Перемещение воды в корне покрытосеменных растений

Обновлено: 07.07.2024

С покрытосеменными растениями вы хорошо знакомы. Вспомните, что вы ели сегодня на завтрак. Рисовую или гречневую кашу, овсяные или кукурузные хлопья, яблоко или банан, выпили стакан апельсинового сока? Все это продукты растительного происхождения, которые получают из покрытосеменных растений.

Это семенные растения. Семена у них, в отличие от голосеменных, находятся внутри плода. Органом размножения является цветок. Поэтому их второе название — цветковые.

Покрытосеменные растения, как и голосеменные, имеют вегетативные органы: корни, стебли и листья.

Из этой главы вы узнаете:

• какие функции выполняют вегетативные органы и как они к этому приспособлены;

• как осуществляется всасывание воды и минеральных веществ из почвы и передвижение их в стебель и листья;

• почему осенью листья опадают и какое значение имеет листопад в жизни растений;

• какие бывают видоизменения корней и побегов.

• размножать растения вегетативными органами;

• использовать знания о закономерностях роста и развития корней и стеблей при выращивании растений.

§ 25. Корень и корневые системы

Понятие о корне и его функциях. Представьте себе большое дерево, растущее на вершине холма. Какая его часть является самой большой? Вероятнее всего, вы назовете ствол или ветви. Но учли ли вы корни? Корневая система большинства растений имеет такие же размеры (порой даже больше), как надземная часть — стебли с листьями. Как вы думаете, почему корни такие большие?

Корни очень важны для растений. Вся вода и минеральные вещества поступают в растения через корни. От того, сколько воды и минеральных веществ будет поглощено корнями, зависит рост и развитие растения.

Корни закрепляют (удерживают) растения в почве. Если бы корни не выполняли эту функцию, то растения легко уносились бы ветром или смывались водой. Корни поддерживают все части растения, которые находятся над землей, — стебель, ветви, листья, плоды с семенами. На рисунке 96 можно увидеть, какой мощный корень развивается у одуванчика.


Рис. 96. Корни одуванчика

В корнях многих растений запасаются различные вещества. Это могут быть сахара — тогда корень сладкий <солодка) — или другие вещества, чаще всего крахмал.

Таким образом, корни выполняют три важнейших функции: 1) поглощение воды с минеральными веществами из почвы и проведение ее в стебель и листья; 2) закрепление растения в почве; 3) запасание питательных веществ.

Типы корней и корневых систем. У растений выделяют главный корень, который толще и длиннее других корней. Главный корень развивается из корешка зародыша семени и растет вертикально вниз (рис. 97), углубляется в почву и ветвится. На нем образуются боковые корни (рис. 98).


Рис. 97. Развитие корня при прорастании семени


Рис. 98. Образование боковых корней у фасоли

Корни могут отрастать от стебля или листьев. Их называют придаточными (рис. 99).


Рис. 99. Придаточные корни у лука-порея

Совокупность всех корней растения составляет корневую систему (рис. 100).


Рис. 100. Типы корневых систем

Различают стержневую и мочковатую корневые системы. Стержневая корневая система имеет хорошо выраженный главный корень. Такая корневая система характерна для капусты, люцерны, одуванчика, петрушки, полыни, редьки и других растений.

Длина главного корня различна: у капусты он проникает в почву на глубину до 1,5 м, у люцерны — до 10 м, а у верблюжьей колючки, обитающей в пустыне, он достигает 30 м.

Мочковатая корневая система образована придаточными корнями, которые отходят от нижней части стебля (см. рис. 99, 100). Главный корень при этом или совсем не развивается, или развивается слабо. Система придаточных корней характерна для овса, пшеницы, ржи, ячменя и других растений.

У многих растений, для которых характерна стержневая корневая система, образуются и придаточные корни. Укоренение усов земляники, веток ивы, тополя, черенков комнатных растений происходит при помощи придаточных корней.

Одним из вегетативных органов растений является корень.

Он выполняет функции поглощения воды и минеральных веществ, закрепления растения в почве, запасания питательных веществ.

Выделяют главный, боковые и придаточные корни.

Совокупность всех корней растения составляет корневую систему — стержневую или мочковатую.


1. Какие части растений относятся к вегетативным органам? 2. Корень часто называют “органом почвенного питания”. Как вы считаете почему? 3. По каким признакам можно отличить стержневую корневую систему от мочковатой? Приведите примеры.


Срежьте ветку комнатного растения (колеуса, пеларгонии и т. п.) или лист бегонии и поместите в стакан с водой. Понаблюдайте в течение 5 — 7 дней, что будет происходить с черенком. Результаты наблюдений занесите в тетрадь в виде рисунка и соответствующей подписи к нему.

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Корень — осевой подземный орган растения, обладающий неограниченным концевым ростом.


Главный корень развивается из зародышевого корешка семени и играет в растении роль центральной оси подземной части.

Придаточные корни растут от побега.

Боковые корни образуются на главном и придаточных корнях.


Рис. 1. Виды корней

Вся совокупность корней растения называется корневой системой.

типы корневых систем

В зависимости от развития тех или иных видов корней выделяют два типа корневых систем (рис. 2). Стержневая корневая система состоит из хорошо развитого главного корня и отходящих от него более мелких боковых корней, которые в свою очередь делятся на боковые корни второго, третьего и т. д. порядков.

Такая корневая система характерна для двудольных растений и хорошо просматривается только у молодых растений, выращенных из семян. У старых многолетних растений главный корень со временем замедляет рост, а боковые корни догоняют его или даже перерастают.

Мочковатая корневая система состоит из многочисленных придаточных и боковых корней. Главный корень не развивается или развивается слабо.

Мочковатая корневая система характерна для однодольных растений.


Рис. 2. Типы корневых систем

внутреннее строение корня

В строении корня различают несколько зон, каждая из которых имеет определенное строение и выполняет определенные функции (рис. 3).

Зона деления состоит из мелких постоянно делящихся клеток верхушечной меристемы. Это зона находится на кончиках всех корней растения. Благодаря верхушечной меристеме осуществляется рост корня в длину.

Корневой чехлик — несколько слоёв плотно сросшихся клеток с утолщенными стенками.

Функция корневого чехлика:

  • механическая защита зоны деления;
  • выделение слизистых веществ для более легкого проникновения в почву.

Клетки снаружи корневого чехлика постоянно разрушаются, а с внутренней стороны он нарастает благодаря клеткам меристемы.

Пикировка корня — удаление кончика главного корня — производится с целью прекращения роста главного корня и усиления роста боковых корней: общая площадь корневого питания увеличивается.


Рис. 3. Зоны корня

Зона растяжения (роста). В ней клетки растут, вытягиваясь в длину, благодаря чему и происходит удлинение корня.

В этой же зоне начинается дифференцировка клеток. Поверхностные клетки превращаются в клетки эпидермы. В центре формируются клетки проводящих тканей.

Зона всасывания. Зона всесывания снаружи покрыта тонкой покровной тканьюэпиблемой (или ризодермой). В этой зоне клеткиэпиблемы образуют выросты —корневые волоски. Корневые волоски представляют собой длинные тонкие нитевидные клеточные выросты, в которые перемещается ядро клетки. По мере роста корня они разрушаются, эпидерма замещается пробкой и зона всасывания замещается зоной проведения.

Функция корневых волосков: поглощение из почвы воды и минеральных веществ.

Зона проведения продолжается до наземных частей растения. В ней находятся сосуды ксилемы, по которым от корня поднимается вода с минеральными веществами, и ситовидные трубки флоэмы, по которым в корень поступают органические вещества из листьев.

Корни подавляющего большинства растений выполняют шесть основных функций:

  1. Корни удерживают растение в определённом положении. Эта функция очевидна для наземных растений, особенно значима она для крупных деревьев с большой массой ветвей и листьев. У многих водных растений закрепление на дне позволяет выгодно распределить в пространстве листья. У плавающих растений, например у ряски, корни не позволяют растению переворачиваться.
  2. Корни осуществляют почвенное питание растения, поглощая из почвы воду с растворёнными в ней минеральными веществами, и проведение веществ к побегу (рис. 1).
  3. У некоторых растений в главном корне осуществляется хранение запасных питательных веществ, таких как крахмал и другие углеводы.
  4. В корнях происходит образование определённых веществ, нужных организму растения. Так, в корнях осуществляется восстановление нитратов до нитритов, синтез некоторых аминокислот и алкалоидов.
  5. Корни могут осуществлять симбиоз с грибами и микроорганизмами, обитающими в почве (микориза, клубеньки представителей семейства Бобовые).
  6. С помощью корней может осуществляться вегетативное размножение (например, корневыми отпрысками). Корневыми отпрысками размножаются, например, одуванчик, слива, малина, сирень.


Поглощение воды и минеральных веществ корнем

Эта функция возникла у растений в связи с выходом на сушу.

Поглощение воды и минеральных веществ растением происходит независимо друг от друга, так как эти процессы основаны на различных механизмах действия. Вода проходит в клетки корня пассивно, а минеральные вещества поступают в клетки корня в основном в результате активного транспорта, идущего с затратами энергии.


Рис. 1. Горизонтальный транспорт воды:

1 — корневой волосок; 2 — апопластный путь; 3 — симпластный путь; 4 — эпиблема (ризодерма) 5 — эндодерма; 6 — перицикл; 7 — сосуды ксилемы; 8 — первичная кора; 9 — плазмодесмы; 10 — пояски Каспари.

Вода поступает в растение в основном по закону осмоса. Корневые волоски имеют огромную вакуоль с концентрированным клеточным соком, обладающую большим осмотическим потенциалом, который обеспечивает поступление воды из почвенного раствора в корневой волосок.

ГОРИЗОНТАЛЬНЫЙ ТРАНСПОРТ ВЕЩЕСТВ

Вода попадает в тело растения через ризодерму, поверхность которой сильно увеличена благодаря наличию корневых волосков.

В этой зоне в проводящем цилиндре корня формируется проводящая система корня — сосуды ксилемы, необходимая для обеспечения восходящего тока воды и минеральных веществ.

Вода с минеральными солями поглощается корневыми волосками. Эндодерма перекачивает эти вещества в проводящий цилиндр, создавая корневое давление и не позволяя воде выходить назад. Вода с солями поступает в сосуды проводящего цилиндра и поднимается транспирационным током по стеблю к листьям.

Горизонтальный транспорт воды и минеральных веществ происходит по трём путям (рис. 1):

  • апопластный путь (основной для воды и минеральных веществ) — путь через межклеточные пространства и клеточные стенки;
  • симпластный путь (для транспорта органических и минеральных веществ) — путь через систему протопластов (внутреннего содержимого) клеток, соединённых посредством плазмодесм (цитоплазматических мостиков);
  • вакуолярный путь (только транспорт воды; в корне минимален) — путь из вакуоли в вакуоль через другие компоненты смежных клеток (плазматические мембраны, цитоплазма и тонопласт вакуолей).

В корне вода передвигается по межклетникам до эндодермы (апопластный путь). Здесь её дальнейшему продвижению мешают водонепроницаемые клеточные стенки, пропитанные суберином (пояски Каспари). Поэтому вода попадает в стелу по симпласту через пропускные клетки (вода проходит через плазматическую мембрану под контролем цитоплазмы пропускных клеток эндодермы). Благодаря этому происходит регуляция движения воды и минеральных веществ из почвы в ксилему. В стеле вода уже не встречает сопротивления и поступает в проводящие элементы ксилемы.

ВЕРТИКАЛЬНЫЙ ТРАНСПОРТ ВЕЩЕСТВ

Корни осуществляют проведение воды и минеральных веществ к наземным органам растения.

Вертикальное перемещение воды происходит по мёртвым клеткам ксилемы, которые не способны толкать воду к листьям. Это движение поддерживается транспирационной функцией листьев.

Корень представляет собой нижний концевой двигатель, подающий воду в сосуды стебля под давлением.

Корневое давление — сила, с которой корень нагнетает воду в стебель.

Корень активно перекачивает минеральные и органические вещества в сосуды ксилемы; в результате возникает повышенное осмотическое давление в сосудах корня относительно с давлением почвенного раствора. Величина корневого давления может достигать 3 атм. Доказательством наличия корневого давления служит, например,гуттация (выделение капелек воды листьями).

Верхний концевой двигатель, обеспечивающий вертикальный транспорт воды, возникает в результате транспирации (испарения воды с поверхности листьев).

При непрерывном испарении воды создаётся возможность для нового притока воды к листьям. Сосущая сила листьев у деревьев может достигать 20 атм.

В сосудах ксилемы вода движется в виде непрерывных водяных нитей. Молекулы воды движутся друг за другом за счет когезии (сцепления друг с другом) и адгезии (прилипания к стенкам сосудов).

Таким образом, поднятие воды по растению осуществляется благодаря верхнему и нижнему двигателям водного тока и силам сцепления молекул воды в сосудах. Основной движущей силой является транспирация.

ОСМОС И ТУРГОР

В живых клетках корня происходит первый отбор веществ, допускаемых внутрь растения. Участие живых клеток в принятии веществ обусловливает избирательную способность растения, благодаря которой различные вещества поглощаются в разных количествах. Так как поступление в сильной степени зависит от потребления, растение принимает на различных стадиях развития то одни соли, то другие. Чем сильнее развита корневая система, тем активнее идёт поглощение воды и солей.

Часто возникают ситуации, когда корни растений выполняют некоторые дополнительные функции или одна из основных функций требует большего развития. В таких случаях образуются видоизменения корней


Различные органы растения выполняют разные функции. Листья синтезируют органические вещества, поэтому в них должны постоянно поступать вода и минеральные вещества. Корни поглощают воду и минеральные вещества и нуждаются в притоке органических веществ для дыхания и роста. Цветки, плоды и растущие верхушки растений являются потребителями органических веществ, значительная часть которых откладывается в запас. Все это вызывает необходимость передвижения в растении воды и растворенных в ней веществ.

Вода и растворенные в ней вещества передвигаются в растении в основном двумя путями: путем диффузии и в виде потока. Диффузия воды и веществ осуществляется по градиенту концентрации и подчиняется закону Фика. Движение в виде потока происходит по градиенту гидростатического давления, по градиенту потока вода движется и через мембраны при наличии градиента осмотического или тургорного давления.

Такое передвижение наиболее ярко выражено у древесных растений. Исследования показали, что по стволу дерева вещества передвигаются в двух основных направлениях: от корней к листьям вверх движутся вода и минеральные вещества — восходящий поток; второй, несущий органические вещества вниз к корню, — нисходящий поток. Но органические вещества из листьев поступают не только в корневую систему, они движутся также к морфологической верхушке, цветкам и плодам. Поэтому нисходящий поток лучше назвать потоком пластических веществ.

В существовании двух потоков — восходящего и пластических веществ — можно убедиться на опыте, сущность которого заключается в следующем. Делают кольцевой надрез на стволе дерева или на одном из побегов первого или второго порядка. На побеге вырезают паренхиму коры кольцом шириной в несколько сантиметров. Чтобы избежать высыхания, место выреза обматывают тканью или замазывают садовым варом. Через некоторое время над кольцом вследствие приостановки нисходящего потока образуется наплыв — каллус. Если кольцо не очень широкое, оно обычно срастается.

При образовании такого кольца растение некоторое время хорошо растет, тургесцентное состояние клеток остается нормальным, происходит передвижение воды и растворенных в ней веществ. Наплыв над кольцом образуется вследствие разрастания клеток коровой паренхимы и скопления в них пластических веществ — углеводов, органических кислот и др. Если кольцо достаточно широкое и не срастается, то пластические вещества не будут поступать в корневую систему, она истощится и дерево или побег погибнет.

Восходящий поток идет по сосудам и трахеидам, которые являются мертвыми полыми клетками и сами по себе не обладают сосущей или какой-либо иной силой, способной привести воду в движение. Вследствие вогнутости менисков в сосудах, представляющих собой капилляры, вода может подняться при их диаметре 0,1 мм не выше 30 см. Однако вода в древесных растениях поднимается на десятки метров, поэтому капиллярными силами, транспирацией и корневым давлением это объяснить нельзя.

Вода в сосудах как бы подвешена к испаряющим клеткам в виде тонких нитей. Нижним концом они упираются в сосудах в клетки корневых волосков. Непрерывность водных нитей обусловливается силами взаимного сцепления молекул воды и силами прилипания их к клеточным стенкам сосудов. О существовании водных нитей в растении свидетельствуют многочисленные факты и наблюдения, например уменьшение диаметра стеблей растений и стволов деревьев в результате интенсивной транспирации. Чтобы вода передвигалась вверх, испаряющие клетки должны иметь достаточную сосущую силу, которая в клетках листовой паренхимы бывает довольно большой (достигает 2-4 тыс. кПа и более). Одним из факторов, поддерживающих сосущую силу на высоком уровне, является непрерывная транспирация. Таким образом, движение воды по сосудам объясняется наличием в растении водных нитей, присасывающей силой транспирации и корневым давлением.

Сила сцепления молекул воды в растениях велика. Так, в клетках спорангиев папоротника она превышает 40 тыс. кПа. Исследованиями установлено, что этого вполне достаточно, чтобы не разорвались водные нити, которые заполняют сосудистые полости высокого дерева.

Прочное сцепление (когезия) между молекулами воды и прилипание (адгезия) их к гидрофильным стенкам клеток ксилемы предотвращает образование полостей (кавитацию) в находящемся в ксилеме растворе почти в любых условиях. Однако при сильном дефиците воды в отдельных трубках ксилемы кавитация все же происходит. Убедиться в этом можно следующим образом: если к стволу дерева прижать чувствительный микрофон, то будет слышно потрескивание. Такие трубки ксилемы уже не восстанавливаются, но камбий может образовывать новые.

Силы сцепления молекул воды и присасывающее действие транспирации можно продемонстрировать на таком опыте. Гипсовый блок или ветку сосны герметично присоединяют каучуковой трубкой к пипетке, заполненной водой и погруженной в ртуть. Вода, испаряясь с поверхности гипсового блока или хвои, благодаря силам сцепления между молекулами ртути и воды тянет за собой ртуть, которая и будет подниматься по пипетке. Таким образом, присасывающее действие транспирации и силы сцепления воды в растении обусловливают движение ее на несколько десятков метров.

Вопрос об участии живых клеток древесины в движении воды в растении и связанные с этим явления изучены еще недостаточно. На основании ряда работ считали, что живые клетки древесины и древесной паренхимы имеют способность проталкивать через себя воду, засасывать ее, например, нижним концом и выделять верхним в сосуды, т. е. при этом как бы происходит пульсация воды в клетках. Предполагали, что такое передвижение воды с участием живых клеток идет в заболони— внешнем слое древесины, который прилегает к камбию. Однако дальнейшие исследования этого не подтвердили. Кроме того, считали, что существуют особые клапаны, которые также способствуют перемещению воды в растении. Исследования Е. Ф. Вотчала, изучавшего передвижение воды по стволу дерева, находившегося в горизонтальном положении, этого не подтвердили.

Некоторые исследователи (Т. Беннет-Кларк, Д. Биксон, Р. Гёбер и др.) важным фактором в регулировании водного баланса клеток считают электроосмос. Это — движение молекул воды, несущих электрический заряд вдоль поверхности раздела (например, по стенкам пор мембран). Электроосмотическое движение жидкости происходит в результате возникновения двойного. электрического слоя на поверхности раздела жидкость—твердое тело. При погружении мембраны в раствор, содержащий электролиты, ее поверхность приобретает заряд (для естественных мембран обычно отрицательный), который возникает в результате процесса ионизации поверхности мембран или вследствие адсорбции ионов из раствора. Жидкость возле поверхности мембраны несет заряд, противоположный по знаку, и образует слой, обладающий подвижностью. Он обусловлен разностью потенциалов, вызванной наличием в растворе электролитов, соприкасающихся с мембраной.

Аномальное движение частиц может приводить к превышению наблюдаемого давления над осмотическим, обусловленному электроосмотическим потоком воды через поры мембраны. Для осуществления электроосмотического потока жидкости необходимо наличие проницаемой мембраны, имеющей систему пор различной величины; электролитов в соответствующих концентрациях по обе стороны мембраны; постоянной диффузии электролитов.

Абсолютная скорость передвижения воды по древесине у лиственных пород составляет 20 см 3 , хвойных — 5 см 3 на 1 см 2 поперечного среза древесины в час. В опытах с мечеными атомами установлено, что скорость движения воды по ксилеме составляет 12-14 м/ч.

При перемещении воды по дереву по вертикали в гравитационном поле водный потенциал возрастает примерно на 1 бар до 10 м, так как известно, что гидростатическое давление 101,3 кПа может поддерживать столб ртути высотой 76 см или столб воды 10,3 м. Но вода в деревьях поднимается на 20-40 м и выше, что обусловливается преимущественно величиной сосущей силы транспирации и силами сцепления молекул воды.

Наблюдения показали, что в жаркое время дня имеющиеся в листьях запасы воды полностью обновляются приблизительно каждый час. Такой высокий уровень расхода влаги растением может быть обеспечен лишь при большой скорости движения ее по ткани.

Таким образом, благодаря верхнему (транспирация) и нижнему (корневое давление) двигателям водного потока и силам сцепления молекул в сосудах происходит передвижение и поднятие воды по растению на большую высоту. Путь, который проходит вода по растению, делится на две неравные части: первая — движение воды по сосудам и трахеидам (этот путь составляет от нескольких сантиметров до нескольких метров); вторая — движение водного потока по живым клеткам (его протяженность выражается в миллиметрах и даже долях миллиметра). Во вторую часть водного потока входят два коротких участка: первый — в корне, от корневого волоска до сосуда, находящегося в центральном цилиндре; второй — в листе, от жилок до испаряющих клеток мезофилла (рис. 20).



Рис. 20. Начальный и конечный отрезки пути водного потока в растении:
A — корень; Б - лист (простыми стрелками показан путь, который проходит вода, оперенными — путь водяного пара).

Движение воды по сосудам можно показать на таком примере. Букет цветов сохраняет свежесть, если вода будет свободно поступать в перерезанные сосуды. Поэтому, чтобы в стеблях не образовывались так называемые воздушные пробки, рекомендуется обрезать их на 5-10 см под водой.

По сосудам вода течет, как по полым трубкам, подчиняясь общим законам гидродинамики. В паренхимных клетках вода движется осмотическим путем, и передвижение ее в живых клетках значительно затруднено. Но основным двигателем водного потока в растениях является сосущая сила паренхимных клеток листьев, или присасывающее действие транспирации.

О природе приспособительных реакций к недостатку воды у разных групп растений. Транспирирующие органы — листья — характеризуются значительной пластичностью, в зависимости от условий произрастания в их строении наблюдаются довольно большие изменения. Даже листья одного растения при разных условиях водоснабжения и освещения имеют различия в анатомической структуре.

Установлены определенные закономерности в строении листьев в зависимости от расположения их на растении. В. Р. Заленский обнаружил изменения в анатомическом строении листьев по ярусам. Он установил, что у листьев верхнего яруса наблюдаются закономерные изменения в сторону усиления ксероморфизма, т. е. образуются структуры, повышающие засухоустойчивость этих листьев. Установленные им закономерности называют законом Заленского. Листья, расположенные в верхней части стебля, всегда отличаются от нижних, а именно: чем выше расположен лист на стебле, тем меньше размеры его клеток, тем больше на нем устьиц и меньше их размеры, больше волосков на единицу поверхности, гуще сеть проводящих пучков, сильнее развита палисадная ткань. Все эти признаки характеризуют ксерофилию, т. е. образование структур, способствующих повышению засухоустойчивости.

С определенной анатомической структурой связаны и физиологические особенности, а именно: верхние листья отличаются более высокой ассимиляционной способностью и более интенсивной транспирацией. Концентрация сока в верхних листьях также более высокая, в связи с чем может происходить оттягивание воды верхними листьями от нижних, засыхание и отмирание нижних листьев. Структура органов и тканей, обусловливающая повышение засухоустойчивости растений, называется ксероморфизмом. Отличительные особенности структуры листьев верхнего яруса объясняются тем, что они развиваются в условиях несколько затрудненного водоснабжения.

Физиологические причины ксероморфной структуры следует рассматривать как изменения цепи ферментативных реакций, вызванных недостатком воды и приводящих к торможению роста клеток в фазе растяжения.

Ксероморфная структура листьев растений вызывается тем, что дефицит воды проявляется прежде всего в период ранней приостановки роста эпидермиса — эпидермальных клеток. В нормальных условиях фаза растяжения приостанавливается вначале на нижнем мезофилле.

Для уравнения баланса между поступлением и расходом воды в растении образовалась сложная система анатомо-физиологических приспособлений. Такие приспособления наблюдаются у ксерофитов, гигрофитов, мезофитов. Большой интерес в связи с этим представляют исследования Б. А. Келлера, который изучал анатомо-физиологические особенности у растений резко различающихся экологических групп, но близких между собой в систематическом отношении. Он исследовал многолетние травянистые растения (род Asperula) из семейства Мареновые. Одни из них были типичными степными растениями, а другие — теневыносливыми, лесными.

Степной вид ясменника колокольчиковидного (Asperula glauca) имеет сизые узкие иглообразные толстые листья с сильно развитой двуслойной палисадной паренхимой, края листьев немного загнуты вниз. Это типичный ксерофит, растущий на открытой местности в степной зоне или полупустынях. Второй вид — ясменник душистый (Asperula odorata) — характерен для влажных и очень тенистых участков лиственного леса; у растений этого вида широкая и тонкая пластинка, однослойная палисадная ткань, состоящая из укороченных и рыхлорасположенных клеток. Было проведено сравнительное изучение анатомического строения и интенсивности транспирации у обоих видов (табл. 4).

Таблица 4. Анатомическое строение и интенсивность транспирации у степных и лесных видов растений (по Н. А. Максимову)
ВидДлина сети жилок
листа, мм
Количество
устьиц
Интенсивность
транспирации, %
Asperula glauca100100100
Asperula odorata301445

Такие же исследования провел Б. А. Келлер с двумя видами подмаренника: весенним (Galium verum) и крестовидным (Galium cruciata). Полученные им данные также свидетельствуют о том, что условия произрастания оказывают большое влияние на анатомическую структуру и физиологические особенности растения. Если ксерофиты одновременно являются гелиофитами, то мезофиты и даже гигрофиты необязательно относятся к теневыносливым растениям.

При выращивании фасоли (опыт Н. А. Максимова) на различном расстоянии от источника света (электрическая лампа) было установлено, что у сильнее освещенных экземпляров устьиц на листе было приблизительно в 4 раза больше, чем у плохо освещенных, размеры клеток эпидермиса в 3-4 раза меньше и сеть жилок значительно гуще. Таким образом, степень освещенности и нагревания сильно влияет на анатомическое строение.

Н. А. Максимов проведенными исследованиями опроверг господствовавшие в физиологии того времени взгляды на засухоустойчивость как на биологически обоснованную потребность растения в недостаточном водоснабжении, как на сухолюбне. Его исследования показали, что засухоустойчивость следует понимать как приспособительное свойство растений переносить глубокое завядание с наименьшим вредом не только для данной особи, но и для всего вида.

Различие между стойкими и нестойкими к засухе растениями обусловлено характером тех изменений в обмене веществ, которые возникают у растения под влиянием обезвоживания. Так, уровень обводненности ткани у неустойчивых к засухе сортов пшеницы выше по сравнению с устойчивыми. Кроме того, у неустойчивых сортов наблюдается более высокий уровень гидролитического действия ферментов углеводного и белкового обменов. Однако эти признаки непостоянны и проявляются лишь в условиях полного насыщения водой, а при нарушении водоснабжения быстро утрачиваются. Результаты исследований показали, что приспособительные свойства у засухоустойчивых форм растений возникают под влиянием условий их существования.

Проводящая ткань – вид тканей растений, служащих для передвижения по организму растворённых питательных веществ. У многих высших растений она представлена проводящими элементами (сосудами и ситовидными трубками).

Сосуды (трахеи) – длинные трубки, образованные одним рядом мёртвых клеток со сквозными отверстиями на поперечных стенках, по которым происходит передвижение веществ из корней в другие органы растений (восходящий ток веществ).

Ситовидные трубки – удлинённые живые клетки, по которым органические вещества передвигаются из листьев в другие органы растений (нисходящий ток веществ).

*Луб – проводящая ткань растений, в состав которой входят ситовидные трубки и другие виды клеток.

*Древесина – проводящая ткань растений, состоящая из сосудов и других видов клеток.

Основная и дополнительная литература по теме урока

  1. Биология. 5 – 6 класс. Линия жизни / В. В. Пасечник, С. В. Суматохин, Г. С. Калинова, Г. Г. Швецов, З. Г. Гапонюк. – М.: Просвещение, 2018.
  2. Биология в схемах и таблицах / А. Ю. Ионцева, А. В. Торгалов.
  3. Введение в биологию. Неживые тела. Организмы: учеб. для уч - ся 5 – 6 кл. общеобразоват. учеб. заведений / А. И. Никишов. – М.: Гуманитар. изд. центр ВЛАДОС, 2012.
  4. Биология. Живой организм. 5 – 6 классы: учебник для общеобразовательных учреждений с приложением на электронном носителе / Л. Н. Сухорукова, В. С. Кучменко, И. Я. Колесникова. – М.: Просвещение, 2013.
  5. Биология. Обо всем живом. 5 класс: учебник / С. Н. Ловягин, А. А. Вахрушев, А. С. Раутиан. – М.: Баласс, 2014.

Теоретический материал для самостоятельного изучения

На сегодняшнем уроке мы продолжим изучение процессов жизнедеятельности живых организмов и познакомимся с тем, как осуществляется транспорт веществ.

Вы уже знаете, что в живых организмах происходят сложные процессы, в результате которых образуются разнообразные вещества. Обычно эти вещества могут передвигаться внутри клетки от одного органоида к другому или же между клетками одного организма, переходя от одной клетки к другой.

Вода с минеральными веществами поступает в растение из почвы через корневые волоски. Затем по клеткам коры этот раствор поступает в сосуды проводящей ткани, которые находятся в центральном цилиндре корня. Сосуды – это длинные трубки, которые образуются из многих клеток, поперечные стенки между которыми разрушаются, а внутреннее содержимое отмирает. Таким образом, сосуды – мертвые проводящие элементы. По сосудам, благодаря действию ряда факторов, вода и растворённые в ней вещества передвигаются по стеблю к листьям. Это направление движения растворов получило название восходящий поток веществ.

Органические вещества транспортируются от листьев по стеблю в направлении корневой системы. Передвижение этих веществ происходит сначала по ситовидным трубкам листа, а потом стебля. Ситовидные трубки – это живые клетки, поперечные стенки которых имеют много отверстий и похожи на сито. Отсюда и название этих проводящих элементов. Поток органических веществ по ситовидным трубкам от листа ко всем органам называют нисходящим.

Таким образом, восходящий поток обеспечивает транспорт неорганических веществ по сосудам, а нисходящий поток – транспорт органических веществ по ситовидным трубкам.

Примеры и разбор решения заданий тренировочного модуля

Задание 1. Закончите фразу.

Передвижение веществ в растении обеспечивает____________________.

В образовании органических веществ принимает участие__________________.

  1. Проводящая ткань
  2. Образовательная ткань
  3. Фотосинтезирующая ткань
  4. Покровная ткань
  5. Механическая
  6. Запасающая

Правильный вариант ответа:

Передвижение веществ в растении обеспечивает проводящая ткань.

В образовании органических веществ принимает участие фотосинтезирующая ткань.

Разбор типового контрольного задания

Задание 2. Заполните таблицу.

Поливаем растения правильно

Как не следует поливать растения

  1. Поливать водой комнатной температуры
  2. Рыхление почвы после полива
  3. Соблюдать режим полива, учитывая экологические характеристики растения
  4. Поливать можно любые растения 1 раз в день
  5. Воду из-под крана необходимо отстаивать
  6. Почву после полива не рыхлить
  7. Поливать водой из-под крана сразу
  8. Поливать нужно холодной водой

Правильный вариант/варианты (или правильные комбинации вариантов):

Читайте также: