные) культур клеток. Берется орган → разрушается межклеточная ткань и происходит разобщение клеток путём воздействия на ткань протеолитических ферментов (трипсина, панкреатина) для последующего получения монослоя клеток на стекле.

В питательной среде должен присутствовать необходимый набор из неорганических ионов, аминокислот и витаминов. Различают искусственные (полусинтетические и синтетические) и естественные питательные среды.

Естественные питательные среды - это биологические жидкости (сыворотка крови, эмбриональный экстракт, асцитическая жидкость, коровья амниотическая жидкость, тканевые экстракты и др.). Питательные среды из естественных компонентов применяют редко, только для выращивания вновь изолированных тканей в начале культивирования и для поддержания очень прихотливых тканей животных.

Полусинтетические питательные среды представляют собой естественные среды, подверженные первичной ферментативной обработке. К таким средам относят гемогидролизаты, гидролизат лактальбумина, аминопептид и др.

Лучшими средами для культивирования культуры клеток являются синтетические питательные среды: 199 (содержит 60 компонентов: 10 аминокислот, 17 витаминов, 8 минеральных солей, 10 компонентов, входящих в состав нуклеиновых кислот и др.), Игла, Хенкса, Эрла (эти среды имеют аминокислоты, витамины, глюкозу, минеральные соли). Смена питательной среды проводится через 2-3 дня.

В зависимости от назначения среды подразделяются на: ростовые и поддерживающие. Ростовые применяются в первой фазе культивирования клеток, когда необходимо стимулировать клетки на максимально ускоренный рост и размножение. Они богаты питательными веществами, что способствует активному размножению клеток. Поддерживающие применяют во второй фазе культивирования клеток после заражения культуры клеток вирусами. Они поддерживают жизнеспособность клеток.

О наличии вируса в зараженной культуре клеток можно судить по цитопатическому действию (ЦПД) – это патологические изменения морфологии клеток, вплоть до их гибели, возникающие в результате репродукции вирусов, и наблюдаемые под микроскопом. Проявления ЦПД:

1. Дегенерация клеток (наблюдаются округления, изменения формы, разрушения).

2. Появление включений (Липшются – вирус герпеса; Гварниери – вирус натуральной оспы) и телец Бабеша-Негри – вирус бешенства).

3. Разрушение пласта клеток (парамиксовирусы).

4. Образование гигантских многоядерных клеток - симпластов (вирус кори).

Основные методы индикации вирусов в культуре тканей:

а. “+” гемагглютинация. Реакция гемагглютинации – склеивание эритроцитов при добавлении вирусосодержащего материала (есть вирус – эритроциты оседают в виде “зонтика”; нет вируса – в виде “диска”).

б. “+” гемадсорбция. Реакция гемадсорбции – адсорбция эритроцитов на поверхности пораженных вирусом клеток и образуют характерные скопления (вирус гриппа вызывает агглютинацию эритроцитов островкового типа).

в. Реакция нейтрализации вирусов в культуре тканей.

г. Цветная реакция Солка - основана на изменении цвета питательной среды. В результате жизнедеятельности клетки в питательную среду выделяются продукты клеточного метаболизма и происходит сдвиг рН в кислую сторону, о чем свидетельствует изменение цвета среды из красного в желтый. Если вирус присутствует и реплицируется в культуре, то вследствие разрушающего действия вируса клетки дегенерируются (разрушаются, т.е. их нет), и подавляется их метаболизм, т.е. цвет среды неизменяется.





Рис. 2. Заражение куриного эмбриона на ХАО через естественную воздушную камеру
(по Николау)
Рис. 3. Заражение куриного эмбриона в аллантоисную полость (по Николау)

Заражение через искусственную воздушную камеру применяют чаще первого, так как оно обеспечивает контакт вируссодержащего материала с большей поверхностью ХАО и, следовательно, ведет к образованию большего количества вируса. Для заражения эмбриона этим методом его помещают в штатив горизонтально зародышем вверх. В скорлупе делают два отверстия: одно небольшое над центром воздушной камеры (предназначено для отсасывания из нее воздуха), а другое диаметром 0,2-0,5 см сбоку, со стороны зародыша. Сложность метода в том, что, делая второе отверстие, необходимо осторожно снять вначале кусочек скорлупы, затем скользящим движением, не повреждая ХАО, сдвинуть подскорлупную оболочку в сторону так, чтобы через образовавшийся дефект мог пройти воздух. После этого резиновой грушей через первое отверстие отсасывают воздух из естественной воздушной камеры (рис. 4, а). В результате через боковое отверстие наружный воздух устремляется внутрь, образуя искусственную воздушную камеру, дном которой является ХАО (рис. 4, б).


,

Рис. 4. Заражение куриного эмбриона на ХАО через искусственную воздушную камеру (по Николау и др.)
Через боковое отверстие на поверхность ХАО наносят инфекционную жидкость и отверстие закрывают кусочком лейкопластыря. Закрывать первое отверстие нет необходимости, так как внутренний листок подскорлупной оболочки при этом методе заражения не нарушается и продолжает выполнять роль барьера для микрофлоры окружающей среды.
Дальнейшую инкубацию эмбрионов, зараженных этим методом, проводят в горизонтальном положении боковым отверстием вверх.
Заражение в желточный мешок. Большей частью им пользуются для размножения хламидий, а также вирусов болезни Марека, ринопневмонии лошадей, катаральной лихорадки овец и др. Заражают эмбрионы 5-7-дневного, а иногда и 2-3-дневного возраста (вирус лихорадки долины РИФ). Используют два варианта заражения (рис. 6).



Рис. 5. Заражение куриного эмбриона в амниотическую полость (по Николау и др.)
Рис. 6. Заражение куриного эмбриона в желточный мешок (по Николау и др.)

Первый вариант. Иногда путь заражения осуществляется на горизонтально укрепленном в штативе эмбрионе, при этом зародыш находится внизу, а желток - над ним. Отверстие в скорлупе закрывают каплей расплавленного парафина.
Второй вариант. Эмбрионы помещают в штатив в вертикальном положении. Делают отверстие в скорлупе над центром воздушной камеры и вводят иглу на глубину 3,5-4 см под углом 45° к вертикальной оси в направлении, противоположном месту нахождения зародыша.
Заражение в амниотическую полость. Для этой цели используют эмбрионы 6-10-дневного возраста. Метод используется при культивировании вирусов гриппа, ньюкаслской болезни, ринопневмонии лошадей и др. Есть два способа заражжения (рис. 5).
Закрытый способ. Заражение проводят в затемненном боксе. Яйцо помещают на овоскопе в горизонтальном положении зародышем вверх. Через отверстие в скорлупе над воздушной камерой вводят иглу с затупленным концом по направлению к зародышу. Доказательством того, что игла проникла в амнион, служит движение тела зародыша в направлении передвижения.
Открытый способ. Скорлупу над воздушной камерой срезают так, чтобы образовалось окно диаметром 1,5-2,5 см. Через него пинцетом под контролем глаза снимают подскорлупную оболочку. Затем анатомический (14 см) пинцет с сомкнутыми браншами ведут, продавливая хорионаллантоисную оболочку по направлению к зародышу. Когда пинцет достигнет его, бранши размыкают, захватывают амниотическую оболочку вместе с ХАО и подтягивают к окну. Удерживая левой рукой пинцет с фиксированной в нем оболочкой амниона, вводят вируссодержащий материал (рис. 7). Далее все оболочки опускают, окно закрывают лейкопластырем и эмбрион инкубируют в вертикальном положении.
Заражение в тело зародыша. Для заражения используют эмбрионы 7-12-дневного возраста. Известно два варианта метода.
Первый вариант. Заражают так же, как в амнион закрытым способом, с той лишь разницей, что берут острую иглу и на овоскопе показателем попадания иглы в тело считают подчинение зародыша движениям иглы.
Второй вариант. Заражают так же, как в амнион открытым способом: через окно в скорлупе подтягивают пинцетом тело зародыша. Материал вводят в головной мозг или определенные участки тела. При таких методах заражения бывает значительный процент неспецифической гибели эмбрионов.


Рис. 7. Заражение куриного эмбриона в амнион открытым способом (по Николау и др.)



Рис. 8. Отсасывание аллантоисной жидкости (по Николау)
Рис. 9. Отсасывание амниотической жидкости (по Николау и др.)

Для получения стенки желточного мешка как вируссодержащего материала желток извлекают на чашку Петри, стенку его разрезают ножницами и отполаскивают от содержимого в физиологическом растворе. Тело зародыша извлекают, удерживая его за шею (рис. 10).
При вскрытии куриных эмбрионов ставят бактериологический контроль вируссодержащего материала посевом на МПБ, МПА, МППБ и среду Сабуро. Вируссодержащий материал хранят при минус 25 °С и ниже.
Культивирование с производственными целями на куриных эмбрионах применяется для размножения ряда вирусов (осповакцины, клещевого энцефалита, гриппа, москитной лихорадки и др.). Так, для изготовления гриппозной и оспенной вакцин используют вирусы, размноженные на хорионаллантоисной оболочке, вакцины против москитной лихорадки - в аллантоисной полости, а вирус клещевого энцефалита культивируют в желточном мешке.
Метод размножения вирусов на культурах тканей
Для изготовления живых и инактированных вакцин вирусы размножаются на первичных культурах тканей, а диагностических препаратов также и на перевиваемых культурах.
Для размножения вирусов предложен ряд методов с использованием культур тканей. Такие методы, как Карреля-Берреуза (1910), культивирование кусочков ткани, фиксированных в сгустке плазмы, Меттлендов (1928) - культивирование в переживающих тканях - в настоящее время не используются не только в производстве, но и в исследовательской работе. Эти методы вытеснены культивированием в однослойной культуре клеток.
Работа по культивированию клеток производится в специальных лабораториях при соблюдении высоких требований к стерильности воздуха, посуды, растворов, питательных сред. Используемая посуда должна быть нейтральной, хорошо вымытой и обезжиренной, применяемые реактивы - химически чистыми.


Читайте также: