Определение минеральных удобрений практическая работа

Обновлено: 02.07.2024

Цель работы: 1) Распознавание минеральных удобрений по внешнему виду.

2) Исследование минеральных удобрений по качественным реакциям.

3.1 Теоретическая часть

Неправильное и избыточное внесение минеральных удобрений, способы их хранения являются причиной загрязнения почв и сельхозпродукции. Водорастворимые формы азотных удобрений стекают в пруды, ручьи, достигают грунтовых вод, вызывая повышенное содержание в них нитратов, что неблагоприятно сказывается на здоровье человека.

Очень часто удобрения вносят в почву неочищенными, что является причиной загрязнения почв радиоактивными (например, изотопами калия при использовании калийных удобрений), а также токсическими веществами. Различные формы суперфосфатов, обладая кислой реакцией, способствуют подкислению почвы, что нежелательно для районов, где рН почвы понижена. Избыточное количество фосфорных удобрений, стекая в стоячие и медленно текущие воды, вызывает развитие большого количества водорослей и другой растительности, что ухудшает кислородный режим водоемов и способствует их зарастанию.

В ряде случаев удобрения перевозятся без надлежащей упаковки, хранятся без укрытий на окраинах полей, где они слеживаются, загрязняются и становятся по внешнему виду весьма схожими между собой. В связи с этим современный эколог должен уметь распознавать удобрения по внешнему виду и простым качественным реакциям.

Азотные удобрения. Чаще всего применяется аммиачная селитра – NH4NO3 и мочевина NH2CONH2. Употребляется также сульфат аммония – NH4SO4. В защищенном грунте применяется нитрат кальция – Ca(NO3)2 и нитрат калия – KNO3.

Фосфорные удобрения. В фосфорных удобрениях содержание фосфора, по традиции пересчитывается на содержание Р2О5, таким образом, в простом суперфосфате содержание Р2О5 составляет 16–20 % (удобрение включает: Са(Н2РО4)2, СаSO4, Н2РО4). Двойной суперфосфат – содержание Р2О5 в удобрении – 46–49% (удобрение включает: Са(Н2РО4)2, СаНРО4). Употребляется также фосфоритная мука – Ca3(PO4)2.

Калийные удобрения. Применяется, в основном, хлористый калий – KCl, азотнокислый калий – KNO3 или сульфат калия K2SO4. Меньше употребляются двойные удобрения: сильвинит – KCl·NaCl и калимаг – K2SO4·2MgSO4.

Известковые удобрения. К ним относятся известковые материалы, содержащие не менее 50% CаCO3. Это – известковая мука из туфа, доломитовая мука, мел, известь озерная и др. Действие их заключается в нейтрализации почвенной кислотности, улучшении условий для жизнедеятельности микроорганизмов и физических свойств почвы.

3.2 Оборудование, реактивы и материалы

задание. распознайте образцы азотных, фосфорных и калийных удобрений.
соблюдайте правила техники безопасности при проведении опытов!
оборудование. пробиркодержатель, штатив с пробирками, склянка для сбора отработанных реактивов, содержащих серебро, банка для других отходов, графитовый стержень, горелка, спички.
вещества. медь, серная (1:2) и азотная (10% -я) кислоты, 1%-й раствор нитрата серебра, 10%-й раствор хлорида бария, 20%-й раствор гидроксида натрия, три образца удобрений в пробирках, пронумерованных или с иным кодом (получает каждый ученик), дистиллированная вода (в стакане или колбе).

выполнение работы

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Нажмите, чтобы узнать подробности

Запасы питательных веществ в почвах во много раз превышают потребность в них растений. Однако большая часть из представлена недоступными для растений соединениями. Валовое содержание питательных веществ в пахотном слое различных почв неодинаково.

Содержание азота (N) колеблется от 0,07% до 0: 5%. Почвенный азот находится в основном в недоступной для растений органической форме. На долю минерального азота приходится только 1-2% его общего количества. Под влиянием микробиологических процессов органические формы азота переводятся в доступные для растений минеральные формы.

Содержание фосфора (Р2О5) во многих почвах составляет 0,03-0,25%. Около половины его находится в минеральной форме, а половина - в форме органических соединений. В слабоокультуренных торфяных почвах на фосфор в органической форме приходится до 70%. Некоторое количество его содержится в поглощенном почвенными коллоидами состоянии. Значительная часть минеральных форм фосфора в кислых подзолистых почвах и красноземах находится в труднодоступных для растений фосфатах железа и алюминия. В нейтральных почвах, например в черноземах, минеральный фосфор представлен более доступными для растений фосфатами кальция и магния.

На долю калия (К2О) в почве приходится 0,6-3% массы почвы. Больше калия содержится в глинистых и суглинистых почвах, а в почвах легкого механического состава (песчаных и супесчаных) его значительно меньше. Количество обменного калия в пахотном слое составляет, кг/га: в подзолистых почвах - 150-300, черноземах - 400-900, сероземах - 600-1500. В отличие от азота и фосфора калий не образует в растениях прочные органические комплексы. Поэтому количество его в органическом веществе почвы незначительно.

Кальция (СаО) в почвах около 0,2-2% и более от их массы. Он представлен силикатами, карбонатами, гипсом, фосфатами и другими соединениями. Часть кальция находится в поглощенном состоянии. Наиболее богаты обменным кальцием черноземы (около 40 мэкв) . Наименьшее количество его встречается в подзолистых почвах (5-8 мэкв) , что связано с их кислотностью. Известкованием не только смещается реакция почвы, но и улучшается питание растений кальцием.

Содержание магния (MgO) составляет 0,4-4% и более от массы почвы и зависит от состава материнской породы. В почвах, образовавшихся на суглинках и глинах, больше магния, чем в почвах, возникших на песках.

Около 90-95% магния в почве входит в состав различных минералов, главным образом силикатов и алюмосиликатов, которые трудно растворяются в воде, поэтому содержащийся в них магний не может быть непосредственно использован растениями. Около 5-10% магния находится в поглощенном (обменном) состоянии. Обменный магний. Как и обменный калий, играет важнейшую роль в питании растений, пополняя количество магния в почвенном растворе по мере потребления его растениями. Незначительная часть магния в почве встречается в форме органических веществ, после разложения которых он становится доступным для растений.

Наиболее богаты магнием черноземы, каштановые почвы и сероземы. Меньше магния в песчаных, супесчаных и некоторых торфяных почвах.

Содержание серы (SO3) колеблется от 0,1 до 0,5% массы почвы. Сера в почве представлена органическими соединениями (80-90%) , где она находится в восстановленной форме, и минеральными соединениями с кальцием, железом, калием, натрием (10-20) , являющимися источником питания растений. Процесс окисления серы, входящей в состав гумуса и органических остатков, происходит под влиянием аэробных бактерий (сульфофикация) .

В большинстве почв количество серы достаточно для растений, однако в малогумусных подзолистых песчаных почвах ее немного, поэтому сульфатные формы удобрений здесь более эффективны, чем хлоридные. Серу в почву вносят также с органическими удобрениями, с простым суперфосфатом.

Содержание железа (Fe2O3) в почвах колеблется от 1-11%. В легких под механическому составу почвах его меньше, чем в тяжелых.

Железо в почве находится в форме ферроалюмосиликатов, окиси и закиси железа и их гидратов. Недостаток железа для растений чаще всего проявляется на карбонатных или сильноизвесткованных почвах, где оно находится в труднодоступном состоянии.

Пестициды (ядохимикаты) - химические препараты для защиты сельскохозяйственной продукции, растений, для уничтожения паразитов у животных, для борьбы с переносчиками опасных заболеваний и т.п. Пестициды в зависимости от объекта подразделяются на: - Гербициды - для уничтожения сорной растительности; - Инсектициды против вредных насекомых; - Зооциды для борьба с грызунами; - Фунгициды - с возбудителями грибковых заболеваний; Дефолианты - для удаления листьев; - Дефлоранты - для удаления цветков.

За последние десятилетия число различных типов пестицидов сильно возросло, только в США их количество достигло 900. По данным А. В. Яблокова (1988) , в нашей стране в 1986г. было применено пестицидов в среднем около 2 кг на 1 га (примерно на 87% пашни) или около 1,4 кг на душу населения, а в США 1,6 кг на 1 га (на 61% пашни) или 1,5 кг на душу населения.

Пестициды распространяются на большие пространства, весьма удаленные от мест их применения. Многие из них могут сохраняться в почвах достаточно долго (период полураспада ДДТ в воде оценивается в 10 лет, а для диэлдрина он превышает 20 лет) . При использовании даже наименее летучих компонентов более 50% активных веществ в момент воздействия переходят прямо в атмосферу, а для таких пестицидов, как ДДТ и диэлдрин, характерна дистилляция с парами воды на земной поверхности. Эта часть пестицидов, не достигших растений, подхватывается ветром и осаждается в районах суши или океана, весьма удаленных от зон применения вещества. Они в конечном итоге попадают в различные экосистемы, включая океан, пресноводные водоемы, наземные биомы и др., в значительных количествах накапливаются в почвах и увеличивают свои концентрации при движении по трофическим цепям.

Пестициды являются единственным загрязнителем, который сознательно вносится человеком в окружающую среду. Пестициды поражают различные компоненты природных экосистем: уменьшают биологическую продуктивность фитоценозов, видовое разнообразие животного мира, снижают численность полезных насекомых и птиц, а в конечном итоге представляют опасность и для самого человека. Пестициды, содержащие хлор (ДДТ, гексахлоран, диоксин, дибензфуран и др.) , отличаются не только высокой токсичностью, но и чрезвычайной биологической активностью и способностью накапливаться в различных звеньях пищевой цепи. Даже в ничтожных концентрациях пестициды подавляют иммунную систему организма, повышая таким образом его чувствительность к инфекционным заболеваниям. В более высоких концентрациях эти примеси оказывают мутагенное и канцерогенное действие на организм человека.

Поэтому в некоторых странах (США, Франция, Германия) начинают уменьшать дозы применения пестицидов или полностью от них отказываться. В последние годы в СГА разработаны гербициды, не представляющие явной опасности для живых организмаов или быстро разрушающиеся в окружающей среде. Широкое применение биологических методов защиты растений позволит уменьшить степень загрязнения среды пестицидами.

Удобрения - это неорганические и органические вещества, применяемые в сельском хозяйстве и рыболовстве для повышения урожайности культурных растений и рыбопродуктивности прудов. Они бывают: минеральные (или химические) , органические и бактериальные (искусственное внесение микроорганизмов с целью повышения плодородия почв) .

Минеральные удобрения, добытые из недр или промышленно полученные химические соединения, содержат основные элементы питания (азот, фосфор, калий) и важные для жизнедеятельности микроэлементы (медь, бор, марганец и др.) .

Минеральные удобрения подразделяют на простые (одинарные, односторонние, однокомпонентные) и комплексные. Простые минеральные удобрения содержат только одни из главных элементов питания. К ним относятся азотные, фосфорные, калийные удобрения и микроудобрения. Комплексные удобрения содержат не менее двух главных питательных элементов. В свою очередь, комплексные минеральные удобрения делят на сложные, сложно-смешанные и смешанные.

Азотные удобрения. Производство азотных удобрений базируется не синтезе аммиака из молекулярного азота и водорода. Азот получают из воздуха, а водород из природного газа, нефтяных и коксовых газов. Азотные удобрения представляют собой белый или желтоватый кристаллический порошок (кроме цианамида калия и жидких удобрений) , хорошо растворимы в воде, не поглощаются или слабо поглощаются почвой. Поэтому азотные удобрения легко вымываются, что ограничивает их применение осенью в качестве основного удобрения. Большинство из них обладает высокой гигроскопичностью и требует особой упаковки и хранение. В таблице №1 приведены данные о составе из свойствах основных азотных удобрений.

По выпуску и использованию в сельском хозяйстве главнейшие из этой группы аммиачная селитра и мочевина, составляющие около 60% всех азотных удобрений.

По внешнему виду минеральные удобрения трудно различить одно от другого. При неудовлетворительном хранении разные удобрения становятся весьма сходными между собой. Чтобы избежать ошибок, при применении удобрений, необходимо уметь определять их с помощью простейших качественных реакций.

Работу начинают с внимательного осмотра удобрения, определяют его цвет, запах, строение. Затем небольшое количество удобрения помещают в пробирку, в которую добавляют дистиллированную воду, содержимое хорошо перемешивают и наблюдают за растворимостью удобрения.

Если удобрение растворилось полностью или больше половины взятого количества, то раствор разливают в четыре чистые пробирки, которые используют для проведения реакций со щелочью, хлоридом бария, нитратом серебра и дифениламином.

Реакция со щелочью позволяет установить, входит ли в состав удобрения аммонийная группа (NH4 + ), добавление хлористого бария позволяет определить присутствие сульфатных ионов благодаря выпадению осадка BaSO4. Реакцией с нитратом серебра определяют присутствие в удобрении ионов CI − и H2PO4 − Ион NO3 − определяют с помощью дифениламина, синее окрашивание раствора указывает на присутствие в удобрении азота в нитратной форме.

Гранулы сложных удобрений перед проведением соответствующих реакций тщательно растирают в фарфоровой чашке, после чего примерно 1 грамм удобрения помещают в пробирку и приливают дистиллированную воду. Содержимое пробирки нагревают и осторожно перемешивают, после чего отстаивают и разливают в пять пробирок для проведения ряда реакций. Реакции проводят так же, как при определении простых минеральных удобрений.

Нитрофоска содержит Ca 2+ , K + , NH4 + , NO3 − , SO4 2− , CI − , H2PO4 -, нитрофос и дает характерные реакции. В состав аммофоса входят H2PO4 - , NH4 + , а в нитроаммофоске с помощью реакций легко выявить NO3 − , H2PO4 - , NH4 + , K + , CI − ,Mg 2+ .

Каждый студент должен определить весь набор удобрений, предложенный преподавателем. Определение ведется по определителю минеральных удобрений, полученные данные записываются в тетрадь в виде таблицы следующей формы (табл.19).

Посуда и реактивы:

-хлорид бария 5% раствор

- нитрат серебра 2% раствор

- 5% раствор щавелево-кислого аммония

- 2% раствор соляной кислоты

-10% раствор гидроокиси натрия

- дифениламин 10% раствор

- лакмусовая бумага, дистиллированная вода, древесный уголь, спиртовая горелка, пробирки.

Качественный анализ удобрений

№ п/п Показатели Результаты анализа
Номер удобрения
Цвет
Строение
Растворимость в воде
Присутствие ионов NH4 +
CI −
SO4 2−
Ca 2+
K +
NO3
HCO3
H2PO4 -
Mg 2+
Проба на раскаленном угле
Проба на лакмус
Прочие реакции
Химическая формула
Название удобрения

Основные свойства удобрений

Цвет. Определяют визуально, с учетом возможного его изменения во время хранения и транспортировки.

Влажность. Определяют с учетом, того, что во время хранения одни удобрения становятся сухими и сыпучими, другие способны впитывать влагу из воздуха, т.е. обладают гигроскопичностью.

Строение. Удобрения подразделяются на порошковые, кристаллические и гранулированные. По внешнему виду минеральные удобрения подразделяются на две группы:

1 группа – кристаллические удобрения. К кристаллическим формам относятся азотные удобрения (исключение циамид кальция) и калийные удобрения (исключение калимаг).

2 группа – аморфные удобрения. К аморфным удобрениям относятся фосфорные и известковые удобрения, из азотных – циамид кальция, из калийных – калимаг.

Растворимость в воде. По растворимости минеральные удобрения можно разделить на три группы:

1 группа – удобрения растворимые в воде полностью. К этой группе относятся все кристаллические удобрения, т.е. все азотные удобрения, кроме циамида кальция, калийные удобрения – хлористый и сернокислый калий.

2 группа – удобрения растворимые в воде не полностью, остаются кристаллы различной окраски. К этой группе относятся калийные удобрения.

3 группа – удобрения нерастворимые в воде или слабо растворимые. К этой группе относятся все аморфные удобрения (фосфорные, известковые).

Растворимость удобрений определяется следующим образом: в пробирку помещают небольшое количество удобрения и приливают десятикратное количество дистиллированной воды, пробирку энергично встряхивают. Если большая часть удобрения растворилась полностью и сквозь жидкость просматриваются предметы – удобрение растворимо в воде. В противном случае удобрение считают нерастворимым или плохо растворимым. Не всегда следует ожидать полной растворимости удобрения, так как часто растворимые удобрения содержат небольшое количество нерастворимых примесей.

автор Rus Вт Июл 24, 2012 4:20 pm

Цели. Повторить состав и свойства соединений азота и фосфора, их взаимопревращения и способы распознавания.
Оборудование и реактивы. Спиртовка, спички, синее стекло, фильтровальная бумага, держатель для пробирок, штатив с пробирками (2 шт.), шпатели (3 шт.), ступка, пестик, санитарная склянка;
в пробирках № 1–3:
I вариант – суперфосфат двойной, NH4NO3, (NH4)2SO4,
II вариант – NH4Сl, NaNO3, KCl,
III вариант – KNO3, (NH4)2SO4, суперфосфат двойной;
кристаллические соли (NH4)2SO4, NH4Сl, аммофос, водные растворы СН3СOONa ( = 10%), AgNO3, BaCl2,
СН3СOOH ( = 10%), NaOH, лакмусовая бумажка, CuO, Cu (стружки), HNO3 (разб.), HNO3 (конц.), H2SO4 (конц.), дифениловый индикатор, (C6H5)2NH в концентрированной H2SO4,
Ca(OH)2 (сухой), вода дистиллированная, AgNO3 в HNO3, в пробирках № 4–6 сухие кристаллические вещества: Na2SO4, NH4Cl, NaNO3, в пробирках № 7 и 8: H3PO4 и H2SO4 (разб. р-ры), в пробирках № 9 и 10: Na3PO4 и Ca3(PO4)2.

Экспериментальная задача. В четырех пронумерованных склянках находятся водные растворы ортофосфата натрия, сульфата аммония, натриевой селитры, хлорида калия. Используя наиболее рациональные методы распознавания (см. табл.), определить, где находится каждое вещество.
Характерные признаки некоторых солей
(методы распознавания)

Rus VIP

Читайте также: