Набор хромосом у покрытосеменных

Обновлено: 04.07.2024

Органом полового размножения покрытосеменных растений является цветок. Цветок — видоизмененный, укороченный, неразветвленный побег, предназначенный для образования спор и гамет и полового процесса, завершающегося образованием семян и плода.

Строение цветка

У цветка различают цветоножку, цветоложе, околоцветник, тычинки и пестики. У некоторых цветков отдельные части могут отсутствовать.

Цветки большинства видов растений имеют и тычинки, и пестики. Такие цветки называют обоеполыми (вишня, горох). Цветки, которые имеют только пестики, называют пестичными (женскими). Цветки, которые имеют только тычинки, называют тычиночными (мужскими). В зависимости от распределения однополых цветков на растениях различают: однодомные растения — растения, у которых на одних и тех же экземплярах располагаются и женские, и мужские цветки (огурец, кукуруза, дуб); двудомные растения — растения, у которых на одних экземплярах располагаются женские, а на других — мужские цветки (крапива двудомная, конопля, облепиха); многодомные растения — растения, у которых на одних и тех же экземплярах встречаются как обоеполые, так и однополые цветки в различных количественных соотношениях (гречиха, некоторые виды ясеня, клена).

Цветоножка — междоузлие под цветком. Цветки, лишенные цветоножки, называются сидячими (цветки в соцветии корзинка у подсолнечника, астры, одуванчика).

Цветоложе — укороченная стеблевая часть цветка. На ней располагаются все остальные части цветка.

Околоцветник — стерильная часть цветка, его покров. Околоцветник может быть простым (не дифференцированным на чашечку и венчик, образованным совокупностью однородных листочков, имеющих одинаковые размеры и окраску) и двойным (дифференцированным на чашечку и венчик, отличающиеся друг от друга размерами и окраской. Простой околоцветник может быть венчиковидным (образованным ярко окрашенными листочками) или чашечковидным (образованным зелеными листочками). Цветки, лишенные околоцветника (ива, тополь), называются голыми.

Чашечка — наружная часть двойного околоцветника, представляет собой совокупность чашелистиков — видоизмененных прицветных листьев. Обычно чашелистики имеют небольшие размеры и зеленую окраску. Они сходны с обычными листьями, но устроены проще.

Различают: раздельнолистную чашечку — чашечку, образованную свободными (несросшимися) чашелистиками (капуста, лютик); сростнолистную чашечку — чашечку, образованную частично или полностью сросшимися чашелистиками (картофель, табак, горох).

Венчик — внутренняя, обычно окрашенная часть двойного околоцветника. Представляет собой совокупность лепестков, часто имеющих яркую окраску. Количество лепестков венчика может быть различным. Лепестки могут быть более или менее одинаковыми (лютик,яблоня) либо отличаться размерами и формой (фиалка, горох). В результате венчик может быть правильным, неправильным или асимметричным. Венчик, как и чашечка, может быть раздельнолепестным и сростнолепестным. Раздельнолепестной венчик состоит из свободных, несросшихся лепестков. Сростнолепестной венчик состоит из сросшихся в той или иной степени лепестков. Главная функция венчика — привлечение опылителей.

Андроцей

Андроцей — совокупность тычинок одного цветка. Количество тычинок в цветке — от одной (орхидные) до нескольких сотен (некоторые кактусы). У большинства растений тычинка состоит из тычиночной нити и пыльника. Тычиночная нить — нижняя, как правило, суженная стерильная часть тычинки. Нижний конец тычиночной нити отходит от цветоложа, а верхний конец несет пыльник. Обычно тычиночные нити тонкие, длинные, округлые в сечении. Пыльник — верхняя расширенная фертильная часть тычинки. Пыльник состоит из двух половинок, соединенных связником. Каждая половинка имеет два пыльцевых гнезда (микроспорангия), в которых происходит образование микроспор, а впоследствии пылинок. Связник является продолжением тычиночной нити, через него в пыльник поступают питательные вещества.

Микроспорогенез

Микроспорогенез — процесс образования микроспор в микроспорангиях (гнездах пыльника). Микроспоры формируются из материнских клеток — микроспороцитов, имеющих диплоидный набор хромосом. В результате мейоза каждая материнская клетка образует четыре гаплоидных микроспоры. Микроспоры быстро обособляются друг от друга.

Микрогаметогенез

Микрогаметогенез — процесс образования мужских половых клеток (спермиев), происходит в пыльцевом зерне, которое является мужским гаметофитом покрытосеменных растений. Развитие мужского гаметофита происходит также в гнездах пыльников тычинок и сводится к одному митотическому делению микроспоры и формированию оболочек пыльцевого зерна. Оболочка пыльцевого зерна состоит из двух слоев: интины (внутренней, тонкой) и экзины (наружной, толстой). Каждое пыльцевое зерно содержит две гаплоидные клетки: вегетативную и генеративную. Из генеративной (спермагенной) далее образуются два спермия. Из вегетативной (сифоногенной) впоследствии образуется пыльцевая трубка.

Гинецей

Гинецей — совокупность пестиков одного цветка. Обычно в пестике выделяют три части: завязь, столбик и рыльце.

Завязь — замкнутая, нижняя, полая часть пестика, несущая и защищающая семязачатки. Завязь бывает: верхняя, нижняя, полунижняя. В завязи может располагаться от одного (пшеница, вишня) до нескольких тысяч (мак) семязачатков. Стенки завязи выполняют функцию защиты семязачатков от неблагоприятных факторов среды (высыхание, колебание температур, поедание насекомыми и т.д.). Внутри завязи (в семязачатках) происходит мегаспорогенез и мегагаметогенез, они принимают участие в образовании околоплодника.

Столбик — средняя более или менее удлиненная стерильная часть пестика, отходящая обычно от верхушки завязи, соединяет завязь и рыльце.

Рыльце — верхняя расширенная часть пестика, предназначено для восприятия пыльцы. Рыльце может быть разнообразной формы (двухлопастное, звездчатое, перистое и т.д.) и размера в зависимости от особенностей опыления. При отсутствии столбика рыльце называют сидячим.

Строение пестика
Строение завязи

Семязачаток состоит из нуцеллуса (ядра) — центральной части, являющейся мегаспорангием, двух покровов — интегументов, которые при смыкании образуют узкий канал — микропиле, или пыльцевход, через который пыльцевая трубка проникает к зародышевому мешку. С помощью семяножки семязачаток прикрепляется к плаценте. Место прикрепления семязачатка к семяножке называют рубчиком. Противоположную микропиле часть семязачатка, где сливаются нуцеллус и интегументы, называют халазой.

В семязачатке происходят мегаспорогенез, мегагаметогенез и процесс оплодотворения. После оплодотворения (реже без него) из семязачатка формируется семя.

Спорогенез и гаметогенез цветковых

Мегаспорогенез

Процесс формирования мегаспор называется мегаспорогенезом. Он происходит в нуцеллусе семязачатка. После заложения семязачатка и формирования нуцеллуса в области микропиле начинает разрастаться одна археспориальная (спорогенная) клетка — мегаспороцит, или материнская клетка мегаспор.

Материнская клетка мегаспор имеет диплоидный набор хромосом. У большинства покрытосеменных из нее путем мейоза образуются четыре гаплоидные мегаспоры. Из них лишь одна (обычно нижняя, обращенная к халазе, реже верхняя, обращенная к микропиле) дает начало женскому гаметофиту — зародышевому мешку. Остальные мегаспоры отмирают.

Мегагаметогенез

Процесс формирования женских половых клеток происходит в зародышевом мешке. Формирование женского гаметофита начинается с разрастания мегаспоры, которая далее три раза делится митозом. В результате этого образуются восемь клеток, которые располагаются следующим образом: три — на одном полюсе зародышевого мешка (микропилярном), три — на другом (хадазальном), две — в центре. Две оставшиеся сливаются в центре клетки, образуя диплоидную центральную клетку зародышевого мешка. Одна из трех клеток, расположенных на микропилярном полюсе, отличается большими размерами и является яйцеклеткой. Две рядом расположенные клетки являются вспомогательными и называются синергидами. Группа из трех клеток, находящихся на противоположном, халазальном полюсе, называется антиподом. Таким образом, сформированный женский гаметофит включает шесть гаплоидных клеток (яйцеклетка, две клетки-синергиды, три клетки-антипода) и одну диплоидную клетку.

Оплодотворение. Образование семян и плодов

Купить проверочные работы
и тесты по биологии


Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. 9 класс. Тесты

Процессу оплодотворения предшествует опыление — перенос пыльцы от пыльцевых мешков тычинок к рыльцам пестиков. Попав на рыльце пестика, под воздействием веществ, выделяемых пестиком, пыльца начинает прорастать: образуется пыльцевая трубка, внедряющаяся в ткань рыльца. Кончик пыльцевой трубки выделяет вещества, размягчающие ткань рыльца и столбика. В процессе формирования пыльцевой трубки принимает участие сифоногенная клетка. По мере роста пыльцевой трубки в нее переходит спермагенная клетка, которая делится митозом с образованием двух спермиев (у некоторых растений спермагенная клетка дает начало двум спермиям еще до прорастания пыльцы). Пыльцевая трубка продвигается по столбику пестика и врастает в зародышевый мешок, как правило, через микропиле. После проникновения в зародышевый мешок кончик пыльцевой трубки разрывается, и спермии попадают внутрь. Один из спермиев сливается с яйцеклеткой, образуя диплоидную зиготу. Второй спермий сливается с центральной клеткой зародышевого мешка, образуя триплоидную клетку, из которой далее формируется эндосперм (питательная ткань) семени, обеспечивающий питание зародыша. Синергиды и антиподы дегенерируют. Вышеописанный процесс получил название двойного оплодотворения. Двойное оплодотворение у цветковых растений было открыто в 1898 году русским ботаником С.Г. Навашиным.

После двойного оплодотворения из яйцеклетки формируется зародыш семени, из центрального ядра зародышевого мешка — эндосперм, из интегументов — семенная кожура, из всего семязачатка — семя, а из стенок завязи — околоплодник. В целом из завязи пестика формируется плод с семенами.

Какой хромосомный набор характерен для клеток эндосперма семени, яйцеклетки и лепестков цветка покрытосеменного растения? Ответ обоснуйте.

Данную задачу проверяют не автоматически, а вручную. Ознакомьтесь с критериями оценки, правильным решением и сами себе поставьте оценку от 0 до 3 баллов. Даже если вы ошиблись в цифровом ответе, можно получить несколько баллов за правильный ход решения. Форма для оценки находится внизу страницы.

Содержание верного ответа и указания по оцениванию
(допускаются иные формулировки ответа, не искажающие его смысла)

1) в клетках эндосперма семени триплоидный набор хромосом, он образуется при слиянии двух ядер центральной клетки (2п) и одного спермия (п);

2) в яйцеклетке гаплоидный набор хромосом (п), так как яйцеклетка образуется при делении митозом гаплоидной мегаспоры;

3) клетки лепестков цветка имеют диплоидный набор хромосом (2п), как и все соматические клетки покрытосеменного растения

Ответ включает все названные выше элементы с обоснованиями, не содержит биологических ошибок

Ответ включает два из названных выше элементов с обоснованиями и не содержит биологических ошибок, ИЛИ ответ включает три из названных выше элементов с обоснованиями, но содержит биологические ошибки

Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит биологические ошибки, объяснения отсутствуют


Половое размножение покрытосеменных растений связано с цветком. В цветке, органе размножения, происходит созревание мужских и женских половых клеток (гамет), и их последующее слияние с образованием первой клетки дочернего организма.


Отличие полового размножения от вегетативного

Половое и вегетативное – два вида размножения покрытосеменных. При вегетативном размножении новые организмы возникают за счёт регенерации вегетативных органов (лист, корень, побег).

Цветок не относится к вегетативным, а является репродуктивным (лат. – reproductio – воспроизведение) или генеративным (лат. – genero – рождаю, произвожу) органом. В нём при слиянии гамет образуется зигота, из которой впоследствии развивается зародыш нового растения.

Гаметы

Гаметы имеют существенное отличие от всех других клеток. Число хромосом в ядрах гамет в два раза меньше, чем в остальных клетках. Такой набор хромосом называется гаплоидным. Набор хромосом обычных клеток тела и зиготы называется диплоидным.

Хромосомы содержат наследственную информацию о признаках организма. Дочерний организм имеет половину хромосом от мужской гаметы и столько же от женской.

Тычинки и пестики

На тычинках развивается пыльца. Пыльца содержит генеративную клетку, которая, делясь, образует две мужские гаметы, называемые спермиями.

которые читают вместе с этой





Женская гамета, или яйцеклетка, вместе с сопутствующими ей клетками находится внутри завязи пестика, в полости зародышевого мешка.

Опыление

Опыление – это процесс переноса пыльцы на рыльце пестика, который осуществляется с помощью ветра, воды, насекомых и некоторых других животных. Человек может и сам, целенаправленно, вручную производить опыление растений.

Пыльца на пестик может попадать с других цветков, а может с тычинок этого же цветка.

С помощью ручного опыления можно повышать урожайность и выводить множество новых сортов растений.

Двойное оплодотворение

После опыления спермии продвигаются в зародышевый мешок. Это происходит с помощью пыльцевой трубки, которая является неполовой клеткой пыльцы. Пыльцевая трубка быстро растёт (35 мм/час) в направлении яйцеклетки, и с ней продвигаются спермии.

Спермии бывают различной формы и не имеют жгутиков. Когда пыльцевая трубка достигает яйцеклетки, один спермий соединяется с ней, а другой с центральной клеткой зародышевого мешка.

В итоге, при двойном оплодотворении у покрытосеменных растений происходит образование следующих клеток:

  • первый спермий + яйцеклетка = зигота;
  • второй спермий + центральная клетка = эндосперм.

Зигота впоследствии делится и превращается в зародыш. Эндосперм служит для зародыша источником питательных веществ. Вместе, зародыш и эндосперм, образуют семя.

Зародыш

Зародыш покрытосеменных растений – это зачаточный дочерний организм, который находится в семени в состоянии покоя, пока семя не начало прорастать. Набор хромосом у зародыша, как и у зиготы, диплоидный.

Семя с зародышем созревает, в эндосперме накапливаются питательные вещества. Завязь пестика разрастается и превращается в плод.

Что мы узнали?

Изучая в 6 классе половое размножение покрытосеменных, мы должны понимать какие особенности характерны для этих растений. Главная особенность покрытосеменных – это наличие цветка. В цветке образуются и развиваются гаметы. Покрытосеменные размножаются семенами. Семя образуется в результате полового процесса, который у цветковых заканчивается двойным оплодотворением.

Гост

ГОСТ

Хромосомы – это самовоспроизводящиеся структуры клеточного ядра, содержащие ДНК.

Хромосомный набор

У всех организмов, как прокариот, так и эукариот гены расположены группами и находятся на отдельных молекулах ДНК. Затем они при участии белков и других веществ организуются в хромосомы. Яйцеклетки и сперматозоиды содержат гаплоидный набор хромосом.

Каждая хромосома представляет собой ДНП (дезоксирибонуклеопротеид) или комплекс их одной непрерывной двухцепочной молекулы ДНК, а также белков – гистонов и негистонов.

В состав хромосом также входят:

  • липиды (жиры);
  • минеральные вещества (различного типа).

По сути, каждая хромосома представляет собой сложное надмолекулярное образование, формирующиеся в результате компактизации хроматина.

Основные характеристики хромосомного набора растений

В клетках растений хромосомы чаще всего хорошо видны только в случае деления клетки, начиная со стадии метафазы. В этом случае их можно разглядеть даже в световой микроскоп. Также в этот период можно определить следующие параметры:

  • количество хромосом в ядре;
  • размеры хромосом;
  • форму хромосом, строение хромосом.

Центромера – это структура, разделяющая хромосому на два плеча.

Хромосомы на стадии интерфазы чаще всего называют просто хроматином. Для разных видов растений количество хромосом не является одинаковым. Их может быть от двух штук до нескольких сотен. Наибольшее количество хромосом встречается у папоротников. Это происходит потому, что у них весьма высокий темп полиплоидии.

Следует отметить тот факт, что количество хромосом растений не связано с уровнем их эволюционного развития. У многих примитивных форм оно достаточно велико. При этом каждая хромосома, образованная одной молекулой ДНК, является своего рода удлиненной палочковидной хроматидой, обладающей двумя плечами и центромерой (первичной перетяжкой).

Готовые работы на аналогичную тему

Метафазная хромосома растений представлена двумя соединенными (центромерами) сестринскими хроматидами. Каждая хроматида содержит молекулу ДНК, уложенную в спираль.

Исследование хромосом растений позволило решить многие проблемы получения трансгенных растительных организмов. Этот способ заключался во введении чужеродных генов в хромосомный набор растений. При этом происходит трансформация растительных клеток. Значительный прорыв был сделан при открытии возможности использования природной системы трансформации растений Ti-плазмидами почвенных агробактерий.

Также при исследовании возможностей селекции можно рассматривать растительную полиплоидизацию. Этот процесс также происходит при подавлении репликации ЦМ и систематическом делении цитоплазмы. При формировании полиплоидов хроматин и кинетохоры реплицируются, но цитокинез не наступает.

Вероятно, такая система обусловлена тем, что в клетке не формируются центриоли, а, соответственно и митотические веретена. Обычно при этом два полученных диплоидных кариотипа оказываются под одной ядерной мембраной, то есть диплоид переходит в состояние тетраплоида.

В дальнейшем также происходит дифференциация хромосом и хроматина, которая приводит к образованию нового кариотипа. Подобно кариотипическому расщеплению, полиплоидизация служит преадаптацией к эпизодам видообразования растительных организмов.

Хромосомы растительных организмов связаны с наследственными признаками. Количество и форма растительных хромосом строго специфичны для каждого конкретного вида.

У растений реже, чем у животных, встречается большое число вариантов внутри хромосомного набора. Тетраплоидные растения могут возникать из-за имеющихся в природе удвоенных хромосом диплоидных растений. Гексаплоидные растительные хромосомы возникают аналогичным путем.

У большинства растений с невысокой степенью частоты появляются гаплоидные растения, то есть растения с числом хромосом, которое в два раза меньше, чем у диплоидных. Например, диплоидная кукуруза имеет набор хромосом, равный 20-ти. Растения с набором 10 хромосом получаются в меньшем количестве случаев. В этом случае у всех организмов присутствует только одна хромосома и каждой представленной пары.

Удвоение хромосом этих растений происходит спонтанно. В 10 процентах случаев удвоение хромосом может произойти под влиянием колхицина. При этом полученные диплоидные растения восстанавливают парность гомологичных хромосом. Каждая растительная хромосома из представленной пары появляется в результате удвоения исходной хромосомы. Обе хромосомы из пары являются идентичными. В свою очередь, идентичность гомологичных хромосом при удвоении их у гаплоидов приводит к полной гомозиготности получаемых линий.

Таким образом, селекционерам удалось получить много разновидностей тетраплоидных цветковых растений, размеры которых, как правило, больше диплоидных, Большинство клеток нашего организма также диплоидные, однако и у нас имеются полиплоидные клетки.

Наконец, у всех высших растений и животных в ходе полового размножения происходит смена различных ядерных фаз. При оплодотворении гаметы или половые клетки сливаются и образуют зиготу. Ядро отца и матери вносят в наследственный набор хромосом одинаковое количество наследственной информации. Таким образом, в зиготе образуется двойной набор хромосом.

Сегодня господствует два пути кариотипической эволюции. Первый тип называется полиплоидизацией или кратным умножением основного числа хромосом. Сама структура хромосом при этом не меняется. Второй путь - через процессы перемещения генетического материала между хромосомами с утерей некоторой его части или приобретения новой, с возможностью изменения числа и формы хромосом. Оба эволюционных пути развития растительных хромосом имеют одинаковую степень значимости и по-своему привлекательны для междисциплинарных исследований.


Задание 3 № 4613

Определите число хромосом в конце телофазы митоза в клетках эндосперма семени лука (в клетках эндосперма триплоидный набор хромосом), если клетки корешков лука содержат 16 хромосом. В ответ запишите только соответствующее число хромосом.

В соматических клетках покрытосеменных (цветковых) растений и в клетках зародыша семени содержится диплоидный набор (2n) хромосом, в половых клетках (яйцеклетках и спермиях)гаплоидный (n), а в эндосперметриплоидный (3n).

Растение лук относится к покрытосеменным, поэтому клетки его корешка, как и все соматические клетки диплоидны (2n), что по условию задания соответствует 16 хромосомам (2n=16). В клетках эндосперма семени лука, как и у всех покрытосеменных, триплоидный набор хромосом (3n). Такой же набор хромосом (3n) будет в клетках эндосперма семени лука и в конце телофазы митоза (что соответствует окончанию митоза). Чтобы определить сколько хромосом в клетках эндосперма семени лука, сначала вычислим сколько хромосом приходится на гаплоидный набор хромосом: исходя из 2n=16, получаем n=16:2=8. Поскольку n=8, то 3n (набор хромосом эндосперма семени лука) будет равен 24 хромосомам (3n=3x8=24).

Читайте также: