Метод скрещивания в селекции растений

Добавил пользователь Alex
Обновлено: 19.09.2024

Об авторах

Все это так, но в изменении генома растений на самом деле нет ничего нового и революционного! Человек всегда так или иначе оказывал влияние на генетику растений, которые выращивал, хотя и понятия не имел о генах.

Путь к современным культурным растениям, которые мы употребляем в пищу, начался примерно 10 тыс. лет назад, когда появилось сельское хозяйство. Человек выбирал самые здоровые и пригодные для еды растения и планомерно их выращивал. В сельском хозяйстве нет места закону естественного отбора: согласно закону человека (искусственному отбору), выживает только то растение, которое отвечает его запросам.

Ярким примером расхождения целей естественного отбора и селекции служит кукуруза. У предка этого злака зерна при созревании легко отделялись от початка и падали на землю. Такая кукуруза прекрасно размножалась, но человек неизбежно терял большую часть урожая. Что же мы видим теперь? Ядра современной кукурузы на момент зрелости прочно прикреплены к початку. Так же обстоит дело и с другими зерновыми культурами — рисом, ячменем, пшеницей.

Все эти новые виды культурных растений, по сути, являются результатом модификации генома разными способами, например, путем скрещивания разных сортов, что приводит к появлению совершенно новых культурных форм. Огромный материал для искусственного (так же как и для естественного) отбора предоставляет природный мутационный процесс. Ведь спонтанные мутации (изменения) в ДНК растений происходят постоянно, например, в результате действия солнечного излучения. И если такая мутация приводит к появлению особей с заметными положительными отличиями, их остается только тиражировать — вот и вся селекция. Примером служит большое разнообразие современных овощей семейства крестоцветных: брокколи, цветная и белокочанная капуста происходят от одного общего предка (Kempin et al., 1995).

Дальше — больше. За последние 80 лет люди получили более 3 тыс. новых сортов растений, воздействуя на исходные формы излучением или химическими реагентами, чтобы вызвать непредсказуемые мутации в ДНК. Растения, полученные в результате такого искусственно вызванного ненаправленного мутагенеза, успешно возделывают и поныне. Более того, как это ни парадоксально, они никогда не считались ГМО. Впоследствии в обществе распространилось крайне ошибочное мнение, что первые генетически модифицированные растения появились лишь в результате использования методов генной инженерии, целенаправленно воздействующих на ДНК.

В любом случае оценивать новый сорт следует исходя из его характеристик, а не того или иного пути селекции. А чтобы составить собственное мнение об опасности ГМО, нужно как минимум понимать, откуда они берутся.

Рецепт ГМО: режь, исправляй, сшивай

На первый взгляд, все просто, если не задумываться о том, как вставить новый генный фрагмент именно в тот участок ДНК растительной клетки, который нам нужен. А ведь в этом и заключается самая сложная задача редактирования генома, результатом которого являются современные ГМО.

Насколько остры генетические ножницы?

На основе бактериальных CRISPR/Cas-систем ученые создали упрощенные искусственные молекулярные конструкции, включающие белок Cas9 и обеспечивающие невероятную точность при разрезании цепей ДНК (Закиян, 2014). С их помощью стало возможным проводить все виды модификаций генома: вносить точечные мутации, встраивать, исправлять, заменять или удалять крупные ДНК-последовательности и фрагменты выбранных генов.

Но несмотря на подтвержденную эффективность системы CRISPR/Cas9 все еще остается риск неспецифичного воздействия на ДНК и нарушения последовательности кодирующих генов. Неудивительно, что настоящий взрыв в мировом сообществе вызвала публикация китайских ученых из Университета Сунь Ятсена (КНР), несколько лет назад впервые применивших CRISPR/Cas9 для исправления генома эмбрионов человека с целью лечения генетического заболевания талассемии. При этом лишь для 4-х из 86 подопытных оплодотворенных яйцеклеток удалось достичь положительного результата (Liang et al., 2015).

Систему CRISPR/Cas9 можно использовать не только для разрезания ДНК и встраивания трансгена. Если инактивировать белок Cas9, соединив его с круппель-доменом, кодирующим белок KLF — своеобразный контроллер экспрессии генов, то такой комплекс остается на целевой ДНК, влияя на активность соседних участков генома (а). Если слить Cas9 с ферментом гистонацетилтрансферазой, то комплекс будет влиять на упаковку ДНК в этом участке (б). Cas9, слитый с флуоресцентным белком, может играть роль метки для микроскопии, обозначая определенный участок ДНК (в). Визуализация от Visual Science и Сколтеха

Сегодня ряд специалистов призывают к мораторию на любые эксперименты, связанные с редактированием генов человеческих эмбрионов или половых клеток. Их опасения можно понять: когда речь идет о геноме человека, успех должен быть гарантирован. И все же прогресс не остановить: недавно Великобритания стала второй страной, где исследователям было позволено проводить подобные эксперименты (Ершов, 2016).

Тем не менее страх человека перед вмешательством в геном живых организмов не только не убывает, но и в некоторых случаях даже продолжает расти. Вследствие этого оборот и потребление продуктов геномного редактирования растений строго контролируются на законодательном уровне, что препятствует переходу мирового сельского хозяйства на использование продвинутых методов селекции. Однако ученые не сдаются и предлагают сократить до минимума и даже исключить возможные риски негативных последствий введения новых генов в организм растений.

Снижаем риски: от ТРАНС к ЦИС и ниже

С помощью генного редактирования можно получать высокоурожайные растения, устойчивые к вредителям и гербицидам. Слева — посевы генетически модифицированной сои, устойчивой к гербициду глифосату, справа — обычной культурной сои, засоренные сорняками. Фото В. Дорохова. По: (Дорохов, 2004)

В свою очередь, мировое ученое сообщество считает, что нужно различать ГМО по способу получения и делать послабления для продуктов, полученных умеренным вмешательством. Так появилась система деления ГМО на три вида: ТРАНС, ЦИС и ИНТРА.

По способу получения ГМ-растения делят на три вида: ТРАНС, содержащие вставку чужеродной ДНК; ЦИС, содержащие гены того же или родственного вида; ИНТРА, в геном которых введены их же собственные гены, но с другими регуляторными участками

Трансгенными сегодня называют организмы с искусственно введенными генами, которые в принципе не могут быть приобретены путем естественного скрещивания. Это могут быть гены растений других видов или животных, например рис, в геном которого встроен ген кукурузы. Потенциальная опасность трансгенных культур в том, что приобретенные таким образом новые качества могут повлиять на пригодность к использованию в пищевых или кормовых целях, а затем передаться диким родственникам, что может иметь непредсказуемые последствия для природных экосистем. По этой причине законодательные и регулирующие органы развитых стран уделяют большое внимание биобезопасности таких культур, чтобы снизить риск экологических сдвигов.

В геном цисгенных растений могут быть введены гены организмов того же или близких видов, с которыми возможно скрещивание в естественных условиях. При этом сам целевой ген не должен быть видоизменен или оторван от своих регуляторных последовательностей. Пример цисгенного растения — картофель, не подверженный картофельной гнили благодаря встраиванию генов диких видов картофеля из Анд, устойчивых к этому заболеванию. Такой картофель сейчас создается в Бельгии (VIB’s fact series, 2015). Важно, что цисгенезис не привносит в организм растения принципиально новых для него признаков и, по сути, аналогичен традиционному скрещиванию с родственными дикими формами.

Интрагенезис можно считать продолжением концепции цисгенезиса, но в этом случае в ДНК растения встраивают его собственный ген, совмещенный с регуляторными участками других его генов. В ходе такой модификации искусственно создаются новые комбинации из уже имеющихся в растении участков ДНК (Holme, 2013). Подобное изменение регуляции активности генов позволяет усиливать полезные признаки (например, способность накапливать витамины в листьях) или, напротив, устранять или сводить к минимуму нежелательные.

Между тем при современном регулировании оборота ГМО-различия между трансгенными и цисгенными растениями не учитываются, хотя эти типы кардинально различаются. Из-за жестких рамок, установленных законодательством, получение и использование цисгенных растений серьезно затруднено, что может заблокировать или значительно отсрочить проведение дальнейших исследований по улучшению сортов сельскохозяйственных культур. Пока лишь в Канаде контроль за цисгенными растениями менее строг по сравнению с трансгенными (Schouten, 2006).

Соматический Франкенштейн

Использование соматических клеток при гибридизации позволяет успешно работать с отдаленными, обычно нескрещиваемыми видами и полностью стерильными растениями. Иными словами, этот метод используют, если возникает необходимость преодолеть несовместимость культурных и дикорастущих видов. Таким способом можно получать межклассовые гибридные клеточные колонии: рис + соя, ячмень + табак и даже табак + мышь (Makonkawkeyoon, 1995)! Правда, большинство таких регенерантов сами размножаться уже не способны, а иногда и вовсе представляют собой скорее скопление клеток, чем полноценный организм.

Что скрывается под прививкой

В ходе прививки возможно и появление настоящих мутаций, спровоцированных специфическими веществами (этилметансульфонатом, этилимином и др.), которые поступают к привою от подвоя. Однако частота появления мутаций после прививок крайне низка. Неоспоримым преимуществом прививок является возможность размножать мутации, не передающиеся по наследству, а основным недостатком — большой объем исходного материала.

Прививка растений — это, безусловно, метод проверенный и безопасный. Но что произойдет, если в качестве подвоя использовать растение, перенесшее генетическую модификацию? Будет ли полученное растение ГМО? Оказывается, нет: согласно законам, плоды таких гибридов не входят в перечень ГМО, так как ДНК привоя остается неизмененной. Однако мы не можем быть уверены в том, что никакого обмена наследственной информацией между привоем и подвоем не происходит. К примеру, от корневища к привою могут перейти молекулы РНК, регулирующие работу генома, а это означает, что нельзя предсказать и уровень производства тех или иных белков в привитом растении.

Берем генетический разбег!

Но прививка — это далеко не единственный окольный путь для создания новых сортов с измененной активностью ДНК. Ускоренное скрещивание деревьев и кустарников (fast-track breeding) — это даже не метод, а целый комплекс методик, направленных на сокращение сроков получения новых сортов, что особенно важно для многолетних культур. Ведь цикл размножения деревьев с крупными плодами (например, ореха или сливы) может доходить до 10 лет и более (van Nocker, 2014). Это означает, что после посадки первого гибрида селекционер вынужден ждать 5–10 лет, пока тот вырастет и повзрослеет, чтобы продолжить работу. Если же необходимо провести несколько последовательных скрещиваний, выведение нового сорта дерева может занять и 30 лет. В современных условиях никто не готов столько ждать.

Для ускорения селекции применяются различные методики скрещивания растений. При использовании методик ускоренного и возвратного скрещивания для получения устойчивого к болезням гибрида восприимчивый сорт модифицируют генами раннего цветения, а затем скрещивают с устойчивой культурой (слева). Полученное ГМ-потомство может быть скрещено с оригинальным сортом, чтобы удалить трансген. Ветвь элитарного сорта можно привить на трансгенное дерево с ранним цветением (вверху). Белки, вызывающие цветение, будут перемещаться в привой и стимулировать цветение. Полученные цветы затем могут быть в дальнейшем использованы как доноры пыльцы. По: (VIB’s fact series, 2016)

Чтобы максимально ускорить процесс, ученые давно поливают своих подопытных гормонами роста, выращивают их при высоких температурах и прибегают к другим уловкам, таким как ДНК-технологии. Среди безобидных можно отметить маркер-вспомогательный отбор, который заключается в анализе генома новых ростков или даже семян и отборе лучших гибридов задолго до того, как они превратятся во взрослые растения. Теперь растение уже не нужно обрабатывать патогеном, чтобы понять, насколько оно к нему устойчиво, достаточно найти нужный ген в семечке. Основной недостаток такой селекции — ее высокая стоимость, поскольку скрининг ДНК — вещь недешевая.

Чтобы растение быстрее повзрослело, селекционеры иногда хитрят. Например, искусственно активируют гены, отвечающие за запуск механизма размножения, после чего начинает цвести и приносить плоды совсем молодое растение. Иногда в геном дерева вводят дополнительные гены, которые ускоряют процессы цветения и плодоношения, и время ожидания первого цветения саженцев сокращается до 1 года. При сочетании методик ускоренного и возвратного (когда гибрид скрещивают с одним из родителей) скрещиваний ген быстрого цветения можно сначала ввести в исходный сорт, а на последнем этапе селекции удалить его путем скрещивания генетически измененного гибрида с родительским растением.

Ускоренное скрещивание осуществляют также путем прививания на ГМ-подвой. Секрет в этом случае кроется в генетически измененном корневище, в котором активно работают гены, отвечающие за цветение. В результате из корневища к листьям поступают специфические белки, запускающие механизм взросления, и привой начинает цвести.

Таким образом, современные методы прививки и ускоренного скрещивания растений за внешней традиционностью таят в себе много настоящих генетических секретов. В то же время ученые, сталкиваясь с общественным мнением и жестким регулированием распространения ГМО, все чаще пытаются избежать внесения изменений непосредственно в растительную ДНК. И здесь мы вплотную подходим к самой загадочной группе современных методов селекции.

Эпигенетика: чуть-чуть не считается

Подавить работу генов в клетке можно с помощью природного механизма — РНК-зависимого ДНК-метилирования, суть которого состоит в присоединении метильной группы (СН3) к нуклеотиду цитозину, стоящему в определенном положении. В результате блокируется процесс считывания информации с ДНК на молекулу РНК (Zhang, 2013).

Метилирование ДНК у растений и животных осуществляется ферментами ДНК-метилтрансферазами. Сами по себе эти ферменты метилировать ДНК не могут: им нужны специальные некодирующие РНК, которые направляют метилтрансферазы к конкретным участкам ДНК. Более того, считается, что в метилировании ДНК участвуют еще два вида РНК: малые интерферирующие РНК и микроРНК. Все вместе эти молекулы и определяют, какой именно участок ДНК цепи нужно метилировать. Сегодня такие РНК можно ввести в растение с помощью разных методик, например, посредством вирусов растений или с помощью техник генной инженерии (Deng, 2014).

Интересно, что если ученый изменяет признак растения с помощью ДНК-метилирования и при этом не вносит в геном никаких мутаций, то такое растение не считается ГМО. Если же некодирующие РНК не вводятся извне, а производятся самим растением благодаря геномному редактированию, то оно уже относится к генно-модифицированному.

Но и тут можно схитрить. Дело в том, что у растений метилирование определенных областей ДНК может наследоваться, т. е. передаваться от родителей к следующим поколениям (Jones, 2001). Благодаря ряду скрещиваний ГМ-растения с его природной формой можно получить гибрид, у которого нет измененной ДНК, но метилирование сохраняется. Такой гибрид уже не будет считаться генетически модифицированным.

Насколько метилирование безопасно? Достаточно, ведь метильные группы присоединяются к ДНК совсем не в случайных местах. Поэтому, в отличие от традиционных методов селекции, результаты такого воздействия предсказуемы: мы можем заранее выбрать ген, кодирующий определенный белок, и просто заставить его замолчать. Но делать это нужно аккуратно, так как механизмы метилирования ДНК довольно сложны. Иначе в результате мы можем получить растение, подверженное болезням или преждевременному старению.

Иногда ДНК-метилирование, наоборот, является обязательным условием для начала работы гена. Ученые и это научились использовать: с помощью изменения метилирования ДНК можно увеличить активность генов, отвечающих за производство растением запасных белков. Например, регулируя метилирование, можно повысить содержание белков в зерне пшеницы, а путем обработки риса ингибитором метилирования (5-азацитидином) — получить растения с наследуемым признаком карликовости (Ванюшин, 2013).

Молчание РНК как заслон от аллергии

Успешное считывание гена на матричную РНК вовсе не означает, что кодируемый им белок будет построен: эта мРНК может быть разрушена в цитоплазме клетки. Такое явление, названное посттранскрипционным молчанием, часто наблюдается при внесении дополнительных генов в ДНК растений. Впервые оно было описано еще в 1990 г., когда при введении в геном петунии дополнительных копий гена, отвечающего за красную окраску цветков, количество красного пигмента не только не возросло, но и значительно снизилось (Napoli et al., 1990).

Среди успешных примеров применения этого метода — получение двух сортов кофейного дерева, содержащих в плодах пониженный на 30–50% алкалоид кофеина. Схожий эксперимент был проведен и с табаком с целью понизить в растении содержание никотина (Рябушкина, 2009).

Голубая роза веками была недостижимой мечтой, пока сотрудники японской компании Suntory не пересадили ей ген анютиных глазок, кодирующий синий пигмент дельфинидин, обычный для дельфиниума, баклажана и других растений. Но розы необычной сиренево-голубой окраски получали и раньше путем обычной селекции, как, например, выведенный в 1964 г. популярный сорт Blue Moon (на фото), который при выращивании на свету приобретает насыщенный голубой оттенок. © CC BY-SA 2.0. Some rights reserved by yamada

Другая возможность использования этого подхода — подавление синтеза аллергенов. И это уже не сказка: генетикам из испанского Института сельского хозяйства в Кордове почти полностью удалось освободить зерна пшеницы от глиадина — одного из составляющих глютена. Именно из-за глиадина группа запасающих белков пшеницы вызывает у многих людей иммунную реакцию. Правда, и без использования системы редактирования генома CRISPR/Cas9 тут не обошлось (Sanchez-Leon et al., 2017).

Сегодня, когда общество проявляет большую озабоченность безопасностью пищевых продуктов, селекционеры находятся в ситуации, вынуждающей их использовать альтернативные пути получения новых сортов растений. В силу тех или иных причин эти методы не относятся к запрещенным, но в ряде случаев являются не менее рискованными, чем традиционные методики получения ГМО.

Также не стоит забывать, что грамотный подход к селекции растений с использованием техник редактирования генома позволяет минимизировать использование пестицидов и удобрений — что это означает для экологии, нет нужды объяснять. В любом случае, какие продукты мы будем есть завтра, в огромной степени зависит уже не от природы, а от нас самих.

Методы селекции растений и животных: скрещивание и искусственный отбор. Скрещивание разных сортов растений и пород животных основа повышения генетического разнообразия потомства. Виды скрещивания растений: перекрестное опыление и самоопыление. Самоопыление перекрестно-опыляемых растений способ получения гомозиготного по ряду признаков потомства. Перекрестное опыление способ увеличения разнообразия потомства. Типы скрещивания животных:

Скрещивание — необходимое условие для осуществления комбинативной изменчивости. Оно позволяет сочетать в потомстве ценные признаки обоих родителей и избавляться от ненужных свойств. В зависимости от степени родства родителей, выделяют несколько типов скрещивания: родственное скрещивание; неродственное скрещивание:

а) внутрипородное (внутрисортовое),

б) отдаленная гибридизация.

Родственное скрещивание — это скрещивание особей, состоящих в близком родстве: родители — дети, брат — сестра. Родственное скрещивание у животных обозначают термином инбридинг, в растениеводстве самоопыление растений — инцухт. Однако часто термином инбридинг обозначают близкородственное скрещивание вообще. Длительный инбридинг сопровождается гомозиготизацией потомства, то есть все большее число генов присутствует в одной из возможных аллельных форм. Чем меньшее количество генов ответственно за развитие признака и чем дальше степень родства, тем медленнее наступает гомозиготность. Однако, следует иметь в виду, что абсолютной гомозиготности не наблюдается никогда, поскольку всегда возникают мутации. Путем применения инбридинга выводят чистые линии -гомозиготные формы одного сорта.

Неродственное скрещивание (аутбридинг) — скрещивание неродственных особей, которые могут принадлежать к одной или разной породе или сорту, и даже к разным видам и родам. Если инбридинг приводит к фиксированию определенных признаков в ряду поколений, то за счет аутбридинга осуществляют объединение различных свойств в одном организме. Одним из важнейших следствий аутбридинга является гетерозиготизация, при которой большое число генов генофонда группы организмов присутствует в двух или более аллельных формах.

Для сельского хозяйства ценен один из эффектов аутбридинга —гетерозис. Гетерозис —явление резкого увеличения жизненной силы у гибридов, полученных при скрещивании родителей двух чистых линий. Под жизненной силой при этом подразумевают плодовитость, выживаемость и ряд других свойств. Наиболее сильно гетерозис проявляется у гибридов первого поколения, после чего в ряду поколений достаточно быстро исчезает. Биологические механизмы гетерозиса еще не достаточно изучены. Выдвинуто несколько гипотез, однако ни одна из них не дает исчерпывающего объяснения этому явлению. Для усиления гетерозиса также используют метод двойной межлинейной гибридизации, при этом скрещивают гибридов, полученных от скрещивания чистых линий.

Отдаленная гибридизация — скрещивание особей, относящихся к разным видам и родам. Её применение позволяет получать особей с уникальным сочетанием признаков, характерных для разных видов. Несмотря на то, что в природе существуют механизмы, препятствующие межвидовому скрещиванию, в некоторых случаях все-таки удается получать потомство (например, мул — гибрид от лошади и осла). Часто, однако, существенным недостатком таких гибридов является их стерильность, однако и это иногда может быть преодолено, в результате аллодиплоидизации.

Селекция растений — это совокупность методов выведения гибридов и сортов с необходимыми свойствами.

Основной целью селекции является повышение качества сельскохозяйственных культур и их урожайности. Большое значение имеет создание сортов, устойчивых к засухе, длительным дождям, заморозкам, инфекционным и грибковым заболеваниям.

Разработками направления пользуются как профессиональные агрономы и фермеры, так и садоводы-любители, владельцы небольших земельных участков.

Основные методы селекции

Классический подход к селекции подразумевает использование двух основных методов:

  1. Гибридизации — процесса, основанного на объединении генетического материала двух разных растений в одной клетке. Гибридизация бывает внутривидовой, внутрисортовой и отдаленной — объединяющей разные геномы.
  2. Искусственного отбора — выбора людьми самых ценных растений для их последующего разведения.

Искусственный отбор бывает:

  • массовым — применяющимся для селекции перекрестноопыляемых растений;
  • индивидуальным — использующимся для селекции самоопыляемых растений.

Используя искусственные методы и средства, ученые никогда не забывают о естественном отборе, так как только он позволяет в полной мере учесть влияние факторов окружающей среды, объективно оценить устойчивость сорта или гибрида к болезням и вредителям, определить адаптивность к водному и температурному режиму.

Особенности, какие основные современные

Зная особенности классических методов и их недостатки, ученые пошли дальше — изобрели более современные способы селекции:

  • инбридинг — принудительное самоопыление, производящееся в течение нескольких лет, позволяющее получать максимально чистые линии;
  • перекрестное опыление самоопыляющихся растений, применение которого обусловлено стремлением соединить свойства разных сортов в одном;
  • полиплоидия — наследственное изменение, достигающееся путем кратного увеличения количества наборов хромосом в клетках;
  • использование соматических мутаций — сохранение полезных изменений при помощи вегетативного размножения.

Еще одна относительно новая схема — экспериментальный мутагенез.

Экспериментальный мутагенез — это направление в биологии, посвященное искусственному изменению генома для получения мутаций.

По сравнению с естественным процессом экспериментальный мутагенез позволяет многократно увеличить частоту возникновения измененных форм. В его основе лежит воздействие разнообразных излучений и химически активных веществ.

Большинство методов селекции было разработано русским биологом Иваном Владимировичем Мичуриным. В своих работах ученый активно использовал скрещивание географически отдаленных форм. Поэтому главным результатом его деятельности стали сорта, сочетающие отличные вкусовые качества и высокую климатическую устойчивость. Таковыми являются, к примеру, груша Бере зимняя, яблоня Антоновка шестисотграммовая, вишня Гриот грушевидный.

Классические методы селекции растений, таблица

Классические методы селекции являются общими для растений и животных. В таблице ниже приведены их краткие описания, а также примеры результатов.

Селекция ― разработка научно обоснованных методов создания и совершенствования сортов культурных растений и пород домашних животных, а также применение этих методов в растениеводстве (селекция растений) и животноводстве (селекция животных). В результате селекционной работы создают сорта растений и породы животных с нужными биологическими свойствами и хозяйственными качествами. Например, ведут селекцию на плодовитость и продуктивность скота и птицы, урожайность с.-х. культур, устойчивость к вредителям и болезням, качество продукции, приспособленность к механизированной уборке и др.


Научная селекция стала развиваться с начала 20 в., одновременно с развитием генетики (теоретическая основа селекции). Открытие законов наследственности и изменчивости, научно обосновавших искусственный отбор, дало возможность сознательно управлять наследственностью растительных и животных организмов.

Современная селекция базируется на методическом отборе, который ведётся в двух направлениях ― на сохранение сортовых и породных признаков (массовый отбор) и на их совершенствование (индивидуальный отбор). Для внесения в генофонд ценных генов и получения оптимальных комбинаций признаков (например, сочетание высокой урожайности с засухоустойчивостью) применяют гибридизацию с последующим отбором.

В животноводстве обычно применяют индивидуальный отбор и гибридизацию, используя различные виды скрещивания ― близкородственное (инбридинг), неродственное (аутбридинг) и др. Цель близкородственного скрещивания ― перевод большинства генов породы в гомозиготное состояние. Задача неродственного скрещивания ― комбинация нескольких полезных признаков. При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях наблюдается мощное развитие гибридов первого поколения, их высокая жизнеспособность. Удалось получить гетерозисные гибриды огурца, томата и др., урожайность которых на 10-30 % выше, чем у обычных сортов. Разработаны способы преодоления бесплодия межвидовых гибридов, благодаря чему были получены гибриды пшеницы с рожью (тритикале) и с пыреем (пшенично-пырейные гибриды), удачно сочетающие лучшие качества исходных форм (высокую урожайность зерна и зелёной массы с холодостойкостью).


На рис. Тритикале

В селекции широко используют метод искусственного мутагенеза (воздействуя мутагенами на исходный материал, нарушают строение молекул ДНК, что приводит к резкому росту числа мутаций, среди которых часто появляются формы с полезными признаками). Путём искусственного мутагенеза получены высокоурожайные сорта ярового и озимого ячменя, яровая пшеница Новосибирская 67, а также полиплоидные растения, отличающиеся более крупными размерами плодов, цветков, стеблей и др. органов и повышенным содержанием сахара (сахарная свёкла), белков (зернобобовые), масла (подсолнечник) и др. полезных веществ.

В связи с бурным развитием производств, основанных на биотехнологиях, стала актуальной селекция микроорганизмов (выведение новых их штаммов, имеющих значение для производства кормового белка, ферментативных и витаминных препаратов, антибиотиков, используемых в сельском хозяйстве, медицине, пищевой промышленности). При этом используют способность микроорганизмов непрерывно синтезировать белки при благоприятных условиях. Разработаны способы внедрения в бактериальную клетку определённых генов, в т. ч. человека. Это обеспечивает интенсивную выработку ею белка, кодируемого чужим геном. На методах генной инженерии основано производство интерферонов (белков, подавляющих размножение вирусов), инсулина (регулятор уровня глюкозы в крови), гормонов роста и др.

Селекция растений

Методы селекции растений. Основными методами селекции растений являются отбор и гибридизация. Однако методом отбора нельзя получить формы с новыми признаками и свойствами; он позволяет только выделить генотипы, уже имеющиеся в популяции. Для обогащения генофонда создаваемого сорта растений и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором.

В селекции различают два основных вида искусственного отбора: массовый и индивидуальный.

Табл. 1. Центры происхождения культурных растений (по И. Я Вавилову)

Центры происхождения

Местоположение

Культурные растения

Тропическая Индия, Индокитай, Южный Китай

Рис, сахарный тростник, цитрусовые, огурец, баклажан и др. (50% культурных растений)

Центральный и Восточный Китай, Япония, Корея, Тайвань

Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений)

Малая и Средняя Азия, Иран, Афганистан, Юго-Западная Индия

Пшеница, рожь, бобовые культуры, лен, конопля, репа, морковь, виноград, чеснок, груша, абрикос и др. (14% культурных растений)

Страны по берегам

Капуста, сахарная свекла, маслины, кормовые травы (11% культурных растений)

Абиссинское нагорье Африки

Твердая пшеница, ячмень, сорго, кофейное дерево, банан

Кукуруза, какао, тыква, табак, хлопчатник

Западное побережье Южной Америки

Массовый отбор — это выделение группы особей, сходных по одному или комплексу желаемых признаков, без проверки их генотипа. Например, из всей популяции злаков того или иного сорта для дальнейшего размножения оставляют только те растения, которые отличаются устойчивостью к возбудителям болезней и полеганию, имеют крупный колос с большим числом колосков и т. д. При их повторном посеве снова отбирают растения с нужными качествами. Сорт, полученный таким способом, генетически однороден, и отбор периодически повторяют.

Основным достоинством данного метода является то, что он технически прост, экономичен и позволяет сравнительно быстро улучшать местные сорта, а его недостаток состоит в невозможности индивидуальной оценки по потомству, в силу чего результаты отбора неустойчивы.

При индивидуальном отборе (по генотипу) получают и оценивают потомство каждого отдельного растения в ряду поколений при обязательном контроле наследования интересующих селекционера признаков. В результате индивидуального отбора увеличивается число гомозигот, т. е. полученное поколение становится генетически однородным. Подобный отбор обычно применяют среди самоопыляемых растений (пшеницы, ячменя и др.) для получения чистых линий. Чистая линия — это группа растений, являющихся потомками одной гомозиготной самоопыляемой особи. Они обладают максимальной степенью гомозиготности и представляют очень ценный исходный материал для селекции.

Отбор в селекции отличается наибольшей эффективностью в том случае, если сочетается с определенными типами скрещиваний.

Методы гибридизации (типы скрещивания) в селекции

Все разнообразие типов скрещивания сводится к инбридингу и аутбридингу.

Инбридинг — это близкородственное (внутрисортовое), а аутбридинг — неродственное (межсортовое) скрещивание. При инбридинге, т. е. в случае принудительного самоопыления перекрестноопыляющихся форм, происходит гомозиготизация потомков, а при аутбридинге — их гетерозиготизация.

Родственное скрещивание применяют в тех случаях, когда желают перевести большинство генов сорта в гомозиготное состояние и, как следствие, закрепить хозяйственно ценные признаки, сохраняющиеся у потомков.

Вместе с тем чистые линии, полученные в результате инбридинга, отличаются не только различными признаками, но и степенью снижения жизнеспособности (часто наблюдается ослабление организмов, их постепенное вырождение), обусловленной переходом в гомозиготное состояние всех рецессивных мутаций, которые преимущественно являются вредными. Если эти чистые линии скрещиваются между собой, то обычно наблюдается эффект гетерозиса.

Гетерозис, или гибридная мощность, — это явление повышенной жизнеспособности и продуктивности гибридов первого поколения по сравнению с обеими родительскими формами. В дальнейших поколениях его эффект ослабляется и исчезает. Предполагается, что гетерозис связан с высоким уровнем гетерозиготности межлинейных гибридов.


На рис. Пример гетерозиса

Кукуруза была первым растением, у которого получение высокопродуктивных гетерозисных гибридов было поставлено на промышленную основу. Валовые сборы зерна такого гибрида были на 20-30% выше, чем у родительских организмов. Однако нередко сочетание разных признаков у чистых линий оказывается неблагоприятным; поэтому, создав большое количество чистых линий, экспериментально определяют наилучшие комбинации гибридизации, которые затем используются в производстве.

Полиплоидия и отдаленная гибридизация. При создании новых сортов растений селекционеры широко используют метод автополиплоидии, который приводит к увеличению размеров клеток и всего растения вследствие умножения числа наборов хромосом. Кроме того, избыток хромосом повышает их устойчивость к патогенным организмам (вирусам, грибам, бактериям) и ряду других неблагоприятных факторов, например к радиации: при повреждении одной или даже двух гомологичных хромосом аналогичные остаются неповрежденными. Полиплоидные особи жизнеспособнее диплоидных.

Ценные результаты дает также использование в селекции явления аллополиплоидии, в основе которого лежит метод отдаленной гибридизации, т. е. скрещивания организмов, относящихся к разным видам и даже родам. Например, выведены межвидовые полиплоидные гибриды капусты и редьки, ржи и пшеницы. Гибридизация пшеницы (Triticum) и ржи (Secale) позволила получить ряд форм, объединенных общим названием тритикале. Они обладают высокой урожайностью пшеницы и зимостойкостью и неприхотливостью ржи, устойчивостью ко многим болезням, в том числе к линейной ржавчине, являющейся одним из главных факторов, ограничивающих урожайность пшеницы.

На основе гибридизации пшеницы и пырея российским академиком Н. В. Цициным получены пшенично-пырейные гибриды, отличающиеся высокой урожайностью и устойчивостью к полеганию. Однако отдаленные гибриды, как правило, бесплодны. Это связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у межвидовых гибридов в 1924 г. советский генетик Г. Д. Карпеченко предложил использовать у отдаленных гибридов удвоение числа хромосом, которое приводит к образованию амфидиплоидов.

Г. Д. Карпеченко проводил скрещивание редьки и капусты. Число хромосом у этих растений одинаково (2л = 18). Соответственно, их гаметы несут по 9 хромосом. Гибрид капусты и редьки имеет 18 хромосом, но он бесплоден, так как хромосомы этих растений в мейозе не конъюгируют, поэтому процесс образования гамет не может протекать нормально. В результате удвоения числа хромосом в бесплодном гибриде оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза: хромосомы капусты и хромосомы редьки конъюгировали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; межвидовой гибрид стал плодовитым. По фенотипу новый растительный организм совмещал признаки редьки и капусты, например, в строении стручка.

Спонтанный и индуцированный мутагенез. Спонтанные мутанты используются преимущественно в селекции растений. Так, на основе мутанта желтого безалколоидного люпина получено несколько сортов сладкого люпина, которые выращивают на корм скоту. Люпин, содержащий алкалоиды, для этой цели непригоден, поскольку животные его не едят.


На рис. Люпин Кормовой

Селекция животных

Создание пород домашних животных началось вслед за их приручением и одомашниванием, которое началось 10–12 тыс. лет назад. Содержание в неволе снижает действие стабилизирующей формы естественного отбора. Различные формы искусственного отбора (сначала бессознательный, а затем методический) приводят к созданию всего многообразия пород домашних животных.

В селекции животных, по сравнению с селекцией растений, есть ряд особенностей. Во-первых, для животных характерно в основном половое размножение, поэтому любая порода является сложной гетерозиготной системой. Оценка качеств самцов, которые внешне у них не проявляются (яйценоскость, жирномолочность), оцениваются по потомству и родословной. Во-вторых, у многих видов имеет место позднее половое созревание, смена поколений происходит через несколько лет. В-третьих, потомство немногочисленное.

Основными методами селекции животных являются гибридизация и отбор. Различают те же методы скрещивания — близкородственное скрещивание, инбридинг, и неродственное, аутбридинг. Инбридинг, как и у растений, приводит к депрессии. Отбор у животных проводится по экстерьеру (определенным параметрам внешнего строения), т.к. именно он является критерием породы.

Внутрипородное разведение

Направлено на сохранение и улучшение породы. Практически выражается в отборе лучших производителей, выбраковке особей, не отвечающих требованиям породы. В племенных хозяйствах ведутся племенные книги, отражающие родословную, экстерьер и продуктивность животных многих поколений.

Межпородное скрещивание

Используют для создания новой породы. При этом часто проводят близкородственное скрещивание — родителей скрещивают с потомством, братьев с сестрами, что помогает получить большее число особей, обладающих нужными свойствами. Инбридинг сопровождается жестким постоянным отбором; обычно получают несколько линий, затем производят скрещивание разных линий.

Примером может служить выведенная академиком М.Ф. Ивановым порода свиней — украинская белая степная. При создании этой породы использовались свиноматки местных украинских свиней с небольшой массой и невысоким качеством мяса и сала, но хорошо приспособленных к местным условиям. Самцами-производителями были хряки белой английской породы. Гибридное потомство вновь было скрещено с английскими хряками, в нескольких поколениях применялся инбридинг. Были получены линии, при скрещивании которых появились родоначальники новой породы, которые по качеству мяса и массе не отличались от английской породы, по выносливости — от украинских свиней.

Использование эффекта гетерозиса

Часто при межпородном скрещивании в первом поколении проявляется эффект гетерозиса; гетерозисные животные отличаются скороспелостью и повышенной мясной продуктивностью. Например, при скрещивании двух мясных пород кур получают гетерозисных бройлерных кур, при скрещивании беркширской и дюрокджерсейской пород свиней получают скороспелых свиней с большой массой и хорошим качеством мяса и сала.


Испытание по потомству

Искусственное осеменение

Используют для получения потомства от лучших самцов производителей, тем более что половые клетки можно хранить при температуре жидкого азота любое время.

Гормональная суперовуляция и трансплантация эмбрионов

С помощью этого метода у выдающихся коров можно забирать десятки эмбрионов в год, а затем имплантировать их другим коровам; эмбрионы так же хранятся при температуре жидкого азота. Это дает возможность увеличить в несколько раз число потомков от выдающихся производителей.

Отдаленная гибридизация

Межвидовое скрещивание известно с древних времен. Чаще всего межвидовые гибриды стерильны (нарушение мейоза и, как следствие, отсутствие гаметогенеза). С глубокой древности человек использует гибрид кобылицы с ослом — мула, который отличается выносливостью и долгожительством. Но иногда гаметогенез у отдаленных гибридов протекает нормально, что позволило получить новые ценные породы животных. Примером являются архаромериносы, которые, как и архары, могут пастись высоко в горах, а как мериносы, дают хорошую шерсть. Получены плодовитые гибриды от скрещивания местного крупного рогатого скота с яками и зебу. При скрещивании белуги и стерляди получен плодовитый гибрид — бестер, хорька и норки — хонорик, продуктивен гибрид между карпом и карасем.

Читайте также: