Минеральная часть почвы значение ее для питания растений и применения удобрений

Добавил пользователь Владимир З.
Обновлено: 19.09.2024

Почва состоит из двух частей; органической и минеральной.

Минеральная часть почвы — это разного размера частицы разрушившихся каменных горных пород (разрыхленная горная порода, на которой образуется почва, называется материнской породой).

Органическая часть почвы образуется при разложении отмерших корней, стеблей, листьев, навоза, трупов насекомых, червей и животных. К органической части почвы принадлежит и вещество многочисленных, населяющих почву мельчайших организмов — бактерий.

Органическая часть почвы представляет важнейшую для сельского хозяйства часть почвы, так как:

1) в органическом веществе имеется все необходимое для питания растений;

2) органическое вещество улучшает все свойства почвы (почва делается более рыхлой, проницаемой, лучше удерживает в себе влагу, скорее прогревается).

Органическое вещество почвы не остается постоянным, но все время изменяется (превращается в разнообразные продукты).

Различные превращения органического вещества происходят вследствие жизнедеятельности бактерий. Одни бактерии, питаясь неразложившимися растительными и животными остатками, превращают их сначала в почвенный перегной (или перегнойные кислоты); почвенный перегной и есть органическое вещество почвы. Другие бактерии, питаясь почвенным перегноем, разрушают органическое вещество почвы, превращая его в легко растворимые неорганические вещества. Полное разрушение органического вещества происходит при хорошем доступе воздуха (кислорода) в почву.

Растворенные в воде неорганические вещества и дают почвенную пищу для растений. Самими же органическими веществами, почвенным перегноем, зеленые растения питаться не могут.

Типы почв

Для определения типа почвы и вообще для ее изучения необходимо ознакомиться с почвенным разрезом.

На почвенном разрезе видно, какие слои почвы (и подпочвы) залегают под поверхностным пахотным слоем. Готовый почвенный разрез представляют стенки свежих оврагов, оползней или вырытых канав, силосных ям. Если готового разреза нет, то надо вырыть прямоугольную яму размером 150 сантиметров (длина) на 75 сантиметров (ширина) и глубиной в 150 сантиметров (см. рисунок).


Отвесная стенка ямы и даст почвенный разрез.

Осматривая разрез, записывают следующие данные:

1) месторасположение разреза (склон, водораздел, низина, западина, бугор, пойма и пр.);

2) угодье, на котором сделан разрез (пашня, луг, лес, выгон, залежь и пр.);

3) поле севооборота и культура;

4) цвет и мощность (толщина в сантиметрах) почвенных слоев (горизонтов почвы).

Типы почв, их признаки и районы распространения

Почвы, условия их образования

Краткое описание почвы

Количество перегноя (в процентах от веса почвы)

Районы распространения

Подзолистые почвы. Образуются под лесной растительностью в районах с большим количеством осадков (более 500 миллиметров в год), при малой испаряемости. Материнские почвы — преимущественно наносные глины, пески с валунами, суглинки, бедные углекислыми солями

Верхний перегнойный горизонт имеет незначительную толщину (10— 20 сантиметров); цвет его темносерый. Под перегнойным слоем — белесый слой подзола, почти лишенного перегноя; толщина 10—25 сантиметров и более. Под подзолом—обычно плотный слой (иногда песок), часто не сплошной, но с прослойками

От 1,0 до 4,0; с глубиной содержание перегноя резко падает

Север СССР (около половины всей площади СССР): Карело-Финская ССР, Ленинградская область, Белорусская ССР, Западная, Московская, Горьковская области и др.

Иловато-болотные, торфяно-болотные почвы Образуются под лугово-осоковой (более богатые почвы) и моховой растительностью (более бедные почвы)

Верхний горизонт черного или почти черного цвета содержит неразложившиеся части растений (торф), толщина 40—60 сантиметров и более. Под ним слой подзола разной толщины

От 5 до 30 (и выше)

Те же, что и районы подзолистых почв, особенно же на крайнем севере СССР (в тундровой зоне)

Черноземные почвы. Образуются под степной растительностью в районах со средним количеством осадков (400 — 500 миллиметров в год), при повышенной испаряемости. Материнские породы — главным образом лёссовидные глины и суглинки, богатые углекислыми солями

Верхний перегнойный горизонт черной окраски, имеет значительную толщину (60 сантиметров и выше). Под ним ореховато-зернистый, трудно отличимый (от верхнего) темный горизонт; толщина 50—70 сантиметров. Затем идет незернистый палево-серый горизонт с глазками извести (белоглазка, журавчики); толщина 40—60 сантиметров. Далее идет материнская порода.

С глубиной содержание перегноя падает медленно

Украинская ССР (кроме севера), часть Крыма и Северного Кавказа, области Средней Волги, ббльшая часть Тамбовской, Воронежской, Курской областей; Татарская АССР, значительная часть Башкирской АССР, части Западной Сибири и др. В Западной Сибири, особенно в Барабинской степи, имеются близкие к черноземным так называемые черноземовидные (лугово-солончаковые) почвы.

Часть Тульской, Ивановской областей, Чувашской АССР, Горьковской и других центральных областей СССР

Выщелоченные черноземы Серые лесные земли. Почвы, переходные от черноземов к подзолам

Каштановые и бурые почвы (пустынно-степные почвы)

Образуются в сухих степях, где выпадает 200 — 350 миллиметров осадков в год. Материнские породы — морские глины и пески, лёссовидные суглинки, красно-бурые глины и др.

Верхний (слоистый или чешуйчатый) перегнойный горизонт у каштановых почв имеет толщину 18—22 сантиметра, у бурых 10—15 сантиметров. Далее идет уплотненный столбчатый горизонт, толщиной в 30—50 сантиметров. За ним следует богатый известью горизонт, пористый, трещиноватый, толщиной 30—40 сантиметров. Далее залегает материнская порода

У каштановых почв 3-5, у бурых 1—3

Южная и юго-восточная части СССР, Сталинградская, Саратовская области, Республика Немцев Поволжья, Казахская ССР, Крымская АССР (40% всей площади), часть Бурят-Монголии

Сероземы

Образуются в районах пустынь и полупустынь, где выпадает осадков от 80 до 250 миллиметров (редко больше) в год. Материнские породы — преимущественно лёссы с очень большим содержанием углекислых солей

Верхний серо-бурого цвета горизонт, слоеватый, имеет небольшую толщину в 8—10 миллиметров. Он постепенно переходит в следующий, более бурой окраски горизонт, дырчатый от обильных ходов червей и насекомых; имеет толщину 15—20 сантиметров. Далее следует богатый известью горизонт, ореховатый; имеет толщину 40— 50 сантиметров. Под ним залегает лёсс

Туркменская ССР, Узбекская ССР, часть Киргизской ССР, часть Казахской ССР, часть Азербайджана и Дагестана

Солонцы и солончаки

Встречаются особенно часто в районах каштановых бурых почв и сероземов

Почвенные разрезы весьма разнообразны. Солонец часто происходит после рассоления (уменьшения солей) солончака. Отличительное свойство солончака — содержание так называемого поглощенного натрия

Район распространения каштановых, бурых почв и сероземов

Механический состав почвы

Каждый слой почвы состоит из частиц разной крупности. Механический состав почвы как раз и указывает величину почвенных частиц.

Различают частицы таких размеров:

Камни

имеют диаметр

(поперечник)

крупнее

10

мм

Частицы мельче 0,01 мм называют физической глиной.

Особо большое призводственное значение имеют глинистые частицы, так как они составляют наиболее богатую легко доступными для растений питательными веществами часть почвы, и именно из этих частиц в основном образуются структурные комочки почвы. По содержанию этих мелких частиц, почвы бывают:

Почвы

Содержание частиц мельче 0,01 мм (в процентах)

Почвы

Содержание частиц мельче 0,01 мм (в процентах)

Тяжелые глинистые почвы

Знание механического состава почвы необходимо потому, что от механического состава зависят многие свойства почвы, как это видно из следующей таблицы.

Производственные свойства песчаных и глинистых почв

Песчаные (легкие) почвы

Глинистые (тяжелые) почвы

Обрабатывать можно и во влажном и сухом состоянии, так как почва в комья не слипается и при обработке не разбивается в пыль

Обрабатывать нужно только при определенной влажности почвы (спелая почва); пересохшая почва образует крупные комья (глыбы), которые при сильном бороновании разбиваются в пыль; излишне влажная почва липнет к частям сельскохозяйственных машин и орудий и совершенно не крошится

После дождей почва остается рыхлой

После дождей почва легко заплывает плотной, не пропускающей воздуха коркой

Бедны питательными веществами для растений

Богаты питательными веществами

Легко теряют питательные вещества от вымывания осадками

Хорошо удерживают в себе питательные вещества

Труднорастворимые питательные вещества быстро превращаются в легкорастворимые

Труднорастворимые питательные вещества очень медленно превращаются в легкорастворимые

Для воды легко проницаемы, хорошо впитывают воду, но мало удерживают ее в себе. Вода из нижних слоев в верхние (при вы сыхании последних) не поднимается

Для воды трудно проницаемы (плохо впитывают воду), но много удерживают ее в себе. При высыхании верхних слоев вода поднимается к ним из нижних слоев

Легко и быстро прогреваются (теплые почвы)

Медленно прогреваются (холодные почвы)

В каждой почве обычно имеются частицы и глины и песка, поэтому и свойства каждой почвы изменяются, по сравнению с этими крайними (по механическому составу) почвами.

Кроме того, содержащийся в каждой почве перегной (органические вещества) сильно исправляет все отрицательные качества и песчаных и глинистых почв.

Для приблизительного определения количества мелких глинистых частиц в почве поступают так. Берут образец почвы (см. ниже) и высушивают в течение нескольких часов в несильно жаркой печи (после того как испечен хлеб). Надо сушить 5—6 часов при температуре 100—105° по Цельсию. Высушенный образец хорошо растирают на фарфоровом блюдце так, чтобы размять все почвенные частицы. От подготовленного образца отвешивают 100 граммов и кладут в стеклянную банку, куда затем вливают чистой воды. Взмутив стеклянной палочкой воду, дают банке постоять 20— 30 секунд, а затем сливают муть. Вновь долив банку водой, повторяют все сызнова. Сливание мути производят до тех пор, пока вода, после 20—30 секунд отстоя, будет оставаться прозрачной, чистой. В банке останется различный по крупности песок. Просушив его в печи и взвесив, по убыли в весе определяют, сколько мелких (глинистых) частиц имеет почва. Если, например, из 100 граммов почвы после отмучивания осталось 76 граммов песка, то это покажет, что в почве имеется 24% глины. По приведенной выше таблице найдем, что такая почва является супесчаной.

По другому способу, менее точному, поступают так. Из образца почвы, добавив воды до густоты теста, скатывают шарик, а затем раскатывают в тонкий жгут, который сгибают в кольцо.

1) Шарик легко скатывается, а жгут сгибается в кольцо, не ломаясь. глинистая почва

2) Шарик и жгут скатываются, но жгут при сгибании в кольцо ломается. суглинистая почва

3) Шарик скатывается с трудом, в жгут его раскатать нельзя. супесчаная почва

4) Шарик при скатывании легко распадается . . . песчаная почва

Водные и воздушные свойства почвы. Структура почвы

Для создания 1 килограмма зерна, или 1 килограмма соломы, или вообще 1 килограмма сухого вещества урожая разные растения берут из почвы, примерно, от 200 до 800 литров воды.

За время от посева до созревания с одного гектара растения расходуют при хорошем урожае, примерно, 1 000 и больше кубических метров .воды (свыше 2 000 сорокаведерных бочек).

Для того чтобы в почве могли быть заготовлены такие большие запасы воды, необходимо, чтобы почва обладала следующими свойствами:

1. Почва должна хорошо пропускать в себя воду от таяния снега и дождей.

2. Почва должна удерживать в себе много воды, не допуская отекания.

3. Бесполезные потери влаги от испарения должны быть возможно меньшими.

Свойство почвы пропускать в себя воду называется проницаемостью почвы.

Проницаемость в значительной мере зависит от механического состава почвы. Легкие песчаные почвы хорошо проницаемы, хорошо впитывают в себя воду, а тяжелые глинистые почвы трудно проницаемы, плохо впитывают в себя воду.

Свойство почвы удерживать в себе воду называется влагоемкостью. Легкие песчаные почвы обладают небольшой влагоемкостью, а тяжелые почвы повышенной влагоемкостью.

Помимо воды, в почве должен быть воздух, который необходим для жизни бактерий, превращающих труднорастворимые, недоступные для растений вещества почвы в легкорастворимые, доступные.

Почвы песчаные легче, чем глинистые, проницаемы для воздуха, но жизнедеятельность бактерий в этих почвах сильно ослабляется из-за малого количества влаги.

Таким образом, ни глинистая, ни песчаная почва, не имеют благоприятных условий для развития растений. В глинистой почве обычно много воды, но мало воздуха, в песчаной, наоборот, мало воды, но много воздуха.

Только в структурной почве может находиться одновременно и большое количество влаги и достаточно воздуха.

Структурной называется такая почва, которая состоит из небольших прочных, неразмываемых водой комочков, величиной от просяного зерна до горошины. Каждый такой комочек состоит из мелких почвенных частичек (главным образом глинистых), склеенных свежим перегноем.

Вода легко поступает в структурную почву, проходя между комочками. Каждый комочек впитывает воду и хорошо удерлш-вает ее в себе и вокруг себя. Для воздуха также остается свободное пространство между комочками.

Таким образом, структурная почва хорошо проницаема для воды, обладает большой влагоемкостью и одновременно богата воздухом.

Кроме того, в структурной почве значительно снижено бесполезное испарение влаги. Как известно, вода снизу вверх может подниматься только между мелкими почвенными частицами (по тонким, волосным, или капиллярным, промежуткам). Между комочками поднятие воды затрудняется, так как каждый комочек соприкасается с другим только небольшой частью своей поверхности.

Структурность почвы является одним из важнейших условий ее плодородия.

Структурные комочки, несмотря на свою неразмываемость, все же постепенно разрушаются, между тем старый перегной уже не обладает способностью вновь склеивать мелкие почвенные частицы в новые структурные комочки. Поэтому для восстановления и улучшения почвенной структуры необходимо вновь обогащать почву свежим перегноем.

Это лучше всего достигается посевом смеси многолетних трав (злаковых с бобовыми, например, клевера с тимофеевкой или люцерны с житняком). Разросшиеся густые корни многолетних трав хорошо разделяют землю на комочки. Когда же корни трав отомрут и перегниют, получается свежий перегной, склеивающий мелкие частицы в комочки. Посев многолетних трав является одним из важнейших приемов повышения плодородия почвы. Кроме посева многолетних трав, обогащение почвы свежим перегноем достигается внесением навоза (и других органических удобрений), а также запашкой специально выращенных на удобрение зеленых растений, например, люпина (зеленое удобрение).

Определение влажности почвы. Влажность почвы можно определить так. Взвешивают небольшое количество почвы на фарфоровом блюдце (также заранее взвешенном). Затем почву на блюдце высушивают 5—6 часов в несильно жаркой печи (при температуре 100—105°). По убыли в весе находят весовой процент содержания влаги в почве. Пример. Образец до высушивания весил (без блюдца) 102 грамма, после высушивания —80 граммов. Разность в весе 22 грамма показывает, что в почве содержалось столько влаги.

Определив количество влаги, можно подсчитать процентное ее содержание в почве.

Не вся определяемая высушиванием почвенная влага доступна для растений. Часть почвенной влаги составляет так называемый мертвый запас, который настолько прочно удерживается почвой, что растения не могут его взять. Величина мертвого запаса влаги у разных почв различна; например, в песчаных почвах она равна 2—3%, в тяжелых глинистых 10—12%, а в торфянистых иногда и выше 30%.

Химический состав почвы

Растениям необходимы следующие находящиеся в почве вещества: азот, фосфор, калий, кальций, магний, железо, сера. Первых трех (азота, фосфора, калия) очень часто не хватает для высоких урожаев и необходимо бывает удобрять почвы, чтобы удовлетворить потребность растений.

Содержание азота, фосфора (фосфорной кислоты) и калия (окиси калия) в десятисантиметровом слое разных почв (в процентах от веса почвы и в килограммах)

Для растений не имеет значение, что является источником минерального питания — природные запасы почвы или вносимые удобрения. Важно, что бы они были в нужном количестве и соотношении.

Степень усвоения элементов питания содержащихся в почве в подвижной форме и из удобрений принято выражать коэффициентами (в долях или %). Без применения соответствующих изотопов азота N, фосфора Р, Р и калия К определить реальный размер использования указанных и других элементов питания из почвы и удобрения не представляется возможным. Поэтому в практике доступность растениям элементов питания из удобрений определяют разностным методом — по разнице выноса растениями элемента в удобренном и не удобренном вариантах.

При наличии в почвенном растворе одинаковых по форме элементов питания почвы и внесенных удобрений растения потребляют их в равной степени независимо от источника. При этом их долевое участие в питании растений пропорционально соотношению питательных веществ почвы и удобрений. Отсюда следует, что по мере увеличения содержания элементов питания в почве использование их из удобрений снижается, и, напротив, с повышением доз удобрений снижается потребление растениями питательных веществ из почвы. В то же время улучшение обеспеченности растений одним или несколькими элементами при внесении удобрений повышает использование из почвы других элементов питания.

Примерные коэффициенты использования питательных элементов из дерново-подзолистой и серой лесной почвы, %

Определение коэффициентов использования растениями элементов питания из почвы и удобрений является одной из важнейших задач агрохимии. Знание зависимости коэффициентов использования питательных веществ сельскохозяйственными культурами от плодородия почвы и доз удобрений позволяет оптимизировать условия минерального питания растений. В то же время широкое варьирование почвенно-климатических и агротехнических условий возделывания культур, а также их биологических особенностей вызывает значительные колебания использования питательных веществ растениями. Это существенно затрудняет, но не исключает возможности использования для балансовых расчётов усреднённых результатов обобщения большого числа экспериментальных данных о размере хозяйственного выноса элементов питания культурами и величины коэффициентов использования. В этой связи при балансовых методах расчета доз удобрений необходимо использовать обобщенные результаты многолетних плевых опытов близлежащих научных учреждений. Данные о хозяйственном выносе и коэффициентах использования растениям элементов питания из почвы и удобрений, полученные в других почвенно-климатических зонах ненадежны и не могут быть использованы для расчета доз удобрений.

При разработке системы удобрения в севообороте важно учитывать не только удобренность предшественников, но и потребление отдельных элементов питания последующими культурами севооборота.

Наиболее доступны растениям элементы питания из минеральных и органических удобрений в год их внесения. При этом, чем продолжительнее период вегетации растений, тем больше они потребляют элементов питания из удобрений. Первой культурой из минеральных удобрений используется примерно 50-70% азота и калия, потребление фосфора, как правило, в 2-3 раза ниже. Последействие азота удобрений в Нечерноземной зоне незначительно — 24%, в степных районах, в зависимости от дозы и погодных условий может достигать 10%. Последействие фосфора и калия удобрений в зависимости от дозы, погодных условий и биологических особенностей культуры составляет 10-20%. Азот и фосфор из органических удобрений обладает длительным последействием, калий используется также, как и из минеральных удобрений. Несмотря на существенные различия использования растениями элементов питания по годам, в целом за ротацию севооборота размер потребления питательных веществ сельскохозяйственными культурами из минеральных и органических удобрений примерно одинаков.

Примерные коэффициенты использования питательных элементов и удобрений и пожнивно-корневых остатков, %

Наряду с использованием растениями, часть азота удобрений (20-25%) теряется в результате денитрификации или вымывания нитратов и значительная его часть (1530%) закрепляется в почве в органической форме. Фосфор и калий закрепляются в почве в результате химических и физико-химических процессов и практически не теряются за исключением эрозии почв.

Потери элементов питания из почвы и удобрений приносит не только значительный экономический ущерб хозяйству, но и вызывает загрязнение окружающей среды, поэтому снижение потерь элементов питания из почвы является важнейшей задачей агрономической химии.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

В обстановке широкого увлечения гумусовой теорией постепенно появились и другие течения. Еще в 1804 г. Соссюр использовал приемы химического анализа для разрешения ряда физиологических проблем. Он выяснил, какие именно химические элементы постоянно встречаются в составе растений и какие из растворов солей усваиваются корнями растений в большей, а какие в меньшей степени.

Потребности бурно развивавшейся экономики периода роста промышленности требовали изыскания эффективных мер поднятия урожайности. Ушедшая вперед в экономическом развитии Англия первая мобилизовала своих химиков – Дэви, Лооза, Гильберта и др. – для разрешения агрономических вопросов.

Юстас Либих
Жан Батист Буссенго

То же наблюдалось и во Франции, где на помощь агрономии приходит с точными методами химического анализа растительно-почвенного баланса веществ великий химик Ж.Б. Буссенго, по справедливости считающийся основателем агрономической химии. К 1840-м гг. в Германии Ю.Либих (1803–1873) становится основателем минеральной теории удобрений и учения о плодородии почв. Именно благодаря его исследовательской работе и научно-пропагандистской деятельности идея химического регулирования урожая путем внесения минеральных удобрений получила широкое распространение.

Идя дальше, Либих отвергал всякую возможность усвоения готовых органических веществ корнями и ставил в основу учения о питании растений положение, что только неорганические соединения почвы и углекислый газ воздуха составляют пищу растений.

Ничего не оставил Либих и от учения Таера о разделении растений на истощающие и обогащающие почву. Если растения берут из почвы только минеральные вещества, необходимые для их роста и развития, то каждый урожай должен уносить из почвы запасы необходимых для развития растений питательных солей.

Либих особенно настаивал на возврате в почву тех минеральных веществ, которых в ней явно недостаточно: внесение всех прочих веществ будет совершенно бесполезно, пока не будет восполнено содержание в почве того вещества, которое находится в ней в минимальном и недостаточном количестве (либиховский закон минимума).

Особое внимание Либих обращал на истощение почвы в отношении солей фосфорной кислоты. Большая часть хозяйств продает в город зерно, а солома вместе с навозом вывозится обратно на поле. Но с навозом почве возвращается далеко не все, что было у нее взято: зерно содержит много солей фосфорной кислоты, и эта потеря остается невозмещенной. Поэтому в почву необходимо вносить фосфаты, особенно в зерновом хозяйстве.

Кроме этого, общего указания на значение в земледелии фосфатных удобрений, заслугой Либиха мы должны признать и то, что он указал на сырьевые источники этого вида удобрений. Он обратил внимание сельских хозяев на кости домашних животных как на наиболее удобный бросовый материал для изготовления удобрений. Так как кости содержат труднорастворимую соль фосфорной кислоты, Либих предложил обрабатывать их серной кислотой, чтобы получать растворимый фосфат. Предложение Либиха положило начало суперфосфатной промышленности, которая стала развиваться особенно интенсивно, когда вместо костей стали разлагать серной кислотой ископаемые фосфориты.

Отмечая значительную роль Либиха в разработке вопроса о минеральном питании растений, следует указать и на некоторые ошибки, допущенные им. Слабой стороной его учения была недостаточная экспериментальная проверка теоретических положений.

Иллюстрация закона Либиха

По образованию Буссенго был горным инженером, но вскоре после окончания высшей горной школы он оказался в условиях, определивших его призвание к совершенно иной области научной и практической деятельности.

Двадцатилетний инженер отправился в 1822 г. добровольцем в армию южно-американских колоний, поднявших восстание против владычества испанских феодалов. Он явился в ставку вождя восставших – генерала Боливара – с рекомендательным письмом от известного путешественника Александра Гумбольдта. Не имея возможности в боевой обстановке использовать Буссенго по его специальности, Боливар назначил его офицером революционной армии. Буссенго вместе с армией повстанцев прошел вдоль и поперек весь материк Южной Америки, побывав в Боливии, Эквадоре, Венесуэле, Перу, Чили и других районах. В этих странствованиях Буссенго не оставлял своих научно-исследовательских работ. Круг его научных интересов в то время был необычайно широк, а природная пытливость ума буквально не знала пределов.

Он изучал влияние температуры на распределение растений по склонам высочайших горных хребтов (до 5500 м), исследовал химический состав газов, выходящих из трещин вулканической лавы. Но главное его внимание привлекло удивительное плодородие перуанских полей, разбитых туземцами на песчаных и, казалось бы, совершенно бесплодных почвах Тихоокеанского побережья. Он обратил внимание на то, что туземцы примешивали к песчаной почве порошкообразную массу гуано, пласты которого залегали неподалеку. Удобренные таким образом поля давали затем богатейшие урожаи кукурузы и других культурных растений.

Произведенный Буссенго химический анализ показал, что гуано состоит почти из чистых аммиачных солей. В Чили он видел подобное же превращение бесплодных песчаных участков в роскошные поля под влиянием внесения в пашню селитры. Под влиянием этих фактов у Буссенго сложилось мнение о преобладающем значении азота при искусственном повышении плодородия почв.

Вернувшись на родину, Буссенго женился и получил в приданое небольшое имение Бехельброн в Эльзасе, где с увлечением занялся сельским хозяйством. Будучи хорошим специалистом в области химии, Буссенго поставил перед собой грандиозную задачу: систематически производить количественный анализ питательных веществ, вносимых в почву с удобрением и выносимых с урожаем.

Растения как живые организмы успешно растут и развиваются, если имеют все необходимые условия для жизни: свет, воду, воздух, пищу.

Питательные вещества нужны всем организмам, так как они — источник энергии.

Без притока энергии не могут осуществляться жизненно важные процессы в клетках, тканях и в организме в целом. Поэтому питание — необходимое условие для существования растений. Растительный организм с помощью корней и листьев добывает пищу в почвенной и наземной среде.

С помощью корней растение извлекает из почвы необходимые ему минеральные вещества — так осуществляется минеральное (почвенное) питание. В этом процессе особо важную роль играют корневые волоски в зоне всасывания. Вот почему почвенное питание еще называют корневым питанием. Корневое питание обеспечивает поступление в растение воды и минеральных солей.

С помощью корневых волосков растение получает из почвы соли калия, кальция, фосфора, магния, соединения азота, серы и другие химические элементы. Минеральные вещества корневая система поглощает из почвы в виде растворов вместе с водой. Корневые волоски принимают непосредственное участие в их поглощении. При этом они работают как маленькие насосы. Вещества, поступившие в корневой волосок, перемещаются в другие клетки всасывающей зоны корня и затем поступают в клетки проводящей ткани — трахеиды и сосуды древесины. По ним они транспортируются в зону проведения корня и далее через стебель ко всем частям растения.

Схемы движения веществ, поглощенных корнем: А — передвижение веществ от корневых волосков к клеткам проводящей ткани корня (показана часть поперечного разреза корня); Б — движение веществ, поглощенных корнем, к надземной части растения

Почвенное питание это минеральное питание растений.

Значение минерального питания для растения и природы

Во всасывающей зоне корня идет не только поглощение воды и солей. В этой части корня с участием поглощенных растворов минеральных солей и органических веществ, поступивших от листьев (глюкозы), активно идут сложные химические процессы обмена веществ и образования различных новых соединений. Здесь синтезируются сложные химические вещества, из которых строятся потом белки, витамины, ростовые вещества и другие органические вещества. Они необходимы для нормального роста и развития растения. Таким образом, корень не только всасывает из почвы воду с минеральными солями, но и участвует в образовании многих новых органических веществ.

Процессы поглощения и преобразования растворенных минеральных веществ интенсивнее идут в дневные часы. Особенно активно эти процессы происходят в период цветения растений.

Потребность растения в минеральных веществах зависит от его вида (например, картофель и свекла требуют наличия в почве большого количества калия, а пшеница и ячмень — больше азота, чем калия). Кроме того, она зависит от возраста организма, быстроты его роста, стадий развития, характера погоды, времени суток и свойства почвы.

Большинство растений нуждаются в таких элементах, как азот, фосфор, калий, магний, сера. При нехватке азота тормозится рост растений и формируются мелкие листья. Недостаток калия замедляет процессы деления и растяжения клеток, вызывает гибель кончика корня. Нехватка фосфора замедляет обмен веществ. При недостатке магния нарушается образование хлоропластов и хлорофилла. Нехватка серы снижает фотосинтез.

В природе поглощенные растениями минеральные вещества частично возвращаются в почву с опавшими листьями, ветками, хвоей, цветками, отмершими корневыми волосками. Но на полях после уборки урожая сельскохозяйственных растений поглощенные их корнями минеральные вещества не возвращаются в почву. Они уносятся человеком вместе с урожаем. Так, вынос только калия из почвы с 1 т урожая пшеницы составляет 10 кг, свеклы — 40 кг, а капусты — 60 кг.

Роль удобрений в жизни растений

Чтобы предотвратить истощение почвы и собирать большие урожаи, на поля вносят удобрения. Их разделяют на органические и минеральные.

Органические удобрения — это навоз, торф, компост и перегной (разлагающиеся остатки растений). Минеральные удобрения — это азотные соединения (селитра, мочевина), фосфорные (суперфосфат, костная мука), калийные (зола, хлористый калий, сульфат калия). Названные удобрения привносят в почву элементы минерального питания, которые требуются растениям в большом количестве.

Влияние микроэлементов на рост подсолнечника. Первое растение росло, получая марганец, второе — без марганца

Бор — один из наиболее важных микроэлементов, особенно для двудольных растений, — усиливает прорастание пыльцы на рыльце пестика при опылении; без него нарушается созревание семян, отмирают конусы нарастания. Недостаток меди задерживает рост и цветение растения: у злаков без меди не развивается колос; у кустарников, молодых яблонь, опрысканных раствором медного купороса, повышается устойчивость к заморозкам. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. При недостатке молибдена в тканях растений накапливается большое количество вредных для организма человека солей — нитратов.

Корень — это специализированный орган минерального питания растений. Растение поглощает много минеральных веществ. В почву для сохранения плодородия и нормального роста и развития растений вносят органические и минеральные удобрения.

Читайте также: